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Abstract: The Internet of Things (IoT) has been shown to be very valuable for Business Process
Management (BPM), for example, to better track and control process executions. While IoT actuators
can automatically trigger actions, IoT sensors can monitor the changes in the environment and the
humans involved in the processes. These sensors produce large amounts of discrete and continuous
data streams, which hold the key to understanding the quality of the executed processes. However,
to enable this understanding, it is needed to have a joint representation of the data generated by the
process engine executing the process, and the data generated by the IoT sensors. In this paper, we
present an extension of the event log standard format XES called DataStream. DataStream enables the
connection of IoT data to process events, preserving the full context required for data analysis, even
when scenarios or hardware artifacts are rapidly changing. The DataStream extension is designed
based on a set of goals and evaluated by creating two datasets for real-world scenarios from the
transportation/logistics and manufacturing domains.

Keywords: process management; Industry 4.0; IoT data; process mining; XES

1. Introduction

All companies rely on business logic, or more generic, process logic to accomplish
business goals. Process logic describes the interaction between machines, humans, software
(e.g., ERP, MES), resources (e.g., raw materials), and the environment in order to achieve a
predefined business goal. Such process logic is executed by a process engine, which enacts
and monitors all the rules contained in the processing logic. This process execution can rely
on the Internet of Things (IoT) consisting of a network of (smart) machines and sensors.
In this case, the process engine and the IoT work together to execute the processes. The
engine orchestrates the process activities, using IoT actuators to automate process tasks,
while IoT sensors and tags can be used to closely monitor the execution environment and
involved resources [1–4]. We call such processes IoT-enhanced BPs.

To understand and improve the processes, the process execution data is stored in an
event log, then can later be analyzed using a variety of process mining techniques [5,6].
However, IoT-enhanced BPs have special requirements on the data representation that
cannot be fulfilled by the de-facto standard for storing event logs for process mining,
eXtensible Event Stream (XES) [7]. When using XES, each observation (i.e., sensor values
denoting, for example, temperature, vibration or humidity) by a sensor must be either
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assignable to events or traces [8]. However, this may not be the case for observations.
For example, a series of temperature readings representing the mean temperature of a
timespan (e.g., 2 min), might span the boundaries of multiple events representing multiple
short subsequent real-world tasks. But from a process event log perspective, IoT data
(i.e., sensor value, sensor type, sensor configuration, trigger parameters) can be assigned
to different context levels such as event, trace, or groups of instances from the same or
different processes. For example, humidity might affect a single machining task, a whole
process instance consisting of machining and quality assurance, as well as a group of
related parallel machining tasks on a factory floor. The assignment is related to semantic
process properties, as well as the nature of the collected data (static vs. dynamic, collection
frequency, relation to the process, etc.). Depending on logging, knowledge about the
executed processes and process models, and physical aspects such as the placement of
sensors or their orientation, sensors can be directly assigned to individual events or traces
or neither. In addition, IoT data is often ad-hoc, highly variable, contains data quality
issues, and has varying degrees of semantic annotations [3,9], i.e., references to instances in
domain ontologies.

In the absence of a unified, expressive standard for IoT-enriched event logs, vari-
ous players in industry and academia are developing their own proprietary formats and
database schemas. This results in many highly customized and not-interoperable data
formats and procedural applications (examples include—as of 2023: Celonis Execution
Management System, IBM Process Mining, Fluxicon Disco, Microsoft Process Advisor,
Mehrwerk MPM Process Mining) dealing with process mining, i.e., runtime and ex-post
analysis of data-streams to check the compliance with the business logic, search for the
cause of errors and gain insights about bottlenecks and resource shortages.

In this paper, we present the DataStream XES extension for uniform representation of
IoT-enriched event logs. The extension complements plain XES in a way that extensive IoT
sensor data can be stored in events or traces, but also, independently of these concepts if the
connection is not clear (yet). The foundations of this extension are based in the challenge
C3 of the BPM&IoT Manifesto [4], which formulates the requirement of a “connection of
analytical processes with IoT”. In order to support the creation of analytical software to
perform such analytical tasks, both ex-post and at runtime, the following 5 goals for the
design of the DataStream extension are defined:

• Provide a well-defined set of named XES attributes to describe individual (sensor) events.
• Utilize well-established XES concepts such as lists to group the named attributes for

simplified analysis.
• Establish a set of named XES attributes to store many (sensor) events per process event.
• Describe how to store large quantities of (sensor) events, which might occur between

the start/end of a process event or a process instance (i.e., establishing a new XES
BPAF lifecycle transition).

• Establish a set of named XES attributes to connect (sensor) events to groups of
process tasks.

Subsequently these 5 goals are evaluated in two different real-world scenarios, from
the transportation/logistics and manufacturing domains.

The extension adds nested attributes to XES, providing a vocabulary for storing IoT
data streams with process logs. Thus, the extension can easily be integrated with existing
process execution environments or log aggregation mechanisms, as exemplified in Section 4.
The DataStream XES extension is intended to lay a foundation for process mining in IoT
environments and to promote re-usability and interoperability.

The structure of the paper is as follows: In Section 2, we describe the theoretical basis
for process mining in IoT and the related literature. Section 3 introduces the proposed
DataStream XES extension to specify IoT-enriched event logs. In Section 4, we present
application scenarios for IoT-enriched event logs in smart manufacturing and public trans-
portation. Section 5 summarizes the results, lists advantages and limitations, and gives an
outlook for future research directions.
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2. Foundations and Related Work

The recent developments and technologies used in the Industrial Internet of Things
(IIoT) [1] demand a more intelligent and interconnected process-based control of IoT
devices [2]. To achieve a deeper integration with IoT environments in a process-oriented
way, Business Process Management (BPM) methods can be applied for control and analysis
purposes [4]. The benefit is that BPM can make use of the huge variety of IoT sensor data
that can be used to improve analysis methods. The remainder of this section is structured
as follows (see also Figure 1): Section 2.1 discusses relevant IoT terms, and their recognition
in the BPM domain. Section 2.2 introduces related work regarding the integration of
BPM and IoT in a more general context. Based on that, Section 2.3 describes how process
mining techniques can be applied to IoT environments, including the presentation of typical
application scenarios. Section 2.4 then describes related approaches that tackle data analysis
problems, and provide datasets, which are related to the challenges and solutions described
in this paper.

BPM IoT

Process Mining

Data Analysis

Figure 1. Related Work.

2.1. IoT

Dorsemaine et al. [10] define IoT as “Group of infrastructures interconnecting con-
nected objects and allowing their management, data mining and the access to the data they
generate.”

Context in IoT is defined by Dey et al. [11] as: “any information that can be used
to characterise the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the user
and applications themselves.”

Serpanos [12] defines an IoT event as a time-value set, which contains: key, value,
destination, generation_time, release_time. This in stark contrast to the BPM world,
where sequences of events describe the lifecycle of a task in a process execution, and
individual events can contain arbitrary attributes [13,14].

Furthermore, the IoT domain is characterized by a focus on devices topologies, and
middleware that facilitates the interaction between various classes of devices in scenarios
such as smart homes and smart cities [15]. The BPM domain on the other hand has strong
focus on describing interactions between software components, hardware components and
the environment, often avoiding layered architectures.

2.2. BPM and IoT

Often, existing work on IoT does not cover the integration of BPM concepts. How-
ever, various approaches from the BPM community investigating aspects regarding the
integration of BPM with IoT exist and are discussed in different, recent surveys [16–18].
In the following, we present related work that deals with the integration of BPM in smart
IIoT environments.

Chang et al. [16] present an overview of cloud BPM systems for (mobile) IoT devices.
Process (execution) engines (PEs) are used as part of a middleware to control IoT devices
at the edge. Baumgraß et al. [19] discuss the integration of complex events from IoT with
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business processes in the context of smart logistics. Kammerer et al. [20] focus on this
integration of sensor events from industrial production machines and their processing in
a BPM context. Schönig et al. [21] deal mainly with data exchange and communication
between IoT devices and execution engines, namely the aspect of abstraction and encapsu-
lation of sensor events. Koot et al. [22] propose an architecture for IoT-enabled dynamic
planning in the domain of smart logistics with an applications layer that serves the role of a
PE executing business logic. In a literature study, Ramos Gutiérrez et al. [23] investigate
which approaches, frameworks, and tools are available to integrate business processes and
complex events in the logistic domain. Seiger et al. [24,25] present the PROtEUS system to
execute self-adaptive cyber-physical workflows in IoT base smart home environments. They
assume the existence of services to control IoT devices and collect data for event processing.
In more recent work [26], they introduce a method for detecting process activity executions.
The approach is based on sensor-actuator-activity patterns and activity signatures. In this
context, they use a service-oriented architecture based on [2,27] to control a physical smart
factory by a PE. SmartPM [28], on the other hand, supports adaptive processes based on AI
planning in situations in which an adaptation of the current process instance is required.
Based on this, Malburg et al. [29] present how control loops can be applied for process
adaptation and recovery by using AI planning and semantics. Very similar to that is the
approach by Ochoa et al. [30] in which they present an architecture for asset administration
shell-based business processes. In this context, capabilities of resources are encapsulated
in such a way that they can be executed in a PE. The architecture of the SitOPT system
for situation-aware adaptive workflows in manufacturing is presented in [31]. It allows
recognizing complex failure situations based on rules, leading to the execution of process
variations to deal with the detected failures. Traganos [32] discusses an end-to-end printing
process, relying on a PE on top of a middleware layer encapsulating the hardware and
software. This work has been the basis for the HORSE framework [33], which deals mostly
with logistics use-cases. Bordel Sánchez et al. [34] propose an 8-layer architecture to cover
concerns reaching from low-level machine interactions up to decision-making by domain
experts. Notably, they suggest a dedicated Data Analytics layer for sensor data processing.
Kirikkayis et al. [35] present the BPMNE4IoT framework, which deals with the aspect that
the current BPMN 2.0 standard has not been intended to fully meet the IoT characteristics
and thus, is not well-suited in every IoT application scenario. For this purpose, they present
a framework that supports modeling, executing, and monitoring IoT-driven processes.
Bocciarelli et al. [36] analyzes IoT frameworks and ontologies that can be utilized to extend
the current BPMN representation standard. In addition, they present an automated process
for developing digital twins based on actual business processes.

The work presented in these papers complements all of these approaches, by giving
them a means to uniformly represent the process and IoT data in a single data structure,
that can be either used for long-term storage, or as the basis for data analysis.

2.3. Process Mining

One technique to analyze IoT sensor data together with related event data is process
mining. Process mining describes three analysis tasks. The most common is (i) process
discovery. Discovery techniques take an event log and produce a process model depicting
the process executed in the log [5,6]. The second task is (ii) conformance checking, which is
used to verify the conformance of real process instances to a given a-priori model. The last
analysis task is (iii) enhancement that uses an event log and the associated process model
to identify bottlenecks and to improve the process accordingly [5]. All tasks require an
event log as input.

Many proposals have been made in the past for storing event logs. The first was
MXML, as a simple XML format for audit and trails in process-aware information sys-
tems [37]. XES, the current standard event log model, is also based on XML and widely
used in both industrial and academic contexts [7,38]. An XES event log can contain one
or more traces. Each trace represents a process instance. A trace, in turn, consists of the
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sequence of executed activities, each represented by an event. Furthermore, event logs can
store additional attributes, such as resources and data elements [39].

An XES attribute consist of (a) a data type represented by the qualified name of the
XML element, (b) a key to denote the type of attribute (unique within its container), and
(c) a value (see Listing 1). XES describes six types of attributes: string, date, int, float,
boolean and id which have a value, as well as two additional attributes, container and list,
which can hold arbitrary child attributes. All attributes can also be nested (even inside
non-container and non-list attributes) [7].

Listing 1. Sample XES (XML serialization) with Trace, Events and Attributes.

1 <log xes . vers ion = " 1 . 0 "
2 xmlns=" ht tp ://www. xes −standard . org "
3 xes . c r e a t o r =" cpee . org "
4 xes . f e a t u r e s =" nested − a t t r i b u t e s ">
5 <extens ion name=" Concept " p r e f i x =" concept " u r i =" ht tp ://www. xes −standard . org/concept . xesex t

"/>
6 <extens ion name=" L i f e c y c l e " p r e f i x =" l i f e c y c l e " u r i =" ht tp ://www. xes −standard . org/ l i f e c y c l e .

xesex t "/>
7 <extens ion name=" I d e n t i t y " p r e f i x =" i d e n t i f i e r " u r i =" ht tp ://www. xes −standard . org/ i d e n t i t y .

xesex t "/>
8 <extens ion name="Time " p r e f i x =" time " u r i =" ht tp ://www. xes −standard . org/time . xesex t "/>
9 <globa l scope =" t r a c e ">

10 < s t r i n g key =" concept : name" value ="name"/>
11 </global >
12 <globa l scope =" event ">
13 < s t r i n g key =" concept : name" value ="name"/>
14 < s t r i n g key =" l i f e c y c l e : t r a n s i t i o n " value =" s t a r t "/>
15 <date key =" time : timestamp " value ="1970 −01 −01T00 : 0 0 : 0 0 . 0 0 0 + 0 0 : 0 0 " / >
16 </global >
17 < s t r i n g key =" l i f e c y c l e : model " value =" standard "/>
18 < s t r i n g key =" c r e a t o r " value =" cpee . org"/>
19 < s t r i n g key =" l i b r a r y " value =" cpee . org"/>
20 <trace >
21 < s t r i n g key =" concept : name" value =" Process 1"/>
22 <event >
23 < s t r i n g key =" concept : name" value =" Task 1"/>
24 < s t r i n g key =" l i f e c y c l e : t r a n s i t i o n " value =" s t a r t "/>
25 <date key =" time : timestamp " value ="1970 −01 −01T00 : 0 0 : 0 0 . 0 0 0 + 0 0 : 0 0 " / >
26 < s t r i n g key ="name" value =" Juergen "/>
27 </event >
28 <event >
29 < s t r i n g key =" concept : name" value =" Task 2"/>
30 < s t r i n g key =" l i f e c y c l e : t r a n s i t i o n " value =" s t a r t "/>
31 <date key =" time : timestamp " value ="1970 −01 −01T00 : 0 0 : 0 0 . 0 0 0 + 0 0 : 0 0 " / >
32 < s t r i n g key ="name" value =" Juergen "/>
33 /event >
34 </trace >
35 </log >

Since the requirements for event logs differ depending on the application and domain,
XES can be extended. Standard XES extensions include the concept extension, which
specifies a generally understood name for events, traces, or the log. In addition, the
lifecycle extension can be used to specify different stages in the lifecycle of events and the
time extension standardizes the specification of event timestamps [7]. XES also allows the
definition of new data attribute types through the notion of extensions, thereby increasing
the flexibility of the model.

Recently, the uptake of new technologies and the gain in maturity of the process
mining field have increased the urge to create more powerful event log models. Multiple
propositions that relax some assumptions of XES and allow for more flexibility in event
data representation have been presented (e.g., [40,41]). Among them, a standard for Object-
Centric Event Logs (OCEL) [41] has been developed to be more suitable for storing event
data extracted from relational databases and is widely considered as the main challenger
of XES today. OCEL replaces the strict notion of case with the concept of object, which
generalizes it by allowing one event to be linked with multiple objects instead of a single
case. This removes the necessity to “flatten” the event log during logging or ex-post log
extraction based on relational databases, as is the case for XES by picking one case notion
from the several potential case notions that often coexist in real-life processes. A second
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noticeable difference with XES is the explicit inclusion of the concept of activity in OCEL,
which is absent in XES [42].

When representing a process execution into the OCEL format, information about traces,
events, or the overall sequence of steps is only available implicitly, by linking together the
models of each object. This means that information is potentially lost, and ambiguities
regarding the process model might appear. While theoretically, it is possible to define an
object type corresponding to an overall case as understood in XES, it is non-standard and
therefore not automatically analyzable. In this case, XES is still a better fit. So, despite its
noteworthy flexibility and closer conceptualization to the real-world in case of business
processes supported by relational databases, the missing case notion in the OCEL format
can become a liability.

2.4. Data Analysis for BPM and IoT

In recent publications the temporal and spatial aspects of sensor readings are used for
automatically connecting them to process execution [43]. Both, the sensor readings as well
as the business processes, are seen as an integral part of application scenarios and their
analysis in IoT [2,44,45].

Multi-perspective process mining [46] has evolved to, for example, use tree structured
process event logs containing time-series data outside the XES BPAF lifecycle, as presented
in [47]. Also, the analysis of this time series data is used as described in [47] for detecting
concept drifts during runtime. A survey on outcome-oriented predictive process monitoring
presented in [48] compares different techniques.

Banham et al. [49] propose to perform data-aware process discovery with IoT-based
attributes. A data petri net is discovered from two real-life event logs, and rules behind
some decisions are mined based on IoT-derived attributes. The proposed framework
requires abstracting the IoT data to integrate them in an XES event log.

For all of these approaches, datasets have been provided containing a wealth of context
data in conjunction with process events. However, these datasets present slightly different
granularity levels, slightly different formats, and slightly different semantics.

Wei et al. [50] recently proposed an approach named Amoretto to integrate IoT data
into XES logs. They focus on a limited, well-established set of attributes from the BPM
domain into process logs: physical object, location, time, identity, environment. They
explicitly collect the data by adding collection tasks to existing process models, leading to a
multitude of problems: (1) The data from the collection is indistinguishable from normal
data flow from non-Amoretto event logs, so specialized analysis will be hard. (2) Their
main context is the trace/process instance, if a sensor data collection is relevant for a
particular task or set of tasks, it must be explicitly modeled as parallel to the task containing
the business logic. This leads to complicated analysis as the tasks containing the business
logic also have to have information about physical object, location, and environment to be
connectable. (3) Unlike earlier work such as [51], they ignore IoT standardization efforts and
classification. Finally, (4) when considering the real-world examples presented in this work
with 50+ sensors, it becomes obvious that the resulting process models will violate all rules
of good process modeling [52]. In contrast, the approach presented in our work, focuses on
how IoT data can be connected to existing logs for unchanged process logs and process
models, considering (a) intrinsic (process context) data, (b) extrinsic (non-process context),
and (c) separate data, and focusing on connection to existing events, while acknowledging
that many IoT events might occur while existing business logic is executed, both at instance
and event level.

3. An XES-Extension for IoT-Enriched Event Logs

Based on our literature analysis presented in Section 2 we think, that XES is still
the best starting point for representation and long-term storage of process data and all
connected IoT data. As discussed above, (1) process and IOT data can have a different
granularity (e.g., multiple sensor readings from multiple sensors per task), (2) IoT data
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might not be explicitly connected to the process, and often has to be connected to the
process data ex-post from heterogeneous sources, and (3) the data-sources for sensors are
potentially evolving (e.g., additional sensors, new replacement sensors, sensor firmware
updates leading to changed data structures).

Holding the extracted, transformed and aggregated data (i.e., after process mining,
or after process execution) in a flexible, structured long-term storage format is imperative.
This section discusses how XES can be extended to better support this goal.

XES is built around events. Each process activity execution can lead to a set of events
in an XES log file, following the life-cycle (see Section 2) of the execution of that activity in a
particular instance, i.e., each activity could lead to a “start” event, to a “complete” event, and
to an arbitrary number of events in between, depending on the utilized life-cycle model.

Many XES log files just store one event per executed activity, thus sensor readings
could be attached to this event. Other available logs, such as [53], expose a custom fine-
grained life-cycle model, that anchors sensor readings to an event with special XES lifecy-
cle:transition.

An execution of the model shown in Figure 2 leads to the XES log described in Listing 1.
As mentioned in the XES Standard [7] (p. 5):

“Log, trace, and event objects contain no information themselves. They only
define the structure of the document. All information in an event log is stored in
attributes. Attributes describe their parent element (log, trace, etc.). All attributes
have a string-based key.”

Task 1 Task 2

Figure 2. Example Process.

However, as we indicated before, XES cannot be directly used to store IoT-enhanced
BP logs. Specifically, we distinguish three different cases (see Figure 3) where IoT data
might be connected to process activities, according to which part of the process that data
may be relevant for:

• “Single Activity” Context: A time-series of sensor readings from at least one sensor is
connected to a single activity, e.g., when the activity represents the machining of a part,
collected sensor data might describe various aspects, such as the throughput of coolant
while machining, a discrete series of vibration readings, or a function (continuous
data) describing the noise generation (volume). All sensor data can be assigned to a
particular activity, being the data relevant between the start and the completion of
the activity.

• “Group of Activities” Context: A time-series of sensor readings from at least one
sensor is connected to a set of activities. This is especially relevant for environmental
sensors, which for example span a multitude of production steps. For instance,
temperature changes during several process activities might give insights into certain
quality properties of a finished product but cannot be clearly attributed to a single
step (e.g., significance of the difference between temperatures measured at the start of
activity 1, and at the end of activity n).

• “Trace” Context: A time-series of sensor readings from at least one sensor is connected
to a whole trace. This case is analogous to the “Group of Activities” case. This is
for instance necessary when the sensor readings from a period before and/or after
individual activities may be relevant for the process analysis. e.g., when enacting a
chemical reaction, the characteristics of a warm-up phase might be important for the
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outcome but might not be explicitly part of the process model, which only starts with
adding ingredients.

Task 1 Task 2 Task 3

Trace Context

"Group of Activities" Context "Single Activity" Context

Figure 3. Different Contexts in Which IoT Data Can Be Collected.

Please note that being connected to “group of activities” or “traces” can also include
that one sensor reading can be relevant for very different processes or process instances
or activities in very different process or process instances. We assume that the readings
are duplicated for these cases—we focus on single instances and their activities. As each
reading can be uniquely identified, complex relationships between instances and processes
will still be visible in the data.

In order to realize these three contexts, we extend XES as depicted in Figure 4.
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Figure 4. XES + DataStream Metamodel Extension.
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In the following, we will denote all attributes of our proposed extension with the
prefix stream:, to increase the clarity of the description. We will furthermore assume that
the stream: prefix is specified in an XES extension—see https://cpee.org/datastream/
datastream.xesext (accessed on 8 February 2023).

The core of the extension is “attribute<list>:point”, furthermore denoted as
stream:point (see previous paragraph). It contains all the attributes that allow us to repre-
sent individual sensor values as XES artifacts. It is a list. Values include:

• id: uniquely identifies the sensor, e.g., if a gyro-sensor delivers orientation and angu-
lar velocity changes separately, the identifiers can be gyro/velocity and gyro/angu-
lar_velocity. On the other hand, if the sensor delivers a value pair, the identifier can
be gyro.

• source: identify the source of a sensor value, e.g., a drilling machine is the source of
many different sensor readings at all times. The source attribute allows grouping these
values into groups that may belong together and, thus, make sense to be analyzed
together. The source is optional.

• timestamp: A timestamp when the reading was taken. The timestamp is intended to
be in ISO 8601 format, including milliseconds (YYYY-MM-DDTHH:mm:ss.sssZ) or
microseconds (YYYY-MM-DDTHH:mm:ss.ssssssZ).

• value: The value delivered by the sensor. As sensors can deliver single values (float,
int, strings) or complex data (pairs, triplets, deeply structured data, . . . ), we always
assume this is stored as some serialized string representation.

• meta: A straightforward extension point, which allows us to specify an additional
list of attributes, which might be important for custom data analysis purposes. Meta
is optional.

3.1. Context, Grouping, and Nesting: Stream:Datacontext, Stream:Datastream, Stream:Point

The second concept (see Figure 4) is the stream:datastream. It was introduced to group
points for the “Single Activity” and “Trace” contexts. Its only (optional) attribute is name,
which can be used to describe the purpose of the grouping.

If a set of stream:datastream is included directly in the level of the trace, all sensor:point
attributes are meant to exist in the “Trace” context: they cannot be attributed to any event
or group of events yet.

If a stream:datacontext exists at the trace level, the stream:datacontext has to group
multiple events, and it has to contain at least one stream:datastream. This realizes the
“Group of Activities” context. Multiple stream:datacontext attributes can exist at trace
level, meaning that multiple groups exist.

If a stream:datastream exists at the event level, it has to contain at least one stream:point.
Multiple stream:datastream can exist at the event level. While this does not change
the meaning of all these points being connected to one event, its purpose might be
to further structure the events, e.g., separating two different levels of importance for
analysis purposes.

All stream:datacontext attributes might be nested. Nested sensor:datacontext at-
tributes convey different layers of connection granularity. For example, some stream:point
attributes might be grouped to a group (a) of 2 tasks, some other stream:point attributes
might be connected to a group (b) of 2 different tasks. Then a third set of stream:point
attributes might be connected to all tasks in groups (a) and (b), leading to a (c: (a) (b))
nesting, as depicted in Listing 2:

https://cpee.org/datastream/datastream.xesext
https://cpee.org/datastream/datastream.xesext
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Listing 2. Sample XES (XML serialization) stream:datastream Nesting.

1 <trace >
2 < s t r i n g key =" concept : name" value =" Process 1"/>
3 < l i s t key =" stream : datacontext ">
4 < l i s t key =" stream : datastream ">
5 < l i s t key =" stream : point ">
6 <date key =" stream : timestamp " value ="2021 −11 −04T15 : 2 2 : 1 9 . 3 6 7 + 0 1 : 0 0 " / >
7 < s t r i n g key =" stream : id " value =" humidity"/>
8 < s t r i n g key =" stream : value " value ="62.5"/ >
9 </ l i s t >

10 </ l i s t >
11 [ . . . ]
12 < l i s t key =" stream : datacontext ">
13 < l i s t key =" stream : datastream ">
14 < l i s t key =" stream : point ">
15 <date key =" stream : timestamp " value ="2021 −11 −04T15 : 2 2 : 2 2 . 3 6 9 + 0 1 : 0 0 " / >
16 < s t r i n g key =" stream : id " value =" pressure "/>
17 < i n t s t r i n g key =" stream : value " value ="19"/ >
18 </ l i s t >
19 [ . . . ]
20 </ l i s t >
21 <event > [ . . . ] < / event >
22 <event > [ . . . ] < / event >
23 [ . . . ]
24 </ l i s t >
25 < l i s t key =" stream : datacontext ">
26 < l i s t key =" stream : datastream ">
27 < l i s t key =" stream : point ">
28 <date key =" stream : timestamp " value ="2021 −11 −04T15 : 2 2 : 2 8 . 3 6 9 + 0 1 : 0 0 " / >
29 < s t r i n g key =" stream : id " value =" temperature "/>
30 < i n t s t r i n g key =" stream : value " value ="75.3"/ >
31 </ l i s t >
32 [ . . . ]
33 </ l i s t >
34 <event > [ . . . ] < / event >
35 <event > [ . . . ] < / event >
36 [ . . . ]
37 </ l i s t >
38 </ l i s t >
39 </trace >
40 </log >

This leaves us with the special case of overlapping cases, where some stream:points are
connected to tasks 1 and 2, where some other stream:points are connected to tasks 2 and 3.
This case can only (XES being a tree structure) be solved by creating three stream:datastream
attributes with some duplicated stream:point elements.

3.2. Task Lifecycle Extension: Stream/Data

For long-running tasks, especially when adding IoT data at runtime, it is beneficial to
add the IoT data immediately to the XES log, instead of waiting for the next event to occur.

For example, if IoT sensors deliver data during the execution of a task with a duration
of 90 min, all data would occur in the “lifecycle:transition complete” event. If the XES log
is processed at runtime, e.g., for runtime drift analysis such as in [47], this would prevent
early availability of analysis results.

Thus, the introduction of a new lifecycle transition named stream/data, as shown in
Listing 3, allows the immediate addition of data to the log. The event might optionally
include the context (i.e., id of the task), or not include the context if the event exists at the
trace or log level.
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Listing 3. Sample XES (XML serialization) stream/data.

1 <trace >
2 < s t r i n g key =" concept : name" value =" Process 1"/>
3 <event >
4 < s t r i n g key =" l i f e c y c l e : t r a n s i t i o n " value =" s t a r t "/>
5 . . .
6 <event >
7 <event >
8 < s t r i n g key =" l i f e c y c l e : t r a n s i t i o n " value =" stream/data "/>
9 < l i s t key =" stream : datastream ">

10 . . .
11 </ l i s t >
12 . . .
13 <event >
14 . . .
15 <event >
16 < s t r i n g key =" l i f e c y c l e : t r a n s i t i o n " value =" complete "/>
17 . . .
18 <event >
19 . . .
20 </trace >
21 </log >

3.3. Convenience and Size: Stream:Multipoint

The final element introduced in Figure 4 is stream:multipoint. This concept is not
necessary from a functional perspective, but allows reducing the size of the log file.

For example, when a set of sensor:point attributes all origin from the same sensor and
the same source, and contain the same meta information, this information is duplicated
all over and over. A sensor:multipoint (see Listing 4) allows us to group this redundant
information for a set of points:

Listing 4. Sample XES (XML serialization) stream:multipoint.

1 <trace >
2 < s t r i n g key =" concept : name" value =" Process 1"/>
3 <event >
4 < s t r i n g key =" concept : name" value =" Task 1"/>
5 < s t r i n g key =" l i f e c y c l e : t r a n s i t i o n " value =" complete "/>
6 <date key =" time : timestamp " value ="1970 −01 −01T00 : 0 0 : 0 0 . 0 0 0 + 0 0 : 0 0 " / >
7 < s t r i n g key ="name" value =" Juergen "/>
8 < l i s t key =" stream : datastream ">
9 < s t r i n g key =" stream : name" value =" Temperature"/>

10 < l i s t key =" stream : mult ipoint ">
11 < s t r i n g key =" stream : id " value =" keyence/mesurement"/>
12 < s t r i n g key =" stream : source " value =" keyence"/>
13 < l i s t key =" stream : point ">
14 <date key =" stream : timestamp " value ="2021 −11 −04T15 : 2 2 : 1 9 . 3 6 7 + 0 1 : 0 0 " / >
15 < s t r i n g key =" stream : value " value ="18"/ >
16 </ l i s t >
17 < l i s t key =" stream : point ">
18 <date key =" stream : timestamp " value ="2021 −11 −04T15 : 2 2 : 2 0 . 3 6 9 + 0 1 : 0 0 " / >
19 < i n t s t r i n g key =" stream : value " value ="19"/ >
20 </ l i s t >
21 </ l i s t >
22 </ l i s t >
23 </event >
24 </trace >
25 </log >

Alternatively, it can be used to group according to timestamp if a set of sensor readings
are taken at discrete points in time (see Listing 5):
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Listing 5. Sample XES (XML serialization) stream:multipoint.

1 <trace >
2 < s t r i n g key =" concept : name" value =" Process 1"/>
3 <event >
4 < s t r i n g key =" concept : name" value =" Task 1"/>
5 < s t r i n g key =" l i f e c y c l e : t r a n s i t i o n " value =" complete "/>
6 <date key =" time : timestamp " value ="1970 −01 −01T00 : 0 0 : 0 0 . 0 0 0 + 0 0 : 0 0 " / >
7 < s t r i n g key ="name" value =" Juergen "/>
8 < l i s t key =" stream : datastream ">
9 < s t r i n g key =" stream : name" value =" Temperature"/>

10 < l i s t key =" stream : mult ipoint ">
11 <date key =" stream : timestamp " value ="2021 −11 −04T15 : 2 2 : 1 9 . 3 6 7 + 0 1 : 0 0 " / >
12 < l i s t key =" stream : point ">
13 < s t r i n g key =" stream : id " value =" temperature "/>
14 < s t r i n g key =" stream : value " value ="48.5371"/ >
15 </ l i s t >
16 < l i s t key =" stream : point ">
17 < s t r i n g key =" stream : id " value =" pressure "/>
18 < s t r i n g key =" stream : value " value ="12 :30 −1 ,12 :31 −2 ,3 ,4 ,5"/ >
19 </ l i s t >
20 </ l i s t >
21 </ l i s t >
22 </event >
23 </trace >
24 </log >

4. Application Scenarios for IoT-Enriched Event Logs in Smart Manufacturing and
Public Transportation

In order to evaluate the DataStream XES extension, we present and discuss real-world
IoT-enriched event logs from smart factories and the public transportation domain (see
Sections 4.1 and 4.2). The presented event logs have been created through cpee.org, which
supports the DataStream XES extension to directly write logs. All presented application
scenarios show how sensor data can be grouped, nested and embedded with ordinary XES
logs as a basis for future data-oriented analysis tasks.

Examples in this section are displayed in the XES YAML (Yet Another Mark-up Lan-
guage, https://yaml.org (accessed on 8 February 2023)) serialization because it is more com-
pact and readable. YAML has the following properties: it relies on indentation for structure
(like python), the data types are omitted, the key and value attributes directly result in key
value pairs, e.g., the XML excerpt “<string key=“stream:id” value=“temperature”/>”
results in “- stream:id: temperature” in YAML.

After describing the application scenarios, we discuss the results derived from using
the DataStream XES extension in the scenarios to create enriched event logs and describe
use cases for process mining analysis (see Section 4.3).

4.1. Monitoring Public Transportation Delays Alongside Weather and Traffic Data in Vienna

For efficient planning of public transportation services, knowledge about the operation
of individual tram lines as well as information about effects which might influence its smooth
execution, such as weather or traffic, is needed. The dataset (https://doi.org/10.5281/zenodo.
7411234 (accessed on 8 February 2023)) used for this section provides an example for the
collection of such data in Vienna, Austria using (1) the API of the “Wiener Linien” (the
company providing public transport in Vienna), (2) a weather API, and (3) the TomTom
navigation system to monitor traffic. Data from these different sources is then collected by
enacting a process in an execution engine and stored in the log using the proposed XES
DataStream extension format. Using this information, the correlation between delays of
individual tramways with the weather and traffic conditions near the track of the observed
line can be investigated. This can then lead to better planning for smart city scenarios
concerning traffic control in general or suggestions leading to an improvement of the
public transportation system. Collecting data for the before mentioned scenario is done
by enacting a process model using the cpee.org process execution engine. The process
retrieves the individual data for weather, traffic, or tram line(s) (per endpoint providing
the data) in parallel and then waits until the next minute starts to repeat the data collection.

https://yaml.org
https://doi.org/10.5281/zenodo.7411234
https://doi.org/10.5281/zenodo.7411234
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The process model in Figure 5 contains tasks that are responsible for the collection
of data, which is signalized by the two curved lines on the top right side of these tasks.
Such tasks contain a description of the data probes [43], which define how collected data is
added to the log, as shown in Figures 6 and 7. These examples show how different kinds
of data (in this case derived from the return value of the service invoked in this task) are
extracted. It is possible to extract data in different ways, e.g., split data into multiple single
data points (as shown in Figure 6) or create multiple data streams (as shown in Figure 7).

s
Get LineID

s
Get StopIDs

s
Get StopCoords

s
Get Delays

s
Get Weather

s
Get Related Construction Sites

s
Get Traffic status

+

+

Wait till next Minute starts

true

Figure 5. Process Model for Collecting Public Transportation Delay Data (Process model used for
creating the dataset described in https://doi.org/10.5281/zenodo.7411234) (accessed on 8 February
2023).

Figure 6. Data Probes for the “Get Weather” Task.

https://doi.org/10.5281/zenodo.7411234
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Figure 7. Data Probe(s) for the “Get Traffic Status” Task.

Corresponding snippets taken out of the created log are shown in Listings 6 and 7.
Listing 6 contains a snippet of the weather data in the log as collected by the task shown in
Figure 6. In this excerpt of the log, different stream:point elements (as specified in the data
probes of the task) are contained in the stream:datastream element.

So, (nested) stream:datastream elements can be used as a grouping mechanism that
conveys semantic cohesiveness. For example, in Listing 8, different stops identified by a
name and an id, are children of a “traffic” datastream. Instead of providing a flat list of
values, additional semantic depth can be expressed, which can be utilized for visualization
or analysis.

Listing 6. Public Transportation Weather Data.

1 event :
2 concept : i n s t a n c e : 8968
3 concept : name : Get Weather
4 [ . . . ]
5 stream : datastream :
6 − stream : point :
7 stream : id : temperature
8 stream : value : 4 . 9 5
9 stream : timestamp : 2022−12−06 1 7 : 1 7 : 0 1 . 4 0 3 8 8 9 2 4 7 +01:00

10 stream : source : openweathermap
11 − stream : point :
12 stream : id : f e e l s _ l i k e
13 stream : value : 0 . 5 6
14 stream : timestamp : 2022−12−06 1 7 : 1 7 : 0 1 . 4 0 3 9 7 2 2 2 4 +01:00
15 stream : source : openweathermap
16 − stream : point :
17 stream : id : pressure
18 stream : value : 1017
19 stream : timestamp : 2022−12−06 1 7 : 1 7 : 0 1 . 4 0 4 0 4 6 3 9 3 +01:00
20 stream : source : openweathermap
21 [ . . . ]

Listing 7 contains a snippet of the log which is created by the task shown in Figure 7.
The “traffic” data stream contains information about the traffic at multiple stops. The
structure of the collected data is defined by the data probe defined in the task. In contrast
to the other example, multiple data streams (stream:datastream) are created which each
include one data point (stream:point) while in the first example just one data stream exists
which includes multiple data points.
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Listing 7. Public Transportation Traffic Data.

1 event :
2 concept : i n s t a n c e : 8968
3 concept : name : Get T r a f f i c s t a t u s
4 [ . . . ]
5 stream : datastream :
6 − stream : name : t r a f f i c
7 − stream : source : tomtom
8 − stream : datastream :
9 − stream : name : stop

10 − stream : id : ’ 5 ’
11 − stream : source : tomtom
12 − stream : meta :
13 s t a t i o n : Bö r se
14 − stream : point :
15 stream : id : t r a f i c
16 stream : value : 0 .6394647901326838
17 stream : timestamp : 2022−12−06 1 7 : 1 6 : 4 0 . 1 4 2 5 7 0 8 5 1 +01:00
18 stream : source : tomtom
19 stream : meta :
20 i n t e r s e c t i o n s _ i n _ p r o x i m i t y : 71
21 − stream : datastream :
22 − stream : name : stop
23 − stream : id : ’46 ’
24 − stream : source : tomtom
25 − stream : meta :
26 s t a t i o n : S c h o t t e n t o r U
27 − stream : point :
28 stream : id : t r a f i c
29 stream : value : 0 .5571382984201959
30 stream : timestamp : 2022−12−06 1 7 : 1 6 : 4 0 . 1 4 2 5 7 6 9 2 2 +01:00
31 stream : source : tomtom
32 stream : meta :
33 i n t e r s e c t i o n s _ i n _ p r o x i m i t y : 94
34 [ . . . ]

4.2. Manufacturing and Measuring of a Chess Piece at Pilotfabrik TU Wien

One goal in the manufacturing domain is the production of small lot sizes while still
keeping a high degree of automation. To achieve this, it is possible to use a process execution
engine enacting a process model consisting of several standardized subprocesses. These
standardized subprocesses are then tailored to the currently produced part by invoking
them with the parameters needed for the individual piece/use-case.

In the scenario discussed in Section 4.2 we focus on a process, where several com-
ponents work together to produce and measure a chess piece. The components are: (1) a
milling machine, (2) a robot for handling the part, and (3) a measuring machine (and an
independent lift moving the part through the optical measuring machine) conducting an
optical measurement of the part diameter. The process uses these components by (1) man-
ufacturing the part in the milling machine, (2) taking the part out of the machine with
the robot and putting it on the lift, (3) moving the lift down to measure the produced
part optically, and (4) finally taking the part from the lift and putting it on a palette (see
Figure 8).

During all of these steps, different data from the involved components is collected
and stored in the logs, as proposed in the XES DataStream extension format. This data
includes machining data such as the workload of the drive, the axis speed for different
axis, and the actual speed and workload of the spindle as well as measuring data from
the optical measurement. The dataset (https://doi.org/10.5281/zenodo.7477845 (accessed
on 8 February 2023)) which is created adheres to the earlier described XES DataStream
extension format provides the basis for analysis tasks such as process mining, prediction of
part quality, or detection of broken tools.

As also described in Section 4.1 a process model is enacted by the process execution
engine cpee.org. The process model includes tasks having data probes which define how
to collect/extract data and attach it to the log (see Figures 6 and 7 for examples). In
this scenario, machining data (see Listing 8) as well as measuring data (see Listing 9)
are collected.

https://doi.org/10.5281/zenodo.7477845
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Figure 8. One Good and One Bad (With Chip) Chess Piece on the Palette (Figure available at
https://doi.org/10.5281/zenodo.7477845 (accessed on 8 February 2023)).

Listing 8. Chess Piece Machining Data.

1 event :
2 concept : i n s t a n c e : 4129
3 concept : name : Fetch
4 [ . . . ]
5 stream : datastream :
6 − stream : name : MaxxTurn45
7 − stream : source : machine
8 − stream : point :
9 stream : id : S t a t e /progStatus

10 stream : value : 3
11 stream : timestamp : ’2022 −12 −16T18 : 0 1 : 1 7 . 0 0 0 + 0 1 : 0 0 ’
12 stream : source :
13 proto : opcua
14 host : opc . tcp : / / 1 9 2 . 1 6 8 . 1 0 . 5 9 : 4 8 4 0
15 a c c e s s : ns =2; s=/Channel/ S t a t e /progStatus
16 [ . . . ]
17 − stream : point :
18 stream : id : Axes/Z/aaLeadP
19 stream : value : 405 .5
20 stream : timestamp : ’2022 −12 −16T18 : 0 1 : 1 8 . 0 0 0 + 0 1 : 0 0 ’
21 stream : source :
22 proto : opcua
23 host : opc . tcp : / / 1 9 2 . 1 6 8 . 1 0 . 5 9 : 4 8 4 0
24 a c c e s s : ns =2; s=/Channel/MachineAxis/aaLeadP [ u1 , 2 ]
25 − stream : point :
26 stream : id : Axes/X/aaTorque
27 stream : value : −2.028
28 stream : timestamp : ’2022 −12 −16T18 : 0 1 : 1 8 . 0 0 0 + 0 1 : 0 0 ’
29 stream : source :
30 proto : opcua
31 host : opc . tcp : / / 1 9 2 . 1 6 8 . 1 0 . 5 9 : 4 8 4 0
32 a c c e s s : ns =2; s=/Channel/MachineAxis/aaTorque [ u1 , 1 ]
33 [ . . . ]

Both Listings 8 and 9 extract data and create a data stream consisting of different data
points. This enables the collection of many individual values as shown in Listing 8 but also
data collection in scenarios where a few or only one value is measured over and over again
(as in the measuring example shown in Listing 9).

https://doi.org/10.5281/zenodo.7477845
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Listing 9. Chess Piece Measuring Data.

1 event :
2 concept : i n s t a n c e : 4153
3 concept : name : Fetch
4 [ . . . ]
5 stream : datastream :
6 − stream : name : keyence
7 − stream : source : machine
8 − stream : point :
9 stream : id : measurement

10 stream : value : 20 .08
11 stream : timestamp : ’2022 −12 −16T17 : 5 1 : 4 4 . 4 0 8 + 0 1 : 0 0 ’
12 stream : source :
13 proto : s e r i a l
14 a c c e s s : "/dev/ttyUSB0 115200"
15 stream : meta : { }
16 − stream : point :
17 stream : id : measurement
18 stream : value : 20 .09
19 stream : timestamp : ’2022 −12 −16T17 : 5 1 : 4 4 . 4 2 3 + 0 1 : 0 0 ’
20 stream : source :
21 proto : s e r i a l
22 a c c e s s : "/dev/ttyUSB0 115200"
23 stream : meta : { }
24 [ . . . ]

The stream points shown in Listing 9 represent a time series of measurements of the
contour of the chess piece. Without the DataStream extension, these measurements would
have been part of the log in a proprietary format as provided by the machine (as part of
a PDF file). By representing the measurements in the DataStream format, data extraction
and transformation steps can be avoided, and data for different measurement machines
becomes readily comparable due to the uniform representation.

4.3. Discussion of Results

For the scenarios described in Sections 4.1 and 4.2 the DataStream XES extension
allowed to collect not only the process flow data but also IoT data collected during the
process. Such context data contains important information, e.g., when performing a root
cause analysis for process outcome properties such as part quality.

For example, in transportation data set (see Section 4.1) the traffic state is explicitly
queried as part of the process model, leading to a value between 0 (no traffic flow) and 1 (free
traffic flow). In a traditional process log all the sensor readings (from different crossings) in
the vicinity would not be part of the data set but might yield crucial information for process
improvement (in this case, e.g., changing the timing of traffic lights, or moving the station).

Another, even clearer example can be highlighted in the manufacturing data set (see
Section 4.2) the task of producing a rook from the process point of view only results in
“success” or “no success”. The over twenty sensors that produced several thousand readings
during the two-minute duration of machining, cannot easily be included in a traditional
XES file, and were traditionally analyzed separately from the process. The XES DataStream
extension provides a means to structure and store these readings in a common format.

Linking/integrating the data directly in the event log, can provide a common basis for
future analysis tools that can perform a joint analysis of process and IoT data.

Limitations currently exist regarding the usability of the data structure in analysis
tools, as there are no implementations to use it. Moreover, due to the large amounts of data
in the IoT context, the logs can quickly become very large, which might overwhelm some
existing process mining tools.

5. Conclusions and Future Work

In this paper, an extension to XES has been presented, allowing the joint representation
of process event logs and IoT data related to the environment where these events occur.
This enables the development of generic data pipelines, process mining approaches, and
visualization tools for IoT event logs.
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The extension identifies what is required from the IoT perspective to enable the use of
BPM methods for IoT (cf. [4]). As it has been shown, there are special requirements for the
data perspective in the IoT context, especially regarding IoT sensor data.

Section 1 defines goals which should be met by the proposed XES extension. By
describing real-world application scenarios (see Section 4) and demonstrating how the
goals are achieved using the DataStream XES extension proposed in this paper, it is proven
that the approach fulfills the set requirements:

• “Provide a well-defined set of named XES attributes to describe individual (sensor) events.” is
achieved by defining the named XES attributes in the DataStream Metamodel shown in
Figure 4 and using these attributes in the logs of the real-world application scenarios.

• “Utilize well-established XES concepts such as lists to group the named attributes for simplified
analysis.” is achieved by identifying different granularity levels such as stream:data-
stream and point in the DataStream Metamodel shown in Figure 4 and assign the
named attributes to their corresponding levels. This leads to easier analysis as for
example stream:points can share attributes of their parent stream:datastream as
shown in Listings 7–9. This serves the purpose of data de-duplication for a set of
stream:point attributes, thus reducing data cleaning effort.

• “Establish a set of named XES attributes to store many (sensor) events per process event.” is
achieved by allowing for multiple stream:datastreams and therefore also stream:-
points to be connected to one process event in the DataStream Metamodel shown
in Figure 4. This is also shown in Listings 6–9 where multiple stream:datastreams
and/or stream:points are present in one process event. Having a set of common
attributes instead of a mix of different attributes with slightly different meaning,
reduces data transformation effort, and provides context and meaning to the most
basic shared concepts.

• “Describe how to store large quantities of (sensor) events, which might occur between the
start/end of a process event or a process instance (i.e., establishing a new XES BPAF lifecycle
transition).” is achieved by introducing the stream/data lifecycle transition. The
stream/data lifecycle transition allows us to add IoT data to the XES log at any time
therefore omitting the need to wait for the next process event to carry the data collected
in the process until then. This is described in more depth in Section 3.

• “Establish a set of named XES attributes to connect (sensor) events to groups of process tasks.”
is achieved by introducing stream/datacontext (see Section stream/datacontext).
This allows us to connect (sensor) data to process tasks, although it is not in the same
granularity, for example when averaged sensor readings (e.g., temperature, humidity,
. . . ) span multiple process tasks.

In the future, a complete event log of a factory shall be parsed, analysed and visualized
based on the proposed extension format to support process refinement and root cause
analysis, in order to promote process re-engineering with the goal of resilient [54] shop
floor processes. Furthermore, tools for the visualization of DataStream-based event logs
are to be developed and existing process mining approaches are to be adapted in such a
way that they can also process the DataStream extension. Another point for future research
is the incorporation of IoT data in event logs following other standards, such as OCEL, and
more specifically the possibility of transposing the DataStream extension to these standards.
Finally, we want to examine how semantic annotations can be further integrated and used
during process analysis.
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