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Event prediction is the ability of anticipating future events, i.e., future real-world occurrences, and aims to support the user in
deciding on actions that change future events towards a desired state. An event prediction method learns the relation between
features of past events and future events. It is applied to newly observed events to predict corresponding future events that are
evaluated with respect to the user’s desired future state. If the predicted future events do not comply with this state, actions
are taken towards achieving desirable future states. Evidently, event prediction is valuable in many application domains
such as business and natural disasters. The diversity of application domains results in a diverse range of methods that are
scattered across various research areas which, in turn, use diferent terminology for event prediction methods. Consequently,
sharing methods and knowledge for developing future event prediction methods is restricted. To facilitate knowledge sharing
on account of a comprehensive integration and assessment of event prediction methods, we take a systems perspective to
integrate event prediction methods into a single system, elicit requirements, and assess existing work with respect to the
requirements. Based on the assessment, we identify open challenges and discuss future research directions.
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Machine learning.
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1 Introduction

The rapid growth of data [67] and major advances in enabling technologies such as cloud computing [118],
Internet of Things [126], and machine learning [43] drives event prediction (EP) research (cf. Table 2). EP is the
ability of anticipating events, i.e., future real-world occurrences. To anticipate events, EP processes past events
together with further relevant data for learning an EP method to map the processed input to predicted future
events that are of interest to the respective application domain. Being able to anticipate events is highly beneicial
to many application domains such as business, healthcare, transportation, crime and natural disasters [161]. The
value of knowing and ideally understanding predicted future events today lies in the ability of a user in the
application domain to act on the predicted future events, e.g., by focusing police resources in areas with high
crime risk. In order to unlock the potential of EP, several challenges have to be addressed [161], including the
knowledge on the true relationships between causes and efects of events [161], heterogeneous multi-output
predictions (e.g., predicting the time and location of future events) [117], complex dependencies among the
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predicted future events as they may interact with each other [95], real-time stream of past events that requires
continuous monitoring [122, 128], and data quality challenges [122].

Existing work on EP has proposed a multitude of diferent solutions to those challenges. However, the solutions
are often developed within one application domain, e.g., healthcare [125], and corresponding research area, e.g.,
predictive process monitoring (PPM). The type of event and the laws and rules governing the occurrence of events
greatly difer among the application domains, e.g., large-scale weather events governed by the laws and rules of
meteorology in the domain of natural disasters versus small-scale business events of a business process governed
by the respective business regulations and internal procedures in the domain of business [5]. Thus, EP research
typically approaches the problem in an event-type-and domain-dependent manner [122, 161]. Despite apparent
advantages of this approach to EP, it hampers sharing EP methods and solutions across diferent application
domains and corresponding research areas. Most importantly, the fragmentation in EP research signiicantly
complicates any efort to draw a clear picture on where we are standing on our road towards applying EP methods
to real-world problems and how we should proceed. In this paper, we aim at providing a clear picture on EP
research, its fragmentation, current status, and remaining challenges by taking a systems perspective. Taking a
systems perspective results in a common architecture with requirements for EP methods that are generally valid
across domains and that enable assessing EP methods for real-world applications.

To illustrate the architecture at a high-level, Figure 1 depicts an intersection example from the transportation
domain. The intersection has a road segment �1 that is the monitored system. �1 is depicted at two points in time:
the current point in time �now and two diferent future states at a future point in time �now+1. The irst future state
is labeled with both the łfuture and predicted eventž to which �1 will progress without an action. Hence, �1 will
and is predicted to face heavy traic without an action. The second future state is labeled with łfuture event
with actionž, Thus, �1 will have little traic after an action. Our event prediction goal (cf. goal in Figure 1) for the
intersection with road segment �1 is to maintain little traic for �1. Currently, event �� =łTraic is green at �1ž
at �now complies with our goal. Event � together with the goal is observed by the observer, e.g., a video camera
directed at road segment �1, and a user interface for setting goals. In general, the observer is an abstract interface
between the monitored system in the real-world and the system for EP. Therefore, the observer typically consists
of a set of sensors, user interfaces and/or application programming interfaces.

Then, the observer sends event �� and the goal to the input component of the generalized predictive compliance
monitoring (PCM) system (cf. Figure 2). The input component processes the event and goal for subsequent
prediction by the prediction component. Predictive compliance monitoring is concerned with continuously an-
ticipating whether the monitored system complies to a goal or set of goals in the future and supporting the
user in understanding and acting on the anticipated compliance status [122]. Thus, a generalized PCM system
conceptualizes EP through its input component and prediction component, i.e., the EP method is conceptualized
as the prediction component. After pre-processing and encoding the event in the input component, the prediction
component correctly predicts �̂� =łTraic is black at �1ž at point in time �now+1. Hence, the future progress of the
monitored system is predicted to be non-compliant with our goal.
The output component of the generalized PCM system prepares a status for the user. Users are characterized

by having the ability to take actions to steer the monitored system into a future direction compliant with the
goal. For example, an urban traic control center is a user that decides on the necessary action to change the
future towards a compliant status. For road segment �1, the chosen action is to reroute incoming traic. Due to
the action, the ground-true real event (true event) at �now+1 is �� =łTraic is green at �1ž. Thus, the PCM system
supports the user to maintain a future that is compliant with the goal. To sum up, the user of the application
domain is able to anticipate the future of the monitored system with respect to the goal and act accordingly on
the account of the generalized PCM system.

Consider a practitioner that is faced with the problem of operationalizing the PCM system (cf. Figure 1). The
practitioner is particularly interested in a quantiication of how certain the method is in predicting the future
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Fig. 1. EP as a component of a predictive compliance monitoring (PCM) system.

Table 1. Application domains of covered

articles

Domain Short Share Count

Business B 0.42 109
Engineering Systems E 0.12 31
Healthcare H 0.09 23
Political Events P 0.09 23
Cyber Systems I 0.08 22
Media M 0.07 19
Crime C 0.06 15
Natural Disasters N 0.04 10
Transportation T 0.03 8
∑

1.00 260

Table 2. List of Abbreviations

Abbreviation Meaning

EP Event prediction
PPM Predictive process monitoring
PCM Predictive compliance monitoring
CM Compliance monitoring

event (uncertainty quantiication). There are at least eight existing EP methods that focus on the transportation
domain (cf. Table 1). Yet, there are at least 252 other EP methods that may be better suited for operationalizing
the actual PCM system with uncertainty quantiication in spite of the diferent domain. Because the research
landscape is fragmented, it is very hard to understand whether an EP method with a speciic property may
exist and whether it is applicable to the PCM system. [98], for example, propose an EP method based on neural
networks that predicts wether a logistics process will meet a delivery deadline. Does this EP method it the needs
of the practitioner? Giving an answer is diicult for several reasons. First, [98] is missing in existing surveys
on EP methods such as [161]. Second, [98] conceptualize the logistics process in a speciic modeling notation
that the practitioner has to know in order to analyze to what extent the method is applicable to the real-world
problem. Third, the title contains the term business process. Hence, if the practitioner is a civil engineer, the EP
method proposed in [98] may quickly be discarded. Lastly, [98] do not tell that the deadline is predicted through
a binary answer and that reliability estimates refers to uncertainty quantiication. The former can be deduced
from the implicit assumption pervading related methods from the same area: simple yes/no answers are suicient
to represent future events [122].

To sum up, disparate research areas are diicult to navigate. Due to each area sharing its own conceptual models
and implicit assumptions, the event prediction problem and the diferent solution methods seem incommensurable.
Diferent terminology for EP such as PPM (cf. Table 2) in the ield of business process management [33, 103, 143] or
anomaly prediction in the ield of engineering systems [85] exacerbates the problem of cumbersome method and
knowledge sharing among various EP research areas. Here, taking a systems perspective on EP seems promising
to place and integrate the diverse range of EP methods and, thus, foster knowledge and method sharing. The
example in Figure 1 indicates how the system perspective beneits the integration of EP methods by giving the
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method a general, yet practical context that covers important parts such as goals and actions. Moreover, it gives
a clear deinition of the components, functionalities, and interfaces necessary to reap value from EP methods.
Thus, we have a common anchor with which we can approach a given EP method during assessment. Some part
of the PCM system and monitored system must ultimately be the cause for a design choice or assumption taken
in an EP method. Hence, the system perspective allows us to integrate the apparently disparate research in EP
methods. To integrate and assess existing work on EP methods with the aim of facilitating knowledge sharing
and deriving open challenges and research directions, this survey is guided by the following research questions:
RQ1 How can existing event prediction methods be assessed in a general, consistent, and system-oriented
manner?
RQ2 To what extent do existing event prediction methods fulill assessment criteria?
RQ3 Which open challenges and research directions remain in the ield of event prediction?

1.1 Research methodology

The goal of answering RQ1śRQ3 is to provide a comprehensive, consistent, and integrative overview of state-
of-the-art EP across application domains and research areas and to facilitate knowledge sharing. Assume that
a set of prediction goals �1, �2, . . . results from heterogeneous monitored systems and desired future states (cf.
Figure 1). A set of diferent EP methods�1,�2, . . . is proposed for an EP goal. If EP method�� can be applied
to continuously anticipate prediction goal � � , we say that method�� is applicable to � � . An ideal situation for
knowledge sharing would be to have a common terminology for equivalent łapplicable tož relations between
methods and goals. The literature analysis in [161] underpins that currently we do not have an ideal situation for
knowledge sharing. Consequently, the irst challenge for the survey at hand is to collect and resolve diferent
conceptual models, implicit assumptions, and terminology for equivalent prediction goals and corresponding
methods. The second challenge is to integrate, assess, and present the vast amount of existing work such that our
research questions are answered concisely.

To overcome the challenge of diferent conceptual models, implicit assumptions, and terminology, we take the
survey in [161] as a baseline on existing work. We extend this baseline by searches in two directions: EP and
PPM. The irst direction aims to uncover EP method research that is missing in the baseline. As we have observed
that EP research in the application domains engineering systems and cyber systems tend to use łindicatorž or
łanomalyž instead of łeventž, we have added both as keywords. The second direction aims to uncover missing EP
method research mainly from the business application domain. The research area of business process management
uses diferent terminology for EP, e.g., PPM or next activity prediction. We include all keywords that we have
observed during analysis of EP research in business process management. Also, we cross-check our keywords
with the keywords used in a recent survey of EP in the business domain [122]. The methodology is illustrated in
Figure 2 with keywords for searches and the results.

Given the 2202 search results, we apply the same ilter denoted by **) in Figure 2 on each stream of literature
resulting in selections that represent signiicant advancements in predictionmethod development. Here, signiicant
advancement means work that focuses on novel EP methods instead of only applying a classical machine learning
algorithm to a new application domain or focusing on domain-speciic feature engineering. Lastly, we take the
union of the three selections yielding 260 articles covered in this survey. The selection of 260 articles is classiied
into an integrated taxonomy and reported in Section B in the supplementary material1. These articles span a wide
array of diferent application domains each having a large enough absolute article count for proper representation
(cf. Table 1).

1The supplementary material consists of the supplemental online-only appendix Section A - F and our online repository https://gitlab.com/
janikbenzin/event_prediction_survey for machine-readable material.
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Fig. 2. Methodology for compiling literature.

We combine an integrative review [155] with an umbrella review [155] and the systems perspective [12]. The
integrative approach provides an overview of state-of-the-art EP through a qualitative research approach. The
inal selection of 260 articles contains 34 surveys from disparate research areas (cf. Table 3) which are taken as
an initial yardstick for review and assessment in order to be consistent with existing work (cf. Figure 1 in the
supp. material1). Synthesizing existing surveys from disparate research areas constitutes an umbrella review.
Taking a systems perspective supports our mixed review by providing a mental [17] and reference model [145].
To this end, the PCM system explains the diferences between EP methods and supports understanding diferent
methods through a mental model. Also, it acts as a reference for aggregating requirements (cf. Section 3) and as a
tool for applying EP methods in real-world (cf. Section 2.3).

For the general, consistent, and systematic assessment ( ↦→ RQ1), we identify existing requirements in the related
surveys and merge them into an initial set of requirements (cf. Figure 1 in the supp. material1). Main challenges for
merging requirements are diferent functional granularities and terminology for similar functionalities. We also
encounter the challenge that identiied requirements do not necessarily relate to the EP method itself, e.g., data
requirements as identiied in [122]. The system perspective helps us overcome this additional challenge. Similar
to the initial set of requirements, the initial PCM system (cf. Figure 1 in the appendix) may not consistently,
generally, and systematically represent all articles. Therefore, we apply the following analysis cycle (cf. Figure 1
in the supp. material) for each of the 260 selected articles to overcome the challenge of uncovered requirements,
diferent conceptual models and implicit assumptions.

The analysis cycle for current article � begins by its classiication into the taxonomy. Then, the article is assessed
with the current set of requirements. Potential issues during assessment, e.g., some characteristics of the article are
not represented by the requirements yet or imply to split a requirement into two separate requirements, determine
the reinement of requirements. As the PCM system shall represent all requirements and generalize over all
EP methods and their applications, it is also reined for every article. By placing the EP method into the PCM
system and iteratively comparing it to already analyzed methods, we are able to uncover implicit assumptions.
Additionally, we are able to map components of diferent conceptual models into an equivalent system context.
Last, the assessment of the previous articles is updated to represent the reined set of requirements. All in all, the
analysis cycle for all 260 articles yields the PCM system and inal set of requirements as presented in Section 3.

1.2 Related Surveys

The article selection contains 34 surveys. Some of these surveys focus on technical details of prediction methods
in general and on speciic problem formulations. [161] is taken as a yardstick for EP methods and presents the
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diferent methods in more detail when compared to the survey at hand. Table 3 compares the survey at hand
with the 34 related surveys from a methodological perspective. This further diferentiates the survey at hand
from existing ones and aims at highlighting its uniqueness and comprehensiveness. 16 related surveys do not
share any distinctive feature with the survey at hand. For example, [161] focuses more on classifying existing
methods and gives a technical overview on approaches. Similar to 18 related surveys, this survey is assessing as it
assesses the relative qualities of the EP methods either qualitatively or quantitatively. As outlined in Section 1.1,
this survey also combines an integrative review [155] with an umbrella review [155] and a systems perspective
[12]. We subsume the systems perspective and the integrative approach under system-integrative (cf. Table 3). A
single related surveys is additionally system-integrative. None of the surveys is an umbrella review. Hence, the
survey at hand is the only one that aims at unifying existing EP method research in disparate areas by taking
both research papers and surveys into account.

Area Related surveys Assessing System-integrative Umbrella

EP [13, 52, 65, 97, 101, 110, 161] ✗ ✗ ✗

PPM [32, 33, 68, 76, 80, 103, 135, 138, 156] ✗ ✗ ✗

EP [59, 62, 119, 140, 141] ✓ ✗ ✗

PPM [57, 73, 75, 99, 105, 107, 116, 140, 142, 143, 147, 153] ✓ ✗ ✗

EP Not available ✓ ✓ ✗

PPM [122] ✓ ✓ ✗

Any Survey at hand ✓ ✓ ✓

Table 3. Comparison of our survey with related surveys through three distinctive survey characteristics.

For synthesizing the 34 identiied surveys from disparate areas, we start with the literature covered by EP
survey [161] (cf. Figure 2). By contrast to [161], we focus on EP instead of only the EP method (resulting in
107 of the 216 references) and extend the scope in the direction of uncovered EP method research (67 added
articles) and uncovered PPM research (86 added articles). Aside from the scope, [161] focuses on the techniques
to solve the identiied EP research problems, e.g., regression. Hence, the existing approaches are classiied and
summarized along inherent properties of the proposed solutions. This survey extends the classiication in [161] by
abstracting from the respective technique and integrating taxonomies proposed in other surveys [33, 52, 103, 122]
(cf. Section B in supp. material1). With respect to summarizing existing approaches, our survey extends the
summary in [161] by summarizing existing work along the requirements for EP methods that we elicit through a
systems perspective, i.e., our summary takes an external, systems perspective on EP compared to the internal,
methodological perspective of [161]. Furthermore, the requirements are used to assess existing EP methods,
resulting in a comprehensive assessment that further extends [161].

Overall, we consider eleven EP surveys [13, 52, 59, 62, 65, 97, 101, 110, 119, 140, 141] (cf. Table 3). Each of them
has a certain scope, e.g., [97, 101] focus on time-series data, [140, 141] focus on EP of business processes, and
[13] on unstructured text events. When compared to the survey at hand, on top of a narrow scope, the eleven
surveys neither take a system perspective to generally place EP method in a context, nor elicit requirements for
assessing the methods, nor comprehensively assess existing work. [52] proposes a taxonomy for EP methods
with a concept of domain-speciicity that is integrated in our taxonomy.

We consider 22 PPM surveys [32, 33, 57, 68, 73, 75, 76, 80, 99, 103, 105, 107, 116, 122, 135, 138, 140, 142, 143,
147, 153, 156] (cf. Table 3). Similar to the reviewed EP surveys, the scope of the PPM surveys is limited. While
the scope of EP surveys is heterogeneous, PPM surveys exclusively focus on next events (e.g., [140]) or key
performance indicators of business processes (e.g., [147]). Only [122] takes a systems perspective for eliciting
requirements and assessing existing PPM methods. Our survey generalizes the PCM concept to EP, develops a
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conceptual PCM system, and extends as well as integrates the requirements in [91, 122] with the challenges in
[161] and the requirements contained in the 260 articles of the existing work selection. [33, 103] propose a similar
concept of domain-speciicity for classifying PPM methods that is generalized and integrated in our taxonomy.
The distinction in [122] into methods that directly predict the goal of PPM and methods that indirectly predict
the goal of PPM via an intermediate representation is generalized and integrated in our taxonomy. Predicting the
late shipment status of an online shop delivery package, for example, is directly predicting the PPM goal and
conceptually similar to the traic status in the intersection example (cf. Figure 1). Predicting all future events
pertaining to the delivery package and evaluating the shipment status on them is indirectly predicting the PPM
goal and conceptually similar to predicting the number of vehicles on road segment �1 to subsequently derive the
traic status in the intersection example.
If the time of the predicted event is of interest, EP becomes a classical, supervised classiication problem for

which methods such as naive Bayes or logistic regression can be applied. If the predicted events are represented
as a time-series or necessitate time-series data (discrete or continuous time prediction), [11, 83] provide surveys
based on deep learning, and [94] for other machine learning methods. If the predicted events are represented
as spatio-temporal or necessitate spatio-temporal data (location prediction), [152] provides a survey of deep
learning methods and [8] for other machine learning methods. If the predicted event is an anomaly, EP methods
are typically coupled with anomaly detection methods for which [16] provides a general overview and [15] one
for time-series data. [105, 116] provide surveys for categorical representation of the predicted event (semantic
prediction).

1.3 Contribution and Structure

Taking a systems perspective on EP methods to integrate disparate areas of research results in the following four
contributions of this survey:

• Integration of disparate research areas through the generalized PCM system. By taking a systems
perspective, we identify an EP method as a component of the generalized PCM system. The generalized
PCM system further integrates contributions from the various research areas on EP methods. The systems
perspective emphasizes integration challenges, e.g., regarding interoperability of system components. We
scrutinise the integration challenges through two realizations of the PCM system in manufacturing and
healthcare (the healthcare realization is reported in Section E of the appendix).

• Structured requirement elicitation that encompasses the EP method within the PCM system. The
aim of integration through the PCM system is to elicit similar, yet broader requirements for EP methods.
Integration through a set of general requirements facilitates the mutual exchange of method properties in
general and of method properties that meet the requirements in particular. Without the broader view of
the EP method in the PCM system, some, if not most, requirements are likely to be neglected or abstracted.

• Qualitative assessment of existing methods with respect to the requirements and thorough

analysis of current research status. A qualitative assessment of all existing methods gives an in-depth
view on the current research status. The current research status is illustrated with examples from the
literature, analysed with respect to potential dependencies between requirements and discussed in detail.

• Open challenges and discussion of future research directions. The assessment result sheds light on
blind spots that embody open challenges to be solved by future research. We identify ive challenges and
discuss the possible future research direction for each challenge.

Section 2 introduces a notion of an EP method and places EP methods into the generalized PCM system
(↦→ RQ1). Section 3 explains the requirements for assessing EP methods ( ↦→ RQ1). Section 4 shows to what
extent existing prediction methods fulill requirements and pinpoints exemplary method properties that meet
the respective requirement (↦→ RQ2). Section 5 highlights open challenges and distills research directions ( ↦→
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RQ3). Lastly, Section 6 concludes, presents our survey’s impact and identiies limitations of the survey. Note
that we provide a supplemental online-only appendix and an online repository as supplementary material1.
Amongst others, the supp. material features an integrated taxonomy of EP methods and a classiication of all 260
EP methods into the integrated taxonomy.

2 A Notion and System Architecture for Event Prediction Methods

This section introduces a notion of the EP method (Section 2.1). It presents the rationale for the PCM system to
embed EP methods into their system context (Section 2.2). It concludes with a demonstration of the PCM system
in the manufacturing domain (Section 2.3).

2.1 Event Prediction Method Formulation

In the beginning, EP requires a goal or a set of goals that is either formulated by researchers during their
motivation for advancement of EP methods or by practitioners during implementation and application of EP.
Without the prediction goal, we do not know what we predict and lack a purpose for predicting. Prediction
goals are as diverse as EP domains are. łThe traic is green at �1ž for the intersection example depicted in
Figure 1 is an EP goal. łReduce re-hospitalization and increase treatment outcome of heart failure patientsž
[36] is a set of EP goals. EP goals deine the monitored system implicitly or explicitly and how we perceive
various current and future states of the monitored system by diferentiating desired or compliant from undesired
or non-compliant states. In the intersection example, the goal implicitly deines the monitored system to be
the depicted intersection and that green traic is regarded as compliant, whereas black traic is regarded as
non-compliant. For hospital patients with previously diagnosed heart failures, the goal deines the monitored
system to be hospital heart failure patients. Moreover, future states with reduced re-hospitalization numbers and
improved treatment outcome statistics are desired in contrast to, e.g., states with constant re-hospitalization.

Deinition 2.1 (Event Prediction (EP) Goal). An EP goal � is a well-formed formula in some logic � with atomic
propositions over the domain of the monitored system that evaluates to either true or false given some predicted
instantiation of its variables. If the EP goal � evaluates to true, we say the monitored system future state is
compliant, otherwise it is non-compliant.

For the sake of simplicity, we do not state the presented examples as formulas of a certain logic such as
propositional logic or linear-time logic and point towards existing methods on translating natural language to
formulas in, e.g., linear-time logic [20]. The two important points here are the existence of at least one EP goal
and that it is stated in terms of atomic propositions over the domain of the monitored system (implicitly or
explicitly).
Based on the EP goal and the monitored system, we identify two kinds of data used for EP2, i.e., histor-

ical event data �0 ⊆ T − × L × S and historical indicator data � ⊆ T − × L × F� , where T is the time
domain, T − ≡ {� |� ≤ �now, � ∈ T } are all times up to the current time �now, T + ≡ {� |� > �now, � ∈ T } are
all times after the current time, L is the location domain, S is the event semantic domain and F� is the in-
dicator feature domain that does not include the time and location domain [161]. Data types �0 and � are
generated by the observer (see Figure 1) through observing the real-world, e.g., the observer generates an event
� = (ł05.01.2023 13:00ž, "�1", łTraic = greenž) by observing that two vehicles have stopped in front of the red
light and an indicator � = (ł05.01.2023 13:00ž, "�1", "Workday = Yes"). This data is sent alongside the EP goal to the
input component of the PCM system (cf. Figure 1) that maps the data to suitable features � ⊆ T −×F� ×F� , where
F� is the domain of features based on historical event data and F� is the domain of features based on historical
indicator data, by means of preprocessing and encoding. The input component outputs the features and prediction

2We adopt the existing deinition of the EP problem and method in [161] as close as our diferent perspective and scope allows.
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goal to the prediction component that is realized by an EP method, e.g., � = ("05.01.2023 13:00", (1, 0), 1) for a
one-hot encoded traic value and identifying the workday by 1.

Deinition 2.2 (Event Prediction (EP) Method [161]). Given features � ⊆ T − × F� × F� and an EP goal � ∈ � or
set of goals, an EP method outputs predicted future events �̂ ⊆ T + × L × S such that for each future predicted
event �̂ = (�, �, �) ∈ �̂ for � > �now it holds that C○ either the goal � or the set of goals is itself a future predicted
event or it can be evaluated on the future predicted events.

In the traic example, let us assume that we learn a neural network model that takes the most recent feature
� and outputs �̂ = (ł05.01.2023 14:00ž, ł�1ž, łTraic = blackž) as the predicted future event (cf. Figure 1), i.e., the
goal is itself the predicted event. Consequently, the future state of the traic at road segment �1 is predicted to be
non-compliant such that an action by the user is required.
Following the scope and aim as set out in Section 1.1, we separate feature engineering from EP and focus on

the EP method. We add condition C○ on prediction goals. C○ expresses the beneit of predicting the future events
and how we perceive the possible predicted future events, namely as compliant with our desired future state or
as non-compliant. Deining EP methods with an explicit goal has three beneits. First, all existing work in our
selection state a goal or set of goals in their motivation that expresses the beneits to users and how a speciic
predicted future event is perceived, e.g., [36] predict future patient treatment outcomes in clinics for a proactive
treatment efect analysis. Hence, including condition C○ in the deinition combines the how (i.e., the EP method)
and the why (i.e., the prediction goal) for EP. Second, it links predicted future events to actions. Since an action
aims to change a monitored system towards a desired state, linking actions to future predicted events requires a
notion of a desired state. With prediction goals, the notion of desired states is deined by compliant or desired
future states and by non-compliant or undesired future states. Third, condition C○ emphasizes how we can decide
whether a speciic EP method is successful in predicting future events.

If we want to fully understand EP in all of its heterogeneous aspects, multi-scale dimensions and overall
complexity, wemust achieve to grasp the set of systematic relationships of the system inwhich EP is conceptualized
or implemented [40, 41, 54, 74, 120]. This feature of understanding emphasizes the need for a systems perspective
on this topic. In general, considering the diverse nature of prediction goals throughout the various application
domains, the type of system for EP must be a decision support system rather than an autonomous system, i.e., the
user that decides what action is carried out is a human person (cf. Figure 1 and Figure 3). For instance, deciding
on the treatment plan of patients based on predicted future treatment outcomes must be done by physicians [29].
Furthermore, the utility of EP critically depends on the lead time, i.e., the time from the prediction of an event
to the true event time. This property necessitates a prediction at run-time and, thus, an online, stream-based
conceptualization of the EP system [128]. The source streams have to be continuously monitored such that the
lead time is as large as possible [161]. Altogether, we need a decision support system that continuously monitors
and predicts with the aim of distinguishing non-compliant, action-demanding from compliant future states.
To that end, we present a conceptual PCM system that entails these properties in the next section and

operationalize the PCM system in Section 2.3. In Section 3, we elicit assessment requirements from the system
architecture to asses existing EP methods in their łPCM system readinessž.

2.2 Widening the Scope: Event Prediction Method in the PCM system

Before presenting the PCM system, we elaborate on how it applies to EP. This enables us to understand how
multiple research areas work towards the same goal with more or less similar methods, yet diferent terminology.
Moreover, we illustrate the community- and application-domain-spanning characteristic of EP.
In the ield of business process management, a PCM system supports companies in monitoring and under-

standing the future compliance status of their business processes to act proactively towards a desired future
compliance status [91, 122]. To that end, a PCM system integrates research on compliance monitoring (CM)
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and PPM. CM aims to evaluate compliance constraints on the current and future events or key performance
indicators of a business process [91], while PPM aims to predict the future events or key performance indicators
of a business process [33, 103]. By comparing CM, PPM, and the EP method deinition (cf. Deinition 2.2), we
identify the following similarities: Compliance constraints are prediction goals, future key performance indicators
of a business process correspond to future predicted events (cf. condition C○ in Deinition 2.2), PPM is an EP
method, and the business process is a monitored system. If we generalize

(1) the monitored business process and its events as a monitored system and its events,
(2) the prediction of the future compliance status as EP methods,
(3) the anticipated compliance status as the evaluation result of an EP goal,
(4) and the proactive actions as any action an user can take with the support of a decision support system,

then the generalized PCM system depicted in Figure 3 is a conceptual model of decision support systems featuring
EP. Not only does this generalization place EP inside a generic system necessary for understanding its merits
more deeply, it also represents an integration of research on the various aspects of EP and monitoring into
a common theme. Furthermore, the generalization of a PCM system from business process management to a
decision support system for EP in general enables us to mutually transfer requirements and solutions between
the respective research areas. A PCM system contains the input, prediction, and output component (cf. Figure 1)
which are reined in Figure 3. Moreover, a feedback cycle is added from the user to the input component that
contains the action as a more direct and eicient way of accounting for the efects of derived actions onto the
monitored system in the PCM system [161].

2.2.1 Input component. The input component extracts data from the observer, preprocesses the data and encodes it
into the respective feature space required by the EP method (cf. Deinition 2.2). In practice, the input component
has to implement the various functionalities of data collection proposed by the data management community, in
particular data acquisition and data labeling [124]. Within data acquisition, the tasks of augmentation through
data integration / data fusion are particularly important. For the case of input event data lacking an event notion,
the task of data programming or event extraction [35] become additionally relevant. Considering that the observer
is only an abstraction for multiple, heterogeneous data sources (cf. Section 1), the input component’s extract
functionality has to deal with challenges of raw data ingestion from various data sources [96].
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The input component’s preprocess functionality covers the trans-
formation of ingested data to a common representation based on
a series of rules [66], data cleaning [64], schema matching for re-
lational data [115], deduplication and record linkage [42, 50, 104],
and, inally, canonical column selection for relational data [139]. In
the case of non-relational data such as continuous, unlabelled sen-
sor readings, schema matching is replaced by data programming or
event extraction [35] to deine an event notion. In case of low-level
events coming from the event source, the task of event abstraction
[146] may be necessary. Since events from multiple sources may ac-
tually be the same event, these events have to be matched to inalize
the data integration. As a last step, the encode functionality maps
the integrated data to the event F� and indicator feature space F� .
Here, it is important to follow the principles of feature engineer-
ing [165], while the resulting features are typically domain- and/or
goal-speciic.
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2.2.2 Prediction component. The prediction component is realized by an EP method that trains a prediction
model and predicts the future events. In Deinition 2.2, the future event can either be (i) the prediction goal or (ii)
an intermediate event on which the prediction goal can be evaluated. Case (i) does not require the additional
functionalities check and conlict. For case (ii), the evaluation of the prediction goal is realized by checking the
compliance of the intermediate event with respect to the prediction goal. If a monitored system is subject to a
set of prediction goals, these goals may be in conlict [91]. The PCM takes this possibility into account when
checking the set of prediction goals on the intermediate event and includes this information in its output.

2.2.3 Output component. The output component is reined into two subcomponents: the root cause analysis
component and the user support component (cf. Figure 3). The reinement underlines the need for model
transparency and interpretability (in short explainability), accountability, and prescriptiveness [91, 122, 161]. The
ability of the PCM to trace the non-compliance of the future events back to the root cause(s) contributes to an
explainable and actionable prediction. The prediction with root cause analysis is explainable, because a causal
relationship between a root cause and its anticipated result exists [120]. Furthermore, root cause analysis makes
the prediction actionable, since the user can derive countermeasures for non-compliant future events through
acting on the root causes. In engineering and cyber systems, i.e., IT systems, root cause analysis is typically
developed for explaining the root causes of machine faults or system anomalies to the operation manager [37, 92].
Finally, the PCM system supports the user in understanding the results and acting on them. To that end, the

user support subcomponent recommends actions and countermeasures for non-compliant predicted future events
[4, 109] and interprets the impact of the proposed actions on the predicted future events [55]. Further, it assesses
the overall uncertainty that remains throughout all prior functionalities [63]. Separately showing all the results
to users may quickly overwhelm, distract from major points, and hinder understanding. Hence, the gist of the
results are explained to them. In Section 5, we discuss a potential approach to this challenging functionality. If
more detailed information is necessary for understanding or analysing, the user can dive into the respective
results.

This new systems perspective encompasses a holistic view on the many facets of EP, yet is simple enough to
guide us in our understanding of functionalities surrounding the actual prediction that are necessary to hone
its value. Eventually, the PCM system depicted in Figure 3 can be seen as an approach and system blueprint for
the realization of real-world applications, comparable to the business model canvas for business model creation
[108]. Two PCM system realizations from manufacturing and healthcare are presented in the next section and in
Section E of the supp. material1.

2.3 Realization of a PCM System in Manufacturing

In this section, we show how the PCM approach (cf. Figure 3) can be used in order to realize EP projects at the
example of manufacturing. łManufacturers need to know what happens next and what actions to take in order to get
optimal results. It is a challenge to develop advanced analytics techniques including machine learning and predictive
algorithms to transform data into relevant information for gaining useful insights to take appropriate actionž [144].
This means that several event sources in a cyber-physical environment are to be leveraged to predict drifts and
outcomes in a production process. Figure 4 illustrates how the PCM system can be applied to help achieving
these goals in manufacturing. The described use case brings together requirements and settings from real-world
projects as described in [38, 93, 111, 129, 130, 137].

The situation faced concerns the introduction of a cyber-physical system łtracking new orders from an Enterprise
Resource Planning (ERP) system, sourcing materials and scheduling production resources from a Manufacturing
Execution System (MES), and collecting data from all machines, robots, and other equipment used on the shop loorž
[111] (cf. Fig. 4 ①). The integration is realized through process orchestration [121] acting as observer process (cf.
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Fig. 4 ②) that connects to the diferent systems, machines, robots, and sensors using interfaces such as OPC UA
and collects data through the Siemens S7 communication protocol [111]. The log snippet depicted in Fig. 4 ③

shows process event Fetch and the associated sensor stream for keyence measurements in the DataStream XES
format [93].

Prediction goals in manufacturing (cf. Fig. 4 ④) comprise prediction of drifts in the prescribed process behavior
[137] and in the process data [136]. In addition, the process outcome [38] such as the quality of the produced part
and monitoring the decision rules that drive the routing of the process are typical prediction goals [129, 130].
For example, monitoring a temperature measurement exceeding a certain threshold for three times in a row can
be crucial for quality assurance. Taking the prediction of concept drift [137] as another example, the approach
combines predicting the next event in a process stream with the prediction of sensor data values, e.g., the data
stream representing the diameter measurement of the produced parts. EP methods can predict drifts in the
diameter measurements. These drifts can he analyzed and used as basis to recommend (cf. Fig. 4 ⑥) an adaptation
in the production process. The occurrence of chips on the part results in diameter drifts and, hence, a new task
chip removal is executed. The approach can be also used for explanation (cf. Fig. 4 ⑥), i.e., if a concept drift
occurs, the root cause can be traced back to the diameter measurements (cf. Fig. 4 ⑤).

Utilizing the PCM approach for describing the manufacturing scenario yields an overview of the entire pipeline:
from the data sources to the prediction methods, insights, and actions to be taken. It also shows which challenges
are still open in realizing the pipeline in its entirety. First of all, a systematic way of combining EP methods and
PPM methods is missing. Moreover, the presentation and explanation of insights to the user is still in its infancy,
requiring more research to keep users in and on the loop.
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Summary: Using the PCM approach in the manufacturing case underpins the gap between requirements that
are met by existing approaches and requirements that are not met, but highly relevant in EP projects, i.e., data
quality, lifecycle support, and keeping humans in the loop by, i.a. advanced root cause analysis.

3 Comprehension of Event Prediction Methods through the Generalized PCM System

Based on the reined understanding of EP as a component of PCM systems, we take the systems perspective
one step further by eliciting requirements for EP methods from existing surveys [122, 161] and iteratively
reining them during the assessment of the 260 articles in our selection. Aside from advancing our account of
EP, the requirements serve as an assessment scheme for assessing the selection of existing work. Following
a concern-based taxonomy of requirements [51], the 16 EP method requirements in Figure 5 are classiied
into seven functional and nine non-functional requirements in the form of ive attributes and four constraints.
Attributes specify qualities of the method, whereas constraints limit the solution space from which methods can
be instantiated. To emphasize how meeting the requirements impacts the PCM system, we identify an underlying
theme for each group of requirements. The seven functional requirements enable optimal decision-making [4]
and center around the user through visualization [100]. The ive attributes represent the need for an explainable
and trustworthy PCM system [9, 21]. Lastly, the four constraints specify a PCM system with online EP that
continuously predicts future events from heterogeneous, imperfect data sources [122].
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Output Visualization

Root Cause Analysis Visualization
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Fig. 5. Requirements engineering result for EPmethods in the context of PCM systems categorized by functional requirements,

atributes and constraints [51] and annotated by the underlying theme.

Optimal decision making and user-centeredness. Considering that the real-world is complex, chaotic, and
imperfect, a deterministic prediction of future events idealizes and keeps important nuances in the future events
from the user [120, 122, 161]. Therefore, a probabilistic prediction that includes information on the likelihood of
the predicted future events actually occurring is required. If we want to enable the user to optimize decisions
with respect to a comprehensive anticipation of the future, predicting the next event is not enough. A suix
prediction speciies the need for anticipating more events following the next event, e.g., knowing of the next three
heavy rainfalls instead of the next one, oicials can more eiciently allocate resources. Instead of increasing
the anticipated time horizon as suix prediction does, event lifecycle prediction reines the granularity of the
anticipated event time horizon. Although events are typically conceptualized as real-world occurrences happening
at a certain point of time, each real-world event has a duration and, thus, at least a start and an end point of time
[78, 91]. If we do not predict the lifecycle of events, we are, for example, not aware of the time period afected by
the event. For example, our travel plans remain unchanged, if the traic jam is likely to vanish by the time we
arrive at its location.
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Uncertainty quantiication aims at relecting the epistemic and aleatoric uncertainty of the method’s output [63].
Epistemic uncertainty consists of model and approximation uncertainty and is the result of our lack of knowledge
on the true relationships of the monitored system necessary for the design of a perfect prediction method. As
such, it is reducible by further research. Aleatoric uncertainty is an irreducible uncertainty that captures the
non-deterministic nature of real-world occurrences. Recently, method development acknowledged the existence
of both types of uncertainty and incorporated their quantiication in its output [154]. Uncertainty quantiication
can build trust for the prediction method by measuring conidence metrics [161] that accompany probabilistic
outputs and improves the subsequent actions, as the user can decide to wait for more certain prediction results
that are more likely to occur.

Despite the fact that root cause analysis and visualization are separated from prediction in the PCM system (cf.
Figure 3), it is important that the method itself enables these functionalities or already presents a proof of concept
on how these functionalities can be done. Otherwise, it will be more diicult for researchers and practitioners to
develop these functionalities given only the method itself. Thus, root cause analysis support (RCA support), output
visualization and root cause analysis visualization (RCA visualization) indicate whether the proposed method
clearly deines how to achieve root cause analysis or visualization on top of the method respectively or already
presents a proof of concept. In particular, the visualization functionalities focus on the user in the PCM system
[100].
Explainability and trustworthiness. The irst set of attributes are the speciic qualities precise root cause

analysis (precise RCA), joint root causes (joint RCs), and explainability that are essential for an EP method, since
this irst set of attributes helps the user to quickly grasp the situation and act accordingly. The method should
enable the precise identiication of root causes and detect that multiple true root causes for diferent predicted
future events may, in fact, be the same true root cause. As it is out of the scope of this survey to assess the full
variety of how explainability can be achieved or conceptualized [9, 21] and there is no widely accepted deinition
[21, 47, 120], we limit the attribute to coarse-grained distinction. Black box models are intransparent, white box
models are transparent, and a combination of both exhibit both transparent and intransparent components [21].
Taken together, these three qualities determine the accountability of the method to a large extent. If the user can
explain the predicted future events as prerequisites to an optimal strategy for acting on the true root causes, the
method and the user both should not be held accountable in case something goes wrong.

The second set of attributes are performance attributes that evaluate the EP method itself. [161] presents how
the output quality of an EP method is evaluated. Considering the requirement on a probabilistic output quality
(probabilistic quality), we further require a probabilistic evaluation, e.g., with the Brier score [10] or some other
appropriate scoring rule [23]. Prediction timeliness pertains to the speed a method is able to predict. Prediction
timeliness is particularly important in resource-constrained environments such as vehicle onboard systems [3] or
multi-tenant cloud architectures with short customer response times [133]. It determines the lead time, but as a
result of concept drift, the training time also has an efect on the lead time. Due to changing environments such
as the COVID-19 pandemic concept drift occurs and leads to outdated historic data [122, 123, 161]. Consequently,
the prediction model must be kept up-to-date. Having to update prediction models results in the training time
of the method playing an additional role for a timely prediction, yet we do not know the signiicance of this
role. Moreover, it is not clear what the optimal time for updating is. Aside from these unknowns, training and
prediction time comparisons are only reasonable in a fair benchmark that goes beyond the scope of this survey.
Hence, prediction timeliness is not assessed in Section 4.
Online EP over heterogeneous, imperfect sources. To place EP methods into the PCM system, the

following four constraints must be met. First, online, event stream conceptualization (online conceptualization) is
a consequence of the need for monitoring and timely prediction [122, 161]. A method may fail to show how it
can be applied to an event stream at run-time. There is a diference between online prediction based on an event
stream and oline prediction based on an ex-post dataset, e.g., in terms of eiciently storing and updating already
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received events from the event stream [25]. Thus, oline EP methods may be unsuitable for monitoring. Second,
multiple, heterogeneous sources (multiple sources) limit the method solution space to methods that are aware of or
actively deal with the challenges of data integration (cf. input component in Section 2.2). Although overcoming
these challenges is the responsibility of the input component in a PCM system, the solution may afect the EP
method, e.g., by necessitating multiple prediction models [117] or multivariate problem formulations [112].

Third, the challenge of matching events from multiple data sources is emphasized as a separate constraint (cf.
input component in Section 2.2). The matching strategy for the input should be consistent with the strategy for
matching events in prediction goals to predicted future events and the strategy for matching events for evaluation
purposes. Multiple matching strategies exist [161], but may have to employ diferent equivalence notions that
underlie the matching of events [122]. For example, matching can be based on equivalent machine identiiers for
multiple sensors attached to a machine in a production facility (cf. Section 2.3). Fourth, data quality utilization
(data quality) limits the solution space to methods that not only acknowledge the existence of data quality issues
such as missing data in their design, but also improve the prediction by actively exploiting the existence of data
quality issues. For example, [90] develops a self-supervised technique to fully utilize electronic health records
that inherently lack a certain type of label.

Conjointly, 15 of the 16 discussed requirements (excluding the prediction timeliness requirement) serve as the
assessment scheme for existing work on EP methods in Section 4.

4 Assessment of Existing Event Prediction Methods

This section presents the analysis of 260 papers from the literature compilation in Figure 2. Each paper is analyzed
with respect to the 15 requirements contained in the assessment scheme introduced in Section 3, resulting in an
overview for each requirement depicted in Figure 6. The goal of the analysis is to understand the current status
of EP methods from a systems perspective (cf. Section 1 and Section 3) and to pinpoint open research challenges
with their corresponding research directions (cf. Section 5).

The assessment of the requirements uses an ordinal scale: + means that the requirement is met, ∼ means
that the requirement is partly met and − means that the requirement is not met. In the following, we illustrate
assessment criteria for one selected requirement of each of the 3 requirement groups (functional, attributes, and
constraints). The selection is made due to space limitations (for the remaining requirements, see Section C in the
appendix) and aims at conveying the general idea of the assessment criteria.

(1) Probabilistic Prediction: + corresponds to directly providing probabilities of occurrence for predicted
events. [106], for example, propose a multi-task spatio-temporal event forecasting framework to predict
the probability of large-scale societal events like civil unrest through news articles. By explicitly predicting
the probability ��� of the �th-societal event occurring in city � given the news articles ��

� published � days
before the event, [106] meets the requirement. ∼ corresponds to an EP method that does not directly provide
occurrence probabilities of predicted events, but can easily be extended to do so. For example, [87] estimate a
probability density function for event occurrences across time and space given past event occurrences to
assess the crime risk in a monitored region. Evidently, the density function does not constitute an event
probability yet, but we can easily compute a probability for a concrete event. Lastly, − corresponds to a
predicted event without an occurrence probability and no easy extension. [22], for example, predict the
remaining time that an ongoing process instance takes to complete. Consider a loan application process in
which the bank is interested in the remaining times of ongoing applications. For a given application, a LSTM
model ensemble is learned from similar past applications. Thus, the approach in [22] is not easily extensible
to predict the remaining time’s probability.
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(2) Explainability: + corresponds to an approach being łwhite boxž (cf. Section 3). For example, [159] propose
a temporal extension to association rules. ∼ corresponds to łwhite boxž and łblack boxž. [6], for example,
combine transition systems and LSTM to predict remaining times of ongoing process instances. Lastly, −
corresponds to łblack boxž. For example, [88] propose a multi-channel fusion LSTM to predict medical events.

(3) Online Conceptualization: + corresponds to an EP method that is deined on an event stream such that
the model and predictions are continuously updated and the updating times are known. For example, [70]
propose EP within the PCM system (cf. Section 2.2) to predict large-scale societal events. Hence, periodic data
ingest through Apache Spark Jobs is coupled with daily predictions, a lead time of 5 days (cf. Section 2.1), and
a weekly update of all prediction models. Next, ∼ corresponds to an EP method that is deined on an event
stream such that the model and predictions are continuously updated, but the updating times are not known.
For example, [127] propose to predict system performance and errors for a large computing cluster. Their
proposal takes the 5 minute interval for new events and performance measurements into account, but the
updating of the prediction models is unknown. Lastly, − corresponds to an EP method that is deined on a set
of historical events with a single training and prediction for evaluation. For example, [132] propose to predict
security-breaking attacks from past attacks without continuous updates.

4.1 Overall Results

Detailed assessment results are reported in our online repository1. The results for each requirement in Figure 6
give a nuanced view on research progress in the ield of EP methods, as the overall article shares vary across
the requirements. By applying a threshold of � = 20 % (corresponds to 52 articles) on the ∼ assessment result,
we obtain two sets of requirements: One set that contains requirements with article shares above the threshold
(i) and another set that contains requirements below the threshold (ii). In set (i), existing work has proposed
methods that meet the requirements probabilistic prediction, RCA support, output visualization, explainability,
online conceptualization and multiple sources. The majority of methods meeting those requirements emphasize
the need for monitoring, causality, explanation, and visualization and acknowledge that relevant data is typically
distributed over multiple data sources. In set (ii), existing work misses requirements suix prediction, lifecycle
prediction, uncertainty quantiication, RCA visualization, precise RCA, joint RCs, probabilistic quality, matching and
data quality to a large extent. Despite the very low shares of articles meeting requirements precise RCA, joint RCs,
and matching, still some approaches fully meet them (+). Lifecycle prediction is the only requirement with a ∼ as
the best assessment.
The distribution of the + assessment count for each paper is presented as Figure 3 in the supp. material1. It

reveals that the majority of papers focuses on one to three of the assessment requirements, i.e., the design of EP
methods is typically aimed towards a few, particular properties. Although a method design with a clear focus is
beneicial during method design, the result leaves the problem of system design to the practitioner. If a paper had
the best assessment of meeting all requirements, then the boxplot in the appendix would show a count of 15. As
the highest count is an 8, the boxplot shows that the mostly positive best assessment in the requirements view
(cf. Figure 6) is due to various papers, i.e., there is no single paper that is close to the best possible assessment.

We also systematically analyze the dynamics of EP research based on diferent timeline-based charts. The
distribution of all selected publications over time shows the ongoing and still increasing research output in EP and
PPM. We plot the development of the publications regarding their fulillment of the 15 analyzed requirements per
requirement over time. Figure 7 depicts the plots for requirements joint RC, multiple sources, and suix prediction
as representatives for diferent patterns/trends.
Joint RCs (left side) can be seen as representative distribution for requirements lifecycle prediction, precise

RCA, prob. quality, and matching. For all of these requirements, � < 0.2 and even more precisely, � ≤ 0.04 holds
and the requirement is met (+) or partly met (∼) only selectively. Multiple sources (middle part) can be seen as
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Fig. 6. Assessment results for all papers per requirement.
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Fig. 7. Meeting criteria for requirements joint RC, multiple sources, and sufix prediction (+, ∼, -) over time.

representative distribution for requirements prob. prediction, RCA support, output visualization, explainability, and
online concept.. For all of these requirements, � > 0.2 holds and the distribution of criteria met (+), partly met (∼),
and not met (-) is evenly distributed with steady increase. Suix prediction (right part) can be seen as representative
distribution for requirements uncertainty quant., RCA visual., and data quality for which 0.04 < � < 0.2 holds.
Here, the number of publication with criterion not met (-) increases whereas the other two assessment as +
and ∼ show a plateau distribution, i.e., the number of publications remains roughly the same over time. The
distribution of publications categorized by model type (cf. Section B in the suppl. material1) over the considered
timeline reveals two additional interesting observations (cf. Figure 4 in the supp. material). First, publications
featuring inferential prediction models that are łblack boxž follow the overall increasing trend. Interestingly, for
hybrid models that combine łblackž and łwhite boxž, it seems that a peak was reached in 2019, i.e., the number of
publications featuring hybrid models has been decreasing since 2019.
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In the following, we aim to support a more holistic development of EP methods meeting more requirements by
illustrating a method’s properties3 for each requirement with an example from existing work on each requirement.
The examples are selected based on how straightforward, concise and representative their properties for meeting
the requirements are and how well they relect the diversity of prediction goals and application domains. The
illustration shows how key design aspects are responsible for properties of the method that are, in turn, responsible
for meeting the requirement. The presentation of examples is structured along the three themes underlying
requirements (cf. Section 3). It is accompanied by an analysis of how the requirement may be related to other
requirements and a discussion of the respective approaches.

4.2 User-centered Event Prediction for Optimal Decision-Making

Seven requirements (cf. Figure 6) center around the user and the support for optimal decision-making given the
status of the PCM system (cf. Section 3). While probabilistic, detailed, and certain predictions across the whole
future time horizon are crucial for optimal decision-making, advanced visualization functionalities are insightful
to the user.

Probabilistic prediction. [44] predicts the time and event failure type of high-performance computing cluster
nodes by extracting event graphs from system logs. To that end, [44] compute the conidence of the correlation
between events, the average time delay between events and its standard deviation. Figure 8 shows a small,
exemplary event graph with three events �0, �1 and �̂. For a probabilistic prediction, the EP method in [44] predicts
the probability of event �̂ that follows event �0 and �1 with Bayes law to be 50% * 50% = 25% and the time of event
�̂ to be 25 minutes +/- (2 * 4 minute + 2 * 3 minute) = 14 minutes with 95% probability after �0 has occurred.

Leveraging the event graph, Bayes law and the assumption of normally distributed time delays leads to a
straightforward, probabilistic conceptualization of EP. For the same reasons, the prediction can be traced back
to one or a set of root causes in the event graph such that the method meets the requirements of RCA support.
Furthermore, the simplicity of the method helps domain experts to understand its output. Yet, it may fail to perform
well when facing complex dependencies between events in multiple dimensions, e.g., a patient’s clinical history
and future treatment outcome. This indicates a trade-of between simplicity of the probabilistic conceptualization
and its applicability to complex monitored systems, their application domains and corresponding prediction
goals.

Methods with a probabilistic prediction all conceptualize the method with conditional probabilities, Bayesian
or Markovian settings, but difer in their degree of statistical rigor. Statistical rigor captures the number of
assumptions on the distribution of the input data, how restraining the distribution assumptions are and how
formal the derivation of the EP method is given those assumptions. For example, [7] exhibits a high degree of
statistical rigor, as it features a high number of assumptions on the distribution of the data that restrain it to a
large degree (e.g., the input data is the result of a Gaussian autoregressive process of the second order). Then, the
whole EP method is formally derived from those assumptions. [44] exhibit a medium degree of statistical rigor, as
they assume normally distributed time delays and apply Bayes law, but do not formally derive the overall EP
method. [113] exhibits a low degree of statistical rigor, as they explicitly aim at designing the EP method to have
no assumptions and do not formally derive the method.
Suix prediction. [69] predict the full sequence of future events for an ongoing manufacturing cycle. Thus,

[69] predicts all the events that are likely to occur until the production is complete. The prediction goal is a set of
key performance indicators such as product quality. [69] assume that the future progress of the ongoing cycle �
with length � can be similar to the progress of � historical cycles �1, . . . , �� after � events of each historical cycle ��

3Some properties are illustrated with deinitions or equations from the original work cited at the beginning of the example, i.e., if the
illustration states a deinition or equation, then it is taken from the original work and its key part for illustration is extracted and adapted for
consistent presentation w.r.t to the survey’s notation.
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have been observed. Based on this assumption, [69] apply k-Nearest-Neighbor clustering with Euclidean distance
on the �-length preix of historical cycles and the ongoing cycle resulting in � suixes for the ongoing trace.
Then, [69] apply a support vector machine classiier on the � suixes to predict the key performance indicator.
At last, the � predicted key performance indicators are aggregated into a single indicator. Although this indirect
basic technique can show the operations manager in the production facility additional information on how the
current cycle will progress, this method likely fails to accurately predict for a production line with hundreds
of thousands of diferent cycle variations. In contrast to [69], many other methods such as [84] or [34] predict
the suix by repeatedly applying a next EP method. Although this can be done for any EP method, the major
challenge of looping through events that are likely has to be tackled by methods repeatedly applying the EP
method for suix prediction.

y0

50%
15min +/- 3min

50%
10min +/- 2min

y1

y

Fig. 8. An event graph for events�0,�1 and �̂ that follow each

other in system logs of a supercomputing cluster node [44].

The probability of following, the average time delay and the

standard deviation of time delay is added for each relation

between events.

"missile attack"

"missile attack 
in Dnipro" "military"

"military budget"

"missile attack 
in city"

"missile attack 
in countryside"

"missile attack 
in Kyiv"

"missile attack 
in Kharkiv"

Fig. 9. A hierarchy of most general to most specific observed

events [114]. On receiving a current event of a missile atack

in Dnipro, the most specific event in the hierarchy that se-

mantically matches the current event is used for prediction.

Lifecycle prediction. [84] predict the next events of business processes by learning a recurrent neural network
(RNN) that takes multiple event attributes into account. Accordingly, the EP problem is stated for an ongoing
process instance � = ⟨(�1, �

1
1, . . . , �

�
1 ), . . . , (��, �

1
�, . . . , �

�
� )⟩ with event activities �1, . . . , �� and event attributes

�11, . . . , �
�
� as predicting the next event (��+1, �1�+1, . . . , �

�
�+1) of the ongoing process instance � . Hence, [84] can

predict lifecycles of events, since the lifecycle of an event is an attribute of the event. Nevertheless, lifecycle
carries special semantics for EP. For example, an abort lifecycle event for the delivery activity of a logistics
company signiies that the end will not occur at all and, therefore, the delivery will fail [122]. Also, the lifecycle
determines the duration of the activity recorded through multiple events. For instance, an activity paused once
for 5 minutes has a duration of 5 minutes lower than the time between its start and end. For prediction goals that
are evaluated on the duration, e.g., eiciency of the resource executing the activity, the special semantics of the
lifecycle has to be taken into account. Consequently, the prediction method should not stop at predicting the
lifecycle as an attribute, but incorporate its semantics.

Similarly, the other proposals partly meeting lifecycle prediction conceptualize EP with multiple, unspeciied
event attributes and do not incorporate lifecycle semantics. If the data source for the evaluation does not provide
lifecycle information, this should not be taken as the reason for excluding it in a method design. Exclusion
would not allow the method to be generally applied to data sources with event lifecycle information. Due to the
importance of lifecycle information for prediction, researchers should recommend the additional recording of
this information to a data source, if the data source does not provide lifecycle information.
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Uncertainty quantiication. [158] predict the time-to-event for treatment outcomes of patients in clinics
by extracting features with RNNs and learning a Parametric Predictive Gaussian Process (PPGP) Regressor in a
survival analysis setting. The combination of the PPGP Regressor and survival analysis results in the survival
function:

� (�� |h� ) = 1 − �

(

�� − �f (h� )

�f (h� ) + �obs

)

where � is a survival function, �� the logarithm of the time-to-event for patient � , h� the latent representation
extracted by the recurrent neural network, � the normal cumulative distribution function, f ∈ R

� a vector of
Gaussian process function values, �2

f
(h� ) the input-dependent predictive variance and �2

obs the input-independent
observational noise for the logarithmic time-to-event�� . The corresponding objective that [158] propose puts more
weight on the input-dependent predictive variance �2

f
(h� ) than earlier proposals that combine Gaussian Processes

and survival analysis. Hence, the formulation of survival analysis with PPGP Regressors and the corresponding
uncertainty-aware objective quantiies predictive variance, i.e., epistemic uncertainty, and observational noise,
i.e., aleatoric uncertainty. As well, the formulation also strengthens the positive relationship between predictive
variance and prediction error. Consequently, the less conident the uncertainty-aware EP method is, the less
accurate its predictions are.

In addition to quantifying the uncertainty of the prediction, appropriately integrating it to the objective of the
EP method yields a desirable relationship between uncertainty and prediction quality. The information that more
conident predictions correspond to more accurate predictions is valuable to practitioners [63]. This information
likely results in more trust towards the method. By further diferentiating between epistemic and aleatoric
uncertainty, the quantiied uncertainty also shows whether a currently low conidence could be improved with
more data.
Existing proposals mostly quantify uncertainty by means of a probabilistic conceptualization that allows to

inherently estimate uncertainty as some form of variance in the method and, thus, focuses on the method, e.g.
[158]. Depending on the degree of statistical rigor (cf. probabilistic prediction), these estimates are more or less
justiied by statistical theory. Another option is to extrinsically quantify uncertainty by approximating it using,
e.g. characteristics of the input data. [26] propose an uncertainty metric that also considers how many activities
of a business process instance have been observed and what time has elapsed since the last activity has been
observed. The rationale for their extrinsic uncertainty quantiication is that more and more recent data on the
monitored system relate to a more certain prediction.
RCA support, output visualization and RCA visualization.While [44] apply Bayes law on descriptive

statistics of the data without a statistical analysis formulation, [81] combine decision rules with Bayesian analysis
into Bayesian Rule Lists (BRL):

if antecedent1 then � ∼ Multinomial(Θ1), Θ1 ∼ Dirichlet(Φ + N1)

...

else if antecedent� then � ∼ Multinomial(Θ�), Θ� ∼ Dirichlet(Φ + N�)

else� ∼ Multinomial(Θ0), Θ0 ∼ Dirichlet(Φ + N0)

where antecedents are well-formed formulas with �� , � ∈ {1, . . . ,�} atomic propositions over the feature vector
that do not overlap, � is the prediction goal value, Θ� are parameters of the respective distribution, Θ0 a default
rule parameter for observations that do not satisfy any of the antecedents, Φ a prior of the prediction goal values
and N� the respective observation counts satisfying antecedent � . By limiting the parameters� and �� to small
integers as well as deriving a mean point estimate and credible interval for the prediction goal value �, BRLs
represent a simple, interpretable prediction model. Potential root causes are represented as antecedents of the
BRL (RCA support). The prediction output and the RCA are visualized by showing the BRL and traversing its
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rules from top to bottom given an observation. [81] compares this BRL to a medical score that is frequently used
to predict the stroke risk by physicians. They identify antecedents with known root causes or risk factors and
conclude that the BRL is as interpretable as the medical score, while improving the accuracy.

Methods meeting all three requirements RCA support, output visualization, and RCA visualization are designed
in their functionality to support the user in understanding the method and its prediction. A simple prediction
model as in [44, 81] underlying the EP method support the user in tracing the prediction back to its root causes.
This meaning of simplicity is captured by the "white box" assessment of explainability, but it is not the only
suicient condition for meeting RCA support. For instance, a hybrid basic approach can still support RCA in spite
of a "black box" model due to the łwhite boxž part of the model [86]. Due to a lack of a widely accepted deinition
on explainability (cf. Section 3), it is not clear whether further relationships with root causes exist. Considering
visualization, some methods present a straightforward way of visualizing the output or RCA as in [81], while
others need speciically designed visualization techniques, e.g. neural networks.

4.3 Explainability and Trustworthiness

Four requirements (cf. Figure 6) aim towards explainable and trustworthy EP through appropriate quality metrics
and root-cause analysis.

Precise RCA, joint RCs and explainability. [114] predict future events that can be caused by a current news
event. To that end, they choose an aggregate semantic event representation for an event � = (�,�1, . . . ,�4, �).
Here, � is a state or temporal action exhibited by the event’s objects,�1 a set of users,�2 a set of objects on which
the action � was performed,�3 a set of instruments utilized by the action,�4 a set of locations and� a timestamp.
Given a set of historic events {⟨�1, �(�1)⟩, . . . , ⟨��, �(��)⟩} for an unknown causality function � mapping a historic
cause event to its efects, [114] aim to approximate � by learning a causality graph of events. The causality graph
is learned through existing ontologies on actions such as VerbNet [71] and on objects such as the LinkedData
ontology [14].
Using existing ontologies, the method can evaluate the precision of identiied root causes (precise RCA). For

identifying joint RCs, the method proposes a generalization event by generalizing over its actions and objects.
The result is a hierarchy that detects that similar root causes are in fact joint root causes. Figure 9, for example,
depicts a generalization hierarchy of observed events that identiies similar root causes as joint, more general root
causes. The prediction is computed solely on the causality graph through matching the current event with an
existing event in the causality graph (denoted in green in Figure 9) and applying a prediction rule associated with
the event. Thus, a user can traverse the predicted event back to its historic event. Finally, the method employs a
łwhite boxž model (explainability).

Despite their existence, ontologies are rarely used in EP. With the help of ontologies, the method can establish
a concept of causality and meaning. Moreover, EP methods rarely exploit that events are related by a semantic
generalization relationship. However, other semantic relationships between events are exploited by recent
methods, e.g. the disease co-occurrence [89] or compatible related treatment outcomes relationships [46].

Probabilistic Quality. [151] predict crime frequencies in the spatio-temporal domain by combining variational

autoencoders and sequence generative neural networks. Hence, a predicted crime frequency is �̂ (� )

�, �,�
for the

geographical grid indexes �, � , crime type � in the time slot � . To evaluate these probabilistic predictions, [151]
irst normalize the true and predicted crime frequencies:

�
(� )

�, �,�
=

�
(� )

�, �,�
∑�

�=1

∑�
�=1 �

(� )

�, �,�

, �̂
(� )

�, �,�
=

�̂
(� )

�, �,�
∑�

�=1

∑�
�=1 �̂

(� )

�, �,�

and then compute the Jensen-Shannon divergence with laplacian smoothing:
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�JS (�, �̂) =
1

2
�KL (� ∥�) +

1

2
�KL (�̂ ∥�)

where � =

1

2
(� + �̂) is the average of true and predicted probability. Next to the Jensen-Shannon divergence,

there exist at least 200 further scores for evaluating probability estimates [23]. Thus, analysing its properties with
respect to EP and proposing a standardized set of scores goes beyond the scope of this survey. For this survey,
the important point is that the evaluation is done using a metric that scores probability estimates, as is the case
for [151].

For evaluating probabilistic predictions, the predictions must come with probability estimates. Thus, meeting
the requirement of probabilistic quality implies meeting probabilistic prediction. Yet, these two requirements are
not equivalent, because many articles do not report results of scoring probability estimates. While roughly 25% of
the 260 articles propose methods meeting probabilistic prediction, less than 5% evaluate the predicted probabilities
with an appropriate score (cf. Figure 6).

4.4 Online Event Prediction over Heterogeneous, Imperfect Data Sources

Four requirements (cf. Figure 6) represent the need for continuous EP given heterogeneous data sources with
dynamically-changing data quality.
Online conceptualization. [117] predict civil unrest events across ten Latin American countries through a

continuous, automated system. The system runs 24/7 and constantly processes events coming from various open
data sources such as social media. Consequently, the EP method consisting of an ensemble of methods is proposed
to continuously learn from daily data. For example, a logistic regression models is learned using daily tweet
counts while a rule-based method detects keywords contained in social media posts. The system has a throughput
of 200-2000 messages/sec, predicts roughly 40 events/day and can ingest up to 15 GB of messages on a given day.
Therefore, it features an online conceptualization and can monitor the ten Latin American countries for social
unrest events. Given its daily cycle and the ensemble of prediction methods, a daily, full retraining of the prediction
models is feasible. However, a full retraining may become infeasible for EP methods in light of updating cycles
not longer than a few minutes. For this reason, [123] investigate strategies for updating the prediction model that
go beyond full retraining: Do nothing, i.e., no update; retraining with no hyperparameter optimization,
i.e., a lightweight retraining; full retraining, i.e., train on all available events; and incremental update, i.e.,
applying incremental learning algorithms. The results show that full retrain and incremental update are
the best strategies for predicting business process events.

Still, not all prediction models allow for incremental updates through incremental learning algorithms. Thus,
[102] investigates six strategies to handle updates to the prediction model by means of data selection strategies.
First, the baseline strategy means no update to the training data. Second, the cumulative strategy means
łupdate training data on every new eventž. Third, the non-cumulative strategy means łupdate training data
on every new event by keeping the � most recent eventsž. The ensemble strategy means łnon-cumulative
and keeping all models for ensemble predictionž. Next, the sampling strategy means łupdate training data by
sampling all available eventsž. Finally, the drift strategy is non-cumulative with drift detection such that only
training data after a drift is selected. The results show that the ensemble strategy performs best for predicting
business process events.
Despite these pointers to suitable strategies for updating prediction models, a best strategy for all use cases

cannot be determined due to a case-dependent trade-of between the resources required to improve the quality of
prediction through updating and its beneits.

Multiple sources. [2] predict the time-to-event for future failures of engineering system devices. Sensor data
�� ∈ R

�×�� from � sensors for each device � observed until time �� and event data �� ∈ {0, 1} is used to predict
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the time-to-event � for the future failure �� = 1 of device � . For prediction, [2] propose a multi-task learning
framework based on neural networks with a task � for each device. Hence, � data sources are used in the EP
method (multiple sources) and the integration of these data sources is implicitly learned by the neural network.

We can distinguish two approaches to data integration. The implicit approach to data integration combines the
data integration with the learning of a prediction model in the EP method such that the data integration is tightly
coupled with the EP method. For example, the data integration of the � devices is implicitly learned by the neural
network in [2]. The explicit approach to data integration separates data integration from the EP method such
that both of them become interchangeable. To that end, the explicit approach implements necessary functionality
for data integration (cf. input component in Section 2.2) before the EP method is applied to the data. [117] not
only illustrates the online conceptualization, but also the explicit approach to data integration. Many diferent
sources such as NASA satellite meteorological data, Bloomberg inancial news and Twitter’s public API are used.
Each source is ingested by a specialized routine to convert the data input to JSON and add identiiers. Before
the EP method is applied, the JSON input is enriched through, e.g. geocoding, data normalization and entity
extraction. Consequently, the EP method does not need to learn how it can integrate the data. In comparison,
the implicit approach intertwines the input component of a PCM system (cf. Section 2.2) with the prediction
component, whereas the explicit approach keeps them separated. The former has the advantage, that it does not
need to design data integration functionalities, but may experience worse performance for heterogeneous data
sources and consuming more resources for training. The latter has the advantage, that it has direct control and
knowledge on the speciic data integration routines, but comes at the cost of more design and maintenance efort.

Fig. 10. Time-series X is segmented into X1 and X2. Each

time-series segment is recognized with states Θ�1 , Θ�2 and

Θ�3 [61]. Recognized states and the similarities are used in

the EP method proposed in [61] instead of the original time-

series.

Fig. 11. Spatial Incomplete Multi-Task Deep LeArning

(SIMDA) Framework [49]. Despite no recorded subtype event

3 in the historic event data � for task �, SIMDA allows to

predict subtype event 3 in task � that corresponds to location

�� , since location �� is geographically close to location �� and

location �� has recorded subtype event 3 in the historic event

data of task �.

Matching. [61] predict a future event in a time-series sequence, e.g. a future anomalous watt-hour meter clock
event of the State Grid of China in weekly sensor readings. To that end, a future event ��+1 ∈ Z is predicted based
on historic events �� and � segments X� ∈ R

�×� of the time-series sequence X ∈ R
�×� with length � :
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⟨X1:� , �1:� ⟩ = {(X1, �1), . . . , (X� , �� )}

Before feeding the historic data ⟨X1:� , �1:� ⟩ into a neural network, the proposed EP method recognizes rep-
resentative time-series patterns called states and denoted as Θ� ∈ R

�×� for segments of the data (cf. Figure 10).
Hence, redundant or very similar time-series patterns from multiples sources are recognized by the same state
(matching). [61] is the only method proposed that features an explicit matching mechanism for data coming from
multiple sources. Other proposals for matching [1, 60, 70, 79, 82, 117, 150, 160] are not explicitly including the
mechanism in their method.
Data quality. [49] predict the location of event subtypes. Therefore, instead of predicting the air pollution

of cities as future events, the respective air pollutant subtype (Carbon monoxide, nitrogen dioxide, ine dust
pollution etc.) is predicted. The predicted event subtype allows for more ine-grained actions, e.g. allocating
appropriate resources per air pollutant subtype. However, incomplete, historical data for event subtypes in many
locations becomes a major data quality challenge for predicting event subtypes for all locations.
Figure 11 depicts the data quality challenge for predicting event subtypes and the proposed method, Spatial

Multi-task Deep leArning (SIMDA), to overcome the challenge. Each depicted prediction task �, � and � corre-
sponds to a geographical location � = {��, ��, �� , . . .}. Historic event data ��,� ∈ � = {1, 2, 3, . . .} and �-dimensional,
historic indicator data ��,� ∈ R

1×� for date � is available for each location � ∈ �. However, for the location ��
corresponding to task �, no event subtype � = 3 was recorded, e.g. a city in the past has not recorded ine dust
pollution (cf. Figure 11). Hence, the speciic model for task � will not predict event subtype �̂�� ,� = 3 at location
�� for � = � + �, � > 0, although the geographically close location �� in task � shows that event subtype � = 3 has
occurred. Since geographical heterogeneity across all locations does not allow for a single task approach, learning
from other locations such as �� for location �� has to be achieved diferently. Here, the irst law of geography
stating that geographically closer locations will be more similar to each other than farther locations [27] is
exploited. [49] state that two close locations �, � ∈ � have similar conditional probabilities for an event subtype � :

� (��,� = � |��,� ) ≈ � (��,� = � |� �,� )

This relationship is exploited to formulate a SIMDA objective that enforces event subtype patterns to be similar
for geographically close tasks:

LSIMDA = L� (Φ,Θ) +
�

2

�︁

�

�2
︁

�,�

∥ � (�� ) (Θ�,� − Θ�,� )
� −

1

��

�︁

�

�� � (�, �) � (�� ) (Θ�,� − Θ�,� )
� ∥22

where L� (Φ,Θ) is the general multi-task deep learning objective with � dimensions, Φ the weight parameters of
the shared hidden layer, Θ the weights of the task-speciic output layer, � a hyperparameter, � (·) the computation
of the shared hidden layers, Θ�,� the weights of task � for predicting event subtype � , �� =

∑�
� �� � (�, �) the

normalization term for location � , and �� � (·, ·) some physical distance function. Hence, [49] propose to add a
regularization term to the general multi-task deep learning objective L� (Φ,Θ) that enforces geographically
close locations �, � to have similar event subtype patterns �� (Θ�,� − Θ�,� )

� ≈ � � (Θ�,� − Θ�,� )
� . For the example as

depicted in Figure 11, this allows SIMDA to predict ine dust pollution � = 3 for location �� through task �, as the
geographically close location �� exhibits a lot of ine dust pollution.
Analogous to [49], methods that actively utilize data quality issues exploit the following semantic similarity

relationships between components of the monitored system (e.g., close locations, comparable patients etc.):
Semantic similarity based on proximity [48, 49, 163, 164], hierarchy of geographical regions [163, 164], logging
granularity of cyber system host sources [157], patient disease histories [90, 113, 134], hierarchy of medical codes
[90], hierarchy of mobile health study participants [31], individual units of engineering systems [30], feature
missingness patterns [149] and structural tweet content [162]. Exploiting semantic similarity relationships aims
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to improve the prediction while keeping the component-level granularity in the prediction model (e.g. a task for
each location). In contrast to preprocessing techniques such as imputation for missingness, these proposals make
the method aware of the data quality and base the awareness on the semantic similiarity relationships.

Since data quality issues should lead to more uncertain predictions, this requirement is related to uncertainty
quantiication. For example, [134] propose a method that abstains from predicting in case of high uncertainty of
the prediction due to missingness of data. Hence, the missingness of data has a direct impact on the prediction
in their proposed method. All in all, the link between data quality and uncertainty can be used to guide the
prediction (e.g., no prediction in case of high uncertainty due to data quality issues) or the data quality issue can
be alleviated by exploiting semantic relationships leading to more certain predictions.

4.5 Summary

Overall, EP methods broadly support the requirements for building a PCM system concerning the input and
output of the prediction method as well as its evaluation and understanding (cf. Fig. 5). Looking more closely at
the requirements support, the following observations can be made:
OB1 EP supports a selection of requirements through a combination of the prediction goal and EP method.
OB2 The number of approaches for EP has been and is steadily increasing.
OB3 None of the approaches supports all requirements; most of the approaches support one to three requirements
and at most 8 out of 15 requirements.
OB4 Approaches supporting requirements with � ≤ 0.04, 0.04 < � < 0.2 and � > 0.2 can be distinguished with
distribution patterns quite clearly, i.e., selective occurrence, plateau, and steady increase. An interpretation here
is that requirements that are already addressed, remain being addressed with increasing interest. Requirements
that have not been addressed or only in a limited way remain being addressed with low intensity.
OB5 None of the approaches supports event life cycle prediction.
OB6 Although the support of root cause analysis (RCA support) is fully met by the highest number of papers in
the article selection, other root cause related requirements are only supported by very few approaches, i.e., RCA
visualization, precise RCA, and joint RC. Hence it seems that the importance of root cause analysis is acknowledged
and addressed, but advanced root cause related requirements remain still open.
OB7 Although the existence of multiple event sources is supported by a quite high number of approaches, other
data-related requirements such as matching and data quality are only addressed by very few approaches. Hence,
it seems that the existence of multiple and possibly heterogeneous data sources is acknowledged and addressed,
but further aspects connected to the quality of data remain still open.
OB8 Predicted events without an occurrence probability (probabilistic prediction) and conidence (uncertainty
quantiication) can give a false sense of urgency to act on low probability or conidence events. It remains to be
open how the various EP methods can be advanced to account for probabilities and conidences.
OB9 Despite the importance of visualizing predicted events and root causes to the user, output visualization and
RCA visualization are only (partly) met by roughly 80 articles and 30 articles respectively. As EP is formulated
through a heterogeneous range of conceptualizations (cf. taxonomy in Figure 2 of the supp. material1), it is not
straightforward to deduce visualizations from the article’s EP method and evaluation.
OB10 Suitable evaluation metrics for an EP method are a condition for understanding the method’s qualities.
Nevertheless, probabilistic quality is only successfully addressed by less than 5% of the articles.
Overall, OB1 to OB10 point to an ongoing research efort in EP with a focus on selected requirements which

results in a rather static and fragmented research landscape. Hence, the integrative efort to combine EP methods
from diferent areas and application domains as well as taking a system perspective ofers the opportunity to
consider EP under a broader set of requirements. Observations OB1 and OB2 are understood as conirming our
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EP deinition (cf. Section 2) and the importance of EPs. Based on OB3 to OB10 , we formulate challenges and
research directions in Section 5.

5 Open Challenges and Research Directions

In order to counteract the current fragmentation in EP research, we derive open challenges from the assessment
in Section 4, in particular observations OB3 to OB10 .
C1 - Holistic Event Prediction Method

Challenge: A direct consequence of OB3 is that no EP method simultaneously meets all requirements. Hence,
selecting a single EP method leaves us with the necessity of trading of various sets of requirements with
one another. In particular, some requirements like joint RCs remain a blind spot for EP research, while other
requirements like suix prediction are still underrepresented (cf. OB4 ). The challenge is a development of future
holistic EP methods that support more or all requirements and, thus, represent the manifold nature of EP.
Moreover, the value of EP is only determined by accuracy of predicted events, as indicated by the prominent
focus of EP research on accuracy. However, many more factors determine the value of EP in the PCM system as
the assessment and related surveys emphasize [122, 161]. Aside from accuracy, the event resolution (e.g., hospital
vs. ward utilization), likelihood (i.e., probabilistic prediction in Section 4.2), conidence (i.e., event uncertainty),
prediction timeliness, event intensity (e.g., how bad is the occurrence), explainable events (e.g., root causes can
be determined) and further quality dimensions that result from the requirements in Section 3 are important.
Additionally, to what degree the event is actionable can play a signiicant role, as healthcare professionals do not
act, if a serious condition is predicted that require aggressive interventions [39].
Research direction: The challenge of developing holistic EP methods requires interdisciplinary research.
For instance, explainable events in the domain of manufacturing can be deined trough a collaboration of EP
researchers and mechanical engineers. By gradually increasing the number of researchers and application domains
in the collaboration, we may be able to push the deinition of explainable events to a generic formulation. EP
is a multi-objective endeavor and must consider the abundance of regulatory requirements on monitored
systems such as banks [45], clinics [19, 24] or manufacturing facilities [58] to deine appropriately complex

and realistic prediction goals. A promising future research avenue is to deduce amarkov decision process (MDP)
[4] from the prediction output. By meeting all requirements for optimal decision-making (cf. Section 3), the
prediction output is rich enough for constructing a MDP that models the future and its corresponding decisions
in a statistical process. Then, the multi-objective optimization problem of EP together with formalized constraints
from regulatory constraints can be combined into a goal for optimal policy synthesis [77]. As a result, EP can
beneit from the numerous solution techniques to the optimal policy synthesis problem, which asks for a
sequence of decisions that are most likely to guarantee the speciied goal given the MDP.
In general, for a holistic approach to method development, future research can either combine existing

properties from various methods into a single method, develop new solutions to the existing problems for a
single method, or combine existing methods and, thus, their properties in a generic framework. Independent
of the chosen option, a conceptual model of EP that identiies the systematic relationships between application
domains, domain knowledge, prediction goals, input data, feature engineering, prediction methods and the action
space is desirable. Such a model extends the structural system perspective on EP and its surrounding components
embodied by the PCM system (cf. Figure 3) and the methodological perspective on EP in [161] with a behavioral
and operational system perspective.
C2 - Semantics, Knowledge and Explainability

Challenge: EP aims at anticipating the future of the monitored system by means of algorithms. Monitored systems
come from a diverse range of application domains and, thus, have a diverse range of semantics. At some point in
the PCM system, the algorithms used to develop EP should take the semantics, e.g. of the event lifecycle (cf. OB5 ),
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into account. The same applies to existing domain knowledge. Aside from potentially positive efects on accuracy,
the way semantics and knowledge are taken into account determines the explainability of the method and its
generality: If the method is very abstract and generic, it is typically not explainable to the domain expert, whereas
a very concrete and domain-speciic method is typically explainable, but does not generalize. The challenge is
to shift the trade-of between explainability and generality and develop new ways to integrate semantics and
knowledge in the method for an improved explainability while maintaining generality (cf. OB6 ).
Research direction: Starting with a clear deinition of explainability for EP, e.g. is it rather a counterfactual or the
more strict causal deinition [120], and the necessary content type, communication means and target group of
the explanation [21], future research can evaluate the correctness of explanations. Explanation-guided learning
[47] demonstrates promising approaches to explainability and correctness evaluation, yet it pre-determines the
way of how the method integrates semantics and domain knowledge by stating them as explanation supervision
and regularization in the learning objective. Other or additional ways of integration could be parametrization,
feature engineering or a certain hypothesis space for explainable models. It is highly beneicial to explore various
combinations of integration and test for generality of the method such that we can improve our understanding
on how semantics and domain knowledge can be used for explainability while maintaining generality.
Since the quality of predicted events is also afected by the degree to which existing mechanistic knowledge

[161] is integrated within the prediction model, hybrid models are beneicial. Hybrid models combine expressive,
even executable models that represent the known causal relationships on a given monitored system with
the generally well-performing machine learning models [53, 121]. The result beneits from superior prediction
performance and maintains transparency. In particular, hybrid models are preferred that do not simply apply
ensemble learning-based techniques, but integrate the knowledge and rules on a more fundamental level into
the prediction model similar to physics-informed neural networks [28]. Here, EP research can catch up from
the related research stream that combines operations research with machine learning [53]. Yet, the count of EP
methods with hybrid models is decreasing (cf. Section 4.1). Nevertheless, a general framework that represents a
solution of how to integrate mechanistic knowledge across domains would be very beneicial. Since it is likely
that there exist trade-ofs between the quality dimensions, user studies on typical trade-ofs in domains or in
general help to integrate real-world needs to future research.
C3 - Flexibility and Robustness

Challenge: Considering the heterogeneity of application domains, data sources and prediction goals, EP methods
must ind a balance between lexibility and robustness (cf. OB7 and OB8 ). On the one hand, they have to be
lexible with respect to three aspects. First, domain-speciic properties and requirements (i) captures the efects of
the respective application domain and environment. For example, compare a very dynamic, clinical environment
in the healthcare domain with a particularly strong requirement on uncertainty vs. a relatively stable environment
of a standardized goods manufacturing facility with a relatively weak requirement on uncertainty. Second, the
data properties and quality issues of multiple data sources (ii) captures the efects of the available data sources,
e.g. diferent granularities of the data such as city- vs. country-level and missing data. Third, prediction goal
properties (iii) captures the efects of how the future should look like, e.g. a single, stable prediction goal such as
"treatment outcome of a patient is positive" vs. multiple, dynamic prediction goals such as the set of regulatory
constraints a bank’s business processes have to adhere to. In addition to lexibility, EP methods have to be robust
with respect to adversarial attacks and/or noisy input data [26, 72, 161], since EP in a PCM system has a direct
real-world consequence through the action that the user chooses.
Research direction: One way to deal with the lexibility challenge is to limit the scope of the method to a certain
problem space for which lexibility is not required anymore. So far, this approach dominates research on EP.
Although this approach can solve the challenge by removing it from the equation to a large extent, it results in a
very fragmented set of EP methods and transfers the challenge to the user. Future methods should abstain from
deinitions that simplify the problem in this way. For (i) domain-speciic properties and requirements and (ii)
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data properties and quality issues existing work supports the required lexibility (cf. assessment for probabilistic
prediction, uncertainty quantiication, online conceptualization, matching, multiple sources in Section 4). This
combination is promising for future work on meeting lexibility for (i) and (ii) together. While [91] called for
lexibility regarding various sets of prediction goals, lexibility for (iii) prediction goal properties is usually still
abstracted from or left unmentioned. Considering the abundance of regulatory requirements onmonitored systems
(cf. C1), EP methods that are lexible with respect to prediction goal heterogeneity are highly beneicial. Once
again, hybrid models present themselves to separate predicting future events from the subsequent matching of
prediction goals on the predicted sequence of future events [122]. As the hybrid model does not directly predict
the prediction goal, it is signiicantly more lexible towards changing goals. Yet, a more lexible EP leaves more
room for adversarial attacks. Consequently, research on lexible EP should study how these mechanisms interact
with adversarial attack models. Considering noise, methods are desirable that can reliably distinguish variances
in the input data that require lexibility from noise that should be captured as uncertainty.
C4 - User Interface

Challenge: As EP research focuses on the method and its rather technical evaluation, it often does not provide a
simple and clear user interface of relevant output (cf. OB9 ). Moreover, probabilistic predictions with uncertainty
estimates, multiple prediction goals, root causes and potential actions aggravate the challenge to present the
output in a simple and clear way to the user. Although the user interface corresponds to the output component
of a PCM system that is separated from the prediction component, the method design should already have the
subsequent user interface in mind to ease its design and implementation, e.g., by suggesting certain visualization
techniques. Lastly, some methods have started proposing the integration of prediction with decision theory
to include actions and their impact [18, 134, 148], but these are goal-dependent and domain-speciic and, thus,
cannot be easily transferred to other goals and application domains. Furthermore, [18, 134, 148] lack to provide
how the additional information should be integrated to present the output to the user.
Research direction: By adopting principles of user-centered design [56], future research should explore means of
presenting and visualizing the complex output of EP and the PCM system to the user. This challenge should not
be taken lightly, as it signiicantly determines the adoption of the method by users and may afect the user’s trust
in the system. Research that incorporates actions through a decision theoretic framework further supports the
user in deciding what to do based on the anticipated future. By allowing for parametrizing the action space (cf.
C1), future work on EP can increase the lexibility of the method (cf. C3) and enables the user in setting the action
space. The development of a comprehensive user interface for a PCM system that streamlines the relevant
information to the user and takes subsequent actions into account is key for building trust and increasing the
accessibility for users.
C5 - Evaluation

Challenge: [161] presents the evaluation design with respect to matching predicted with real events and metrics
of efectiveness for EP, but neither considers probabilistic metrics of efectiveness and other dimensions of EP
nor the performance in terms of training and prediction time. However, both are crucial for a standardized and
valuable evaluation of EP. Without suitable evaluation metrics (cf. OB10 ), we cannot ascertain how successful an
EP method is in achieving its design goals and how it compares to its peers. Besides, optimizing the prediction
model with respect to unsuitable evaluation metrics skews the method’s predicted events in the wrong direction
such that we cannot derive practically meaningful conclusions from the evaluation results. Additionally, it is not
clear to what extent evaluation metrics are linked to actual user value and currently popular evaluation metrics
fail to measure how well a visualization presents predicted events and root causes (cf. C4). Hence, the challenge is
to carefully design the evaluation, ideally, with users, and new metrics such that we can draw reliable conclusions
for the state-of-the-art and the application.
Research direction: [23] reviewed 201 probabilistic metrics of efectiveness that are candidates for EP. Both
an analysis as well as standard proposal for EP is needed. However, probabilistic metrics only account for
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the probabilistic nature of EP. To also account for the other dimensions such as event resolution, timeliness,
conidence, intensity, explainability, and lexibility (cf. C1 - C3), new metrics have to be developed that build on
the standard probabilistic metrics. One promising direction is to formalize the desired qualities like timeliness as
real-time constraints in a continuous-time logic [77]. Both evaluating the satisiability given the prediction
model and computing a likelihood for satisfaction should be achievable in a controlled experimental setting.
During the development of new metrics, interdisciplinary work is desired such that the metric design relects
perspectives from, e.g., lawyers for explainable events. The resulting new metrics can be directly applied in a
comprehensive, empirical benchmark of existing methods within comparable classes of our taxonomy for EP
methods (cf. Section B in the supp. material1). An empirical benchmark that allows for simple extension with
newly developed EP methods is beneicial to support future evaluation of methods similar to [131]. For evaluating
visualization (cf. C4) and the design of a user interface, user studies have to be carried out.

6 Conclusion, Impact, and Outlook

This work presents a comprehensive survey on EP methods spanning the disparate research areas of EP and
PPM. Taking this umbrella review approach allows to draw novel challenges and research directions from
a set of observations that we take on the result of assessing existing EP methods with an integrated set of
requirements. Moreover, taking a system perspective lifts the survey from (technical) details of single EP methods
to an integrated view in a PCM system. This system approach can be taken as blueprint to assess the realization
of real-world project that aim to apply EP for decision support. The holistic approach with a systems perspective
reveals challenges regarding the joint application of EP methods, their ability to deal with uncertainty in highly
lexible environments, the evaluation of EP quality, and the inclusion of users based on advanced root cause
analysis, visualization, and user interfaces.
This survey creates particular impact by knowledge sharing (cf. Section F in the appendix for background).

First, this work positively mediates mechanisms by means of a shared mental model and language. The PCM
approach integrates the analysed EP methods, and the assessment pertains to a shared set of requirements. Second,
this work establishes a tool for several knowledge sharing mechanisms, both for academia and organizations. The
classiication and assessment is available in our online repository and can be used for, e.g., creating instructional
material. Moreover, the survey at hand acts as a starting point to access the vast literature on EP methods in
its application domains and disparate research areas. Additionally, it gives a comprehensive, state-of-the-art
overview such that further research directions can be easily derived. For practitioners, the PCM system can
be used as a blueprint to analyze their speciic requirements; this is illustrated for two application domains in
Section 2.3 and Section E of the supp. material.
In future work, we plan for applying the PCM approach in additional application scenarios, together with

practitioners, and for conducting user studies for EP in order to validate research goals with real-world value and to
create extended datasets that, for example, include actions. Moreover, we plan to undertake interdisciplinary work
in order to overcome the complex nature of EP across domains and research areas such as law for explainability,
design for the output component and visualization, as well as decision theory for prescriptive and counterfactual
analysis.
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