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Abstract—Allocating resources to process tasks during runtime
(online) is hard. A solution method for such allocation is
required to be computationally efficient while being subjected to
uncertainties such as resources suddenly becoming (un)available.
Resource allocation problems where task processing times differ
across resources can be formalized as an assignment or parallel
machines scheduling problem. This work presents adaptations to
both problem formulations to address resource (un)availabilities.
These adaptations require a prediction model to estimate the
processing time of a task for all of its authorized resources. We
evaluate and compare the proposed adaptations with existing
allocation approaches on two process simulation models created
from an artificial and a real-life event log. Our results show that
both approaches can outperform traditional allocation strategies,
such as the shortest queue, random, round-robin, and batch-
allocation approaches.

Index Terms—Resource Allocation, Process Analytics, Process
Monitoring, Resource Unavailabilities

I. INTRODUCTION

Process automation is achieved by coordinating “that all
work is done at the right time by the right resource” [1]. To this
end, Process-Aware Information Systems (PAISs) either follow
the push-principle, i.e., the PAIS actively allocates a task to a
resource by putting the task into a resource’s worklist, or the
pull-principle, i.e., letting the resource decide which task to
execute next [2].

PAISs, which monitor the process execution and available
resources within an organization during runtime, can take
advantage of its bird’s-eye perspective for providing opera-
tional support, e.g., by predictions or recommendations. At
this, recommendations are similar to predictions but are given
with respect to one or multiple objectives, e.g., minimizing
cycle times or costs [3]. Providing optimal recommendations
with respect to one or multiple objectives can be formalized
as a stochastic (multi-objective) optimization problem, given
that the business processes’ inherent uncertainties can be
quantified. Formulating and solving such a problem directly
can be infeasible in practice for two reasons: Firstly, it is
hard to set up an optimization model that precisely resembles
reality, e.g., correctly quantifying uncertainties or considering
all factors affecting the business objectives. Secondly, because
of the computational complexity of stochastic [4] and multi-
objective [5] optimization problems. In this work, we assume a
high degree of uncertainty regarding resource availabilities. We

assume that resources can suddenly become (un)available, re-
sembling, e.g., organizations that have implemented flexitime
working policies.

Resource allocation under this assumption is difficult when
the expected processing times of tasks differ across resources:
Consider a simple scenario where the objective is to minimize
the average task completion time with a single idle resource
and one active task. Given that the expected processing time of
the available resource is overly long for the task, the question
is whether to allocate the task immediately or postpone the al-
location. Postponing the allocation can be advantageous when
another resource that is able to process the task more quickly
will soon become available, or conversely, when another task
becomes active, which the first resource can process faster than
the first task.

In this work, we present two approaches that can decide
upon a task’s arrival whether to allocate a task immediately
or to postpone its allocation: Our two approaches are adap-
tations of the formulations of two renowned combinatorial
optimization problems: the assignment problem and the par-
allel machines scheduling problem. The allocation decisions
from solving the assignment problem are short-sighted, as
only the most suitable allocations for a maximum of one
task per resource are considered. Conversely, the allocation
decisions from the parallel machines scheduling problem take
the allocations of all tasks to all resources into account, which
comes with a higher theoretical computational complexity. For
both adaptations, we introduce dummy resources, which are
no actual resources but act as placeholders representing the
choice to leave a task unallocated when no adequate resource
is available.

We prototypically implemented both approaches and evalu-
ated them against each other, and other allocation approaches
on two process simulation models discovered from event logs.
We executed our implementations on two simulation models
that differ in their degree of uncertainty; e.g., they follow
different control-flows and have different resource availabil-
ities. We then compared the allocation decisions on three
metrics, namely the average cycle time, the average time from
a process instance’s arrival until its completion, the average
resource occupation, the average proportion of resources being
occupied during their presences, and the weighted resource
fairness, the summed deviation from the mean resource occu-
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pation weighted by the resources actual presences. Our results
show that both approaches can outperform other approaches
regarding a reduced average cycle time and average resource
occupation.

In Sect. II, we introduce related approaches and discuss
similarities and differences to our two approaches. In Sect. III,
we formally describe our two resource allocation approaches.
In Sect. IV, we compare our approaches against each other
and related approaches, while Sect. V concludes this paper.

II. RELATED WORK

Most works concerning resource allocation in Business Pro-
cess Management Systems (BPMSs) have resorted to simple
rule-based allocation strategies or apply heuristics [6]. [2] have
identified three simple allocation strategies that have found
application in BPMSs, namely Round-Robin allocation (R-
RRA), Random allocation (R-RMA), and Shortest Queue First
allocation (R-SHQ).

Some works have presented offline scheduling approaches,
i.e., all information is known from the beginning: In [7]
the control-flow perspective is formalized as an Answer Set
Programming (ASP) formulation from which an ASP solver
can obtain a schedule. In [8, 9], the control-flow and resource
perspective are formalized as a timed Petri net, and solutions
are obtained from the reachability graph. However, in these
approaches, most properties are assumed to be deterministic:
Only [7] consider control-flow induced uncertainty, i.e., exclu-
sive choices, while [9] consider stochastic activity durations.
None of these approaches considers resource unavailabilities
or the emergence of new process instances.

A. Batch allocation

In contrast to offline approaches, online approaches assume
that information becomes gradually available over time, e.g.,
new tasks become active during run-time. Many of these
approaches propose batch allocation strategies, where an al-
location decision is postponed until a number of tasks have
become active [10–12]. E.g., [12] propose the k-batching
allocation strategy, where an allocation decision is postponed
until k tasks have become active. Once k tasks have become
active, the expected processing times of all tasks across the
resources are estimated. A schedule is then obtained by formu-
lating a parallel machines scheduling problem to minimize the
makespan, i.e., the total time required to finish all tasks. When
large k values are chosen, scheduling decisions are based on
more complete information, but on the other hand, choosing
large k values can lead to situations that leave resources
unnecessarily idle, e.g., when a resource has an empty worklist
and fewer than k tasks have arrived such that no allocation is
conducted.

B. Predictive allocation

In contrast to batch allocation approaches where only tasks
that have already become active are considered, [13] presents
an approach in which predicted future tasks are considered. In
their approach, they assume that process instances come with

different priorities. They formulate the allocation problem as
an assignment problem in which they consider the available
resources and the currently active and, in addition to that,
predicted upcoming tasks. Tasks that belong to a high-priority
instance incur a lower allocation cost. Thereby, predicted
upcoming tasks, e.g., from a high-priority instance, can be
allocated to a resource, leaving the resource effectively idle
until the predicted task has become active. Their approach
does not take resource unavailabilities into account: A task
might still be allocated to a resource that will take overly
long on it, even though it would be meaningful to wait with
the allocation until a better resource has become available.

C. Reinforcement learning based approaches

Other works have proposed reinforcement learning tech-
niques for learning resource allocation policies. [14] propose a
Q-learning approach. As Q-learning suffers from state explo-
sion due to the “course of dimensionality”, [14] encode only
a few parameters into the state space. Recently, some works
have promoted the use of model-free reinforcement-learning
techniques that overcome issues with the space-state explosion.
[15] use Deep Reinforcement Learning (DRL) for training an
allocation policy in the manufacturing domain. [16] present
another DRL approach in which they add the possibility of
non-allocating a task to the action space, thereby allowing
to postpone an allocation. While DRL approaches seem to
have the potential to grasp complex relationships in stochastic
environments, they depend on a process simulator for training.
Setting up such simulation models is cumbersome and remains
a challenge in practice [17].

III. ONLINE RESOURCE ALLOCATION APPROACHES

This section presents two online resource allocation ap-
proaches based on adaptations of the assignment problem
(Sect. III-A) and the parallel machines scheduling problem
(Sect. III-B). Both approaches are data-driven and only require
a reasonable estimation of how long each resource will take
for each task based on an event log. As a further assumption,
this work considers only 1:1 allocations, i.e., a task can only be
allocated to one resource, and a resource can only work on one
task at a time. Furthermore, we do not allow for preemptions,
i.e., a task’s execution can not be paused and resumed later
in time, or a task can not be reallocated to another resource
once a resource has started processing it.

Definition 1 (Tasks and resources): Let T denote the set of
active tasks, i.e., tasks that are ready to be allocated, and let
R := Ravailable ∪ Runavailable ∪ Rworking denote the set of
resources. We distinguish available resources (Ravailable) that
are idle, unavailable resources (Runavailable) that are, e.g., out-
of-office, and working resources (Rworking) that are currently
conducting a task. When a resource begins processing a task,
it is removed from Ravailable and added to Rworking , and
conversely, when it has finished the task, it is removed from
Rworking and added to Ravailable. Similarly, when a resource
becomes unavailable, it is removed from Ravailable and added
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to Runavailable, and vice-versa when it becomes available
again.

Definition 2 (Resource authorization): We define the set of
resources authorized to conduct a task t as Rauth(t) ⊆ R.

Definition 3 (Expected (remaining) processing time): We
define c : T × R 7→ R as the expected time a task t ∈ T
needs for completion when it is conducted by r ∈ Rauth(t)
and cr : R 7→ R as the time a resource r ∈ Rworking is yet
expected to need for completing its currently allocated task.

A. Adapted assignment problem

The assignment problem can be defined as follows: Given
a set of tasks TA and a set of resources RA, assigning a
task t ∈ TA to a resource r ∈ RA incurs a cost wtr. A
task can only be allocated to one resource, and a resource
can only be allocated to one task. The objective is to find an
assignment with the maximum number of tasks that minimizes
the total cost of the allocations. The problem can be solved
in polynomial time, e.g., by formulating the problem as a
minimum-cost maximum-flow problem of a bipartite graph.
The goal of the proposed adaptation of the assignment problem
is to allow the postponement of task allocation when no
suitable resource is available. To achieve this, we introduce
dummy resources. The idea is that a task can be assigned
to a dummy resource when allocating it to a real resource
instead is unsuitable, e.g., because it is expected to take all
present resources disproportionately long to conduct the task.
Hence, we define a set of dummy resources D where every
task has its corresponding dummy resource. Moreover, we
consider available and working resources for the allocations
as working resources are expected to become available again
after finishing their current tasks and the set of active tasks
for TA. Formally:

D := {d1, ..., d|TA|}
RA := Ravailable ∪Rworking ∪D

TA := T

(1)

To solve the adapted assignment problem, we formulate it
as a minimum-cost maximum-flow problem and create a flow
network as follows: Let G = (RA∪̇TA, E) be a bipartite graph
where each resource is connected to all tasks it is authorized

for via a directed edge and to one dummy resource. In Fig. 1
in the box denoted with a), we can see an example bipartite
graph with TA = {t1, t2} and RA = {rA, rB , d1, d2}. We
assume that rA is authorized to work on t1 and t2, while rB
is only authorized to work on t1, resulting in the respective
edges. For each of the two tasks, a dummy resource is added
and connected to the task.

In order to form a minimum-cost maximum-flow problem,
we i) add flow costs of an edge in the bipartite graph, i.e., the
allocation cost wtr and ii) logically add a source and a sink
vertex, and connect the source to all resource vertices RA with
zero cost edges and all task vertices TA to the sink vertex with
zero cost edges. The capacity of all edges in the flow graph G′

is 1. Solving the problem then yields the maximum number
of tasks that can be allocated for a minimal cost.

Central to the adapted assignment problem is the allocation
cost wtr for t ∈ TA, r ∈ RA, which we define as:

wtr =


c(t, r), if r ∈ (Rauth(t) ∩Ravailable)

c(t, r) + cr(r), if r ∈ (Rauth(t) ∩Rworking)

δ 1
|Rauth(t)|

∑
r∈Rauth(t)

c(t, r), if r ∈ D

(2)

The cost of allocating a task to an available resource corre-
sponds to the expected processing time c(t, r) (cf. Def. 3).
In contrast, the cost of allocating a task to working resources
corresponds to the expected remaining processing time of its
current allocation cr(r) plus the expected processing time
c(t, r). The cost of allocating a task to a dummy resource
is defined as the factorized average processing time of all
authorized resources on that task. The factor variable δ can
be chosen as a hyperparameter and plays a central role as it
impacts the likelihood that a task is allocated to its dummy
resource instead of a real resource. Informally, it states how
much faster a resource must expected to be than the average
of all resources to be considered for allocation. δ = 0.5, for
example, means that a resource must be expected to perform
a task at least twice as fast as the average of all authorized
resources, while δ = 1 means that a resource must be at least
average. Theorem 1 formulates a lower bound for an allocation
of a task to a resource based on δ.

Theorem 1 (Assignment problem dummy resource theorem):
A resource r ∈ R will never be allocated to a task t ∈ T if
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r is expected to take more than 1
δ times longer to process t

than the average of all authorized resources.
Proof 1: To proof Theorem 1 by contradiction, we assume

that allocating any task t ∈ T to a real resource r ∈ R can be a
solution in our minimum-cost maximum-flow problem. Since
|D| = |T |, and every task vertex t ∈ T is connected to exactly
one dummy resource vertex d ∈ D, and ∀d ∈ D(deg(d) = 1),
and since every resource vertex is connected to the source
vertex and every task vertex to the sink vertex and all edges
have a capacity of one, a solution to the minimum-cost
maximum-flow problem must include exactly one incoming
edge on every task vertex. Therefore, t must either be allocated
to a real resource r ∈ RA\D, or to its dummy resource d ∈ D.
As ∀d ∈ D(deg(d) = 1) holds, selecting a task’s dummy
resource does not affect the allocation cost of any other task
or resource. As the objective is to minimize the flow cost, a
resource r will only be selected when it incurs a lower cost
than selecting the dummy resource. Hence, for allocating a
resource r to a task t, wtr ≤ wtd must hold.

For a resource r that is expected to take more than 1
δ

times longer on t than the average of all authorized resources
Rauth(t), 1

δwtr > 1
|Rauth(t)|

∑
r∈Rauth(t)

c(t, r) holds. By
plugging in wtd, we get wtr > wtd, which contradicts
wtr ≤ wtd.

From Theorem 1 follows that a task will never be allocated
when only one authorized resource exists and δ < 1 is chosen.

Fig. 1 shows an example of a resource allocation with our
adaptation of the assignment problem. At time step τ = 0
shown in a) the resources R = {rA, rB} are available and the
tasks T = {t1, t2} need to be allocated. The solution to the
minimum-cost maximum-flow problem yields an allocation of
t1 to rA and of t2 to its dummy resource d2. At time step
τ = 2 the resource rC becomes available. A new allocation is
conducted. rA and rC are both expected to take 7 timesteps
to process t2, but since rA is still working, its allocation cost
is higher than that of rC . Hence, t2 is allocated to rC .

B. Adapted parallel machines scheduling problem

In the (unrelated) parallel machines scheduling problem,
a set of tasks TP are allocated to a set of resources RP to
optimize a specific objective. A classical objective is mini-
mizing the makespan, i.e., the total time required to finish
all tasks, which makes the problem NP -hard [18]. However,
Constraint Programming (CP) solvers often find near-optimal
solutions within a short time [19]. In contrast to conducting
allocations by solving the assignment problem (Sect. III-A),
where only the costs of the most suitable tasks are considered,
the parallel machines scheduling problem takes the costs from
allocating all tasks to resources into account, i.e., it has a
planning horizon.

Instead of explicitly adding dummy resources to the set of
resources, we will now add a non-allocation option to the cost
function. We define the set of resources and tasks as follows:

RP := Ravailable ∪Rworking

TP := T
(3)

The option to allocate tasks to dummy resources is imple-
mented as a decision variable Y = (y1, ..., y|TP |), i.e., yt = 1
means that the task t will be allocated to a dummy resource.
Alternatively, allocating tasks to real resources is denoted
in the decision variable X = (x1,1, ..., x|TP |,|RP |). A CP
formulation is given in Eq. 4:

min C = km + kf +
∑
t∈TP

ytcd(t) (4a)

where cd(t) = δ
1

|Rauth(t)|
∑

r∈Rauth(t)

c(t, r) (4b)

km = max({cr(r) +
∑
t∈TP

(xtrc(t, r))

: ∀r ∈ RP })

(4c)

kf =
1

|RP |
∑
r∈RP

(km

− (cr(t) +
∑
t∈TP

(xtrc(t, r))))

(4d)

subject to
∑
r∈RP

(xtr) + yt = 1 ∀t ∈ TP

(4e)
xtr = 0 ∀r ∈ RP \Rauth(t),∀t ∈ TP

(4f)
xtr, yt ∈ {0, 1} (4g)

The problem’s objective is to minimize the cost function C
and is subjected to the constraint in Eq. 4e, which ensures
that every task is either allocated to a real resource RP or its
dummy resource, and the constraint Eq. 4f, which ensures that
a task is only allocated to an authorized resource.

1) Cost functions: The cost function C consists of the
primary objective of reducing the makespan km, a secondary
fairness objective kf that aims to balance the workload of
the different resources, and the cost of allocating tasks to
their dummy resources. We added the resource fairness ob-
jective, as long-taking tasks on a resource might dominate the
makespan objective. Without the fairness objective this can
lead to several equally optimal solutions from which some
are undesirable: For example, solutions where some resources
are left completely idle while others are allocated to multiple
tasks.

In this adaptation, the δ variable no longer has the same
intuitive meaning as in the previous adaptation: A resource that
is expected to take more than 1

δ times longer on a task t than
the average of all authorized resources can still be allocated
to this task, e.g., when such an allocation will otherwise not
affect the makespan objective.

2) Task order: A solution to the problem’s formulation can
include multiple task allocations to a single resource. There-
fore, one can select the order in which the tasks are processed.
We implemented the shortest processing time first rule, i.e.,
every resource processes the task with the lowest expected
processing time first. As this maximizes the frequency at which
resources become available again, this strategy aims at creating
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numerous new allocation opportunities. This appears beneficial
in uncertain environments, where better schedules can emerge
suddenly, e.g., when a new resource becomes available.

Fig. 2 shows the resource allocations obtained using the
same setting as in Fig. 1. At time step τ = 0, resources rA
and rB are available, and t1 and t2 need to be allocated. Both
tasks are (tentatively) allocated to rA. t1 is executed first on
rA as it has a lower expected processing time. At time step
τ = 2, resource rC becomes available, which is expected to
process t2 equally fast as rA. Similar to Fig. 1, allocating t2
to rC yields a lower cost than allocating t2 to rA.

Fig. 2: Parallel machines scheduling problem’s adaptation

IV. IMPLEMENTATION AND EVALUATION

We implemented the online allocation approaches presented
in Sect. III, the approach by Park and Song [13], a k-
batching approach, as well as the simple allocation mecha-
nisms proposed in [2], namely Round-Robin allocation (R-
RRA), Random allocation (R-RMA), and Shortest Queue First
allocation (R-SHQ)1. We evaluated the approaches based on
two process simulation models.

A. Implementation

This section will describe how we implemented the predic-
tive models, the different allocation strategies, and the process
simulation models.

1) Predictive models: For all approaches that require a task
processing time prediction model, we used a fully connected
neural network pre-trained on the task processing times ob-
tained from an event consisting of three years of simulating
the business processes. The approach from [13] additionally
requires a next-task prediction, for which we used the same
probabilistic model as in the process simulation.

1Prototype in Python available at https://github.com/ltsstar/BPM Resource
Allocation

2) Assignment problem’s adaptation: We used the scipy2

library to solve our adaptation of the assignment problem. The
scipy library has implemented a modified variant of the Jonker-
Volgenant algorithm, which has a worst-case time complexity
of O(N3) where N = max(TA, RA) [20]. In benchmarks, the
algorithm has been shown to yield results for large settings,
e.g., N = max(1000, 500) within milliseconds (c.f. [20]).

3) Parallel machines scheduling problem’s adaption: We
solved the CP formulation of our parallel machines scheduling
problem using the CP solver from Google OR tools3 (v9.8).
Since the problem is NP -hard, finding optimal solutions is
often not computationally feasible. However, the used CP
solver was able to find most of the time near-optimal solutions
within less than a second. Therefore, we limit the computation
time for obtaining a solution to 2 seconds. In rare cases, the
2 seconds time limit was insufficient for finding solutions that
are at least equally good as solutions obtained from a greedy
scheduling approach. For these cases, we resorted to a backup
solution, namely finding an allocation obtained by applying
our adaptation of the assignment problem.

4) K-Batching [12]: For comparison to our approaches,
we implemented k-batching. Since the approach from [12]
does not consider resource unavailabilities, we implemented
the approach as follows: An allocation is postponed until k
tasks have arrived. Then, the task processing times are ob-
tained across all resources, and a parallel machines scheduling
problem is solved for which the k tasks and all available and
working resources are considered. Every task assigned to a
resource is then added to a resources worklist. When a resource
becomes unavailable, all tasks on its worklist are transferred
back to the set of unassigned tasks.

5) Park & Song’s approach [13]: We also implemented
[13] by adding the most likely next task for every process
instance to the set of allocatable tasks. The cost for these
expected next tasks was set, in line with [13], as the expected
remaining time of their preceding tasks plus their expected ex-
ecution times on the respective resource. All process instances
were given the same priority in our implementation.

6) Process simulation: The implemented approaches are
compared based on process simulation. We created two simu-
lation models, which were (partly) discovered from event logs.
For both simulation models, the control-flow perspective was
discovered as a frequency directly follows graph. The instance
arrival times were simulated from gamma distributions fitted
on the respective event logs.

The first event log used for creating a process simulator was
the synthetic purchasing-example (PE-X) event log, which is
part of academic material provided by Fluxicon4. To demon-
strate our approach on this dataset, we manually specified
some properties of this simulation model: First, since the
total number of resources conducting tasks in a timeframe,
e.g. in each hour of a day, has shown to be near constant in

2https://scipy.org/
3https://github.com/google/or-tools
4https://fluxicon.com/academic/material/
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this dataset, we added a synthetic resource availability profile
that is supposed to resemble real-world resource availabilities:
Resources are only available during working days, at which
the number of available resources grows in the early morning
hours and starts declining in the afternoon. Second, the pro-
cessing times of tasks have also shown to be similar across
resources. Hence, we defined task-resource processing times
to randomly follow one from five normal distributions with
means between 30 min and 6 hours. The second event log
used was the BPIC-20175 real-world event log from a loan
application process in a Dutch financial institute. A recurring
biweekly resource availability pattern was obtained from the
event log and used in the process simulation. The processing
times were estimated from a pre-trained fully connected neural
network. To account for variability in the simulation, we added
normally distributed random errors to the processing times.

B. Evaluation

We compared the implemented approaches on three metrics,
namely the average cycle time, the mean time from a process
instance’s arrival until its completion, which is a typical perfor-
mance metric (c.f. [3]), and two resources related metrics: The
average resource occupation, defined as the mean proportion
of time that resources are working during their presence, and

5https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

the weighted resource fairness, calculated as the total deviation
from the mean resource occupation, weighted by the resources’
actual presence (c.f. [21]). In this work, we consider low values
in all metrics as desirable.

1) Impact of the δ parameter: We first evaluated whether a
chosen δ value impacts the metrics in our adaptations. Based
on the intuitive meaning of the δ parameter in the assignment
problem’s adaptation, we conducted simulations with δ-values
in the range (0.9, 2) for both adaptations. Fig. 3 shows the
effects of the δ parameter on the three evaluated metrics on
both simulation models. The results show that the chosen δ
parameter impacts the evaluated metrics in both adaptations
and simulation models.

In the assignment problem’s adaptation, the PE-X simula-
tion shows a sudden change in all metrics when the δ value
exceeds 1. This sudden change might be explained due to the
simpler properties of the PE-X simulation model: First, the
task durations follow only one of five normal distributions,
and second, the PE-X simulation model is only concerned
with 27 resources in total. In contrast, the processing times
in the BPIC-2017 simulation model are obtained from a more
complex model and the simulation consists of more resources
(114).

As higher δ-values increase the cost of allocating a task to
a dummy resource, and thereby, increase the likelihood that
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Fig. 3: Impact of the δ parameter
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(b) BPIC-2017 simulation

Fig. 4: Comparison of different approaches (PMSP: parallel machines scheduling problem’s adaptation, AP: assignment problem’s adaptation)

a task is allocated to a less adequate resource, we expected
larger δ-values to positively correlate with the average cycle
time and average resource occupation metrics. We can see
such a correlation for the task assignment problem’s adaptation
and the BPIC-2017 simulation. No correlation can be seen for
both metrics in the PE-X simulation and the parallel machines
scheduling problem’s adaptation. The extent of evaluated δ-
values might not have been sufficient to capture a correlation
in the parallel machines scheduling problem’s adaptation and
for the PE-X dataset.

2) Comparison to other approaches: Based on the findings
from Fig. 3, we selected for the BPIC-2017 simulation δ = 1.4
for the assignment problems’s adaptation and δ = 2.0 for
the parallel machines scheduling problem’s adaptation. For
the PE-X simulation, we selected δ = 1.1 for the assignment
problem’s adaptation and δ = 0.9 for the parallel machines
scheduling problem’s adaptation for further comparison to
other approaches. Similarly, we selected the best k values with
respect to the average cycle time metric for the k-batching
approach with k = 9 for the PE-X simulation and k = 8 for
the BPIC-2017 simulation, respectively. We ran 10 simulations
for every resource allocation approach. The results are shown
in Fig. 4.

The results show that the approach from [13] and our
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Fig. 5: Comparison between our approaches and [13]

7



approaches achieve the best average cycle times, followed by
k-batching and the simple allocation approaches. For better
readability, Fig. 5 provides a comparison of the average cycle
time metric between our approaches and [13]. In the PE-X
simulation, our adaptation of the assignment problem incurs
overall the lowest average cycle time, resource occupation,
and weighted resource fairness values, followed by [13]. In the
BPIC-2017 simulation, the adaptation of the parallel machines
scheduling problem incurs the best average cycle times, but at
a higher resource occupation than [13].

Compared to [13], our approaches perform better on the
BPIC-2017 simulation. That might be due to a higher control-
flow uncertainty in the BPIC-2017 simulation model: While
activities in the PE-X process model often occur sequentially,
the BPIC-2017 simulation model possesses more randomness
in the order of activities.

As [13] bases allocation decisions on the next tasks, a higher
control-flow uncertainty will likely reduce the allocation qual-
ities from their approach. This indicates that our approach is
especially well-suited for scenarios with a high control-flow
uncertainty.

V. CONCLUSION

In this work, we presented adaptations of the assignment
and parallel machines scheduling problem to address the prob-
lem of uncertainty due to (un)availability of resources during
runtime. Based on the introduction of dummy resources, our
approaches can postpone allocations when no suitable resource
for processing a task is available. Both approaches can directly
be applied in PAISs without the need for previous training on
complicated simulation models as long as the tasks’ processing
times can be estimated. Our evaluations on two business
process simulation models, which aim to resemble realistic
business processes, show that our approaches can outperform
other resource allocation approaches. Our approaches seem
to be especially well-suited when upcoming tasks are hard
to predict. Our evaluation shows that the δ hyperparameter
impacts performance metrics. Due to the computational ex-
penses that come with simulation, we scanned only a range
of hyperparameter values. Especially for our adaptation of
the parallel machines scheduling problem, it remains unclear
whether even better results could have been achieved by
choosing other values. Future work will consider allocations
of multiple resources to one task and resources working on
multiple tasks. Moreover, we plan to apply search techniques,
e.g. simulated annealing, for hyperparameter optimization.
Furthermore, we plan to exploit control-flow information and
evaluate the approaches in real-world scenarios.
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