
Information Systems 101 (2021) 101439

a

b

c

t
i
p
r
m
t
e

A

s
(

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Formal foundations for responsible application integration
Daniel Ritter a,b,∗, Stefanie Rinderle-Ma b, Marco Montali c, Andrey Rivkin c

SAP, Technology and Innovation, Germany
University of Vienna, Faculty of Computer Science, Austria
Free University of Bozen-Bolzano, Faculty of Computer Science, Italy

a r t i c l e i n f o

Article history:
Received 14 March 2019
Received in revised form 13 July 2019
Accepted 10 September 2019
Available online 18 September 2019
Recommended by Gottfried Vossen

Keywords:
Enterprise application integration
Enterprise integration patterns
Petri nets
Responsible programming
Trustworthy application integration

a b s t r a c t

Enterprise Application Integration (EAI) constitutes the cornerstone in enterprise IT landscapes that
are characterized by heterogeneity and distribution. Starting from established Enterprise Integration
Patterns (EIPs) such as Content-based Router and Aggregator, EIP compositions are built to describe,
implement, and execute integration scenarios. The EIPs and their compositions must be correct at
design and runtime in order to avoid functional errors or incomplete functionalities. However, current
EAI system vendors use many of the EIPs as part of their proprietary integration scenario modeling
languages that are not grounded on any formalism. This renders correctness guarantees for EIPs and
their composition impossible. Thus this work advocates responsible EAI based on the formalization,
implementation, and correctness of EIPs. For this, requirements on an EIP formalization are collected
and based on these requirements an extension of db-net, i.e., timed db-net, is proposed, fully equipped
with execution semantics. It is shown how EIPs can be realized based on timed db-nets and how the
correctness of these realizations can be shown. Moreover, the simulation of EIP realizations based
on timed db-nets is enabled which is essential for later implementation. The concepts are evaluated
in many ways, including a proof-of-concept implementation and case studies. The EIP formalization
based on timed db-nets constitutes the first step towards responsible EAI.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the growing number of cloud and mobile applications,
he importance of Enterprise Application Integration (EAI) [1] has
mmensely increased. Integration scenarios — essentially com-
ositions of Enterprise Integration Patterns (EIPs) [2] and their
ecent extensions [3–6] — describe typical concepts in designing
essaging systems as used for EAI (e.g., the communication be-

ween these applications). Due to the increasing heterogeneity of
ndpoints and their distribution, trust into productive integration

solutions becomes even more essential. This, in turn, requires
to provide means for a responsible development of integration
solutions (cf. “responsible programming” [7]) in order to avoid
design flaws such as functional errors or incomplete functionality,
starting with the EIPs.

Similar to Cerf [7] we say that users who define integration
solutions should have a clear sense of responsibility for their
reliable operation as well as their resistance to compromise and
error. This implies that the integration logic can only be trusted

∗ Corresponding author at: University of Vienna, Faculty of Computer Science,
ustria.

E-mail addresses: danielr81@unet.univie.ac.at (D. Ritter),
tefanie.rinderle-ma@univie.ac.at (S. Rinderle-Ma), montali@inf.unibz.it
M. Montali), rivkin@inf.unibz.it (A. Rivkin).
ttps://doi.org/10.1016/j.is.2019.101439
306-4379/© 2019 The Author(s). Published by Elsevier Ltd. This is an open access a
if, in principle, it is possible to prove that it behaves correctly. In
turn, this means that users should be able to express and specify
what their integration solution should do. We call a method that
takes this into account a responsible development of integration
solutions. The main properties of this principle are a formal
treatment of integration patterns (i.e., their formalization within
a framework with clearly defined syntax and semantics, and that
supports formal analysis of its models), simulation and validation.
We conjecture that this will become one of the key principles for
the development in shared responsibility environments like cloud
or mobile computing. Moreover, it will constitute the foundation
for functionally correct compositions and correctness-preserving
improvements (e.g., optimizations).

Contemporary EAI system vendors use many of the EIPs as part
of their proprietary integration scenario modeling languages [3].
However, these languages are not grounded on any formalism
and, hence, may produce models that are subject to the design
flaws mentioned above. Due to the missing formal definition,
currently the detection and analysis of these flaws are by large
performed manually. This results in system engineers putting
in huge effort that may potentially lead to mistakes. Hence,
nowadays, EIPs should be regarded as a set of informal design
solutions rather than a collection of models produced by a formal
language and whose correctness can be verified, thus leaving
the EAI vendors with their own proprietary semantics and not
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.is.2019.101439
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2019.101439&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:danielr81@unet.univie.ac.at
mailto:stefanie.rinderle-ma@univie.ac.at
mailto:montali@inf.unibz.it
mailto:rivkin@inf.unibz.it
https://doi.org/10.1016/j.is.2019.101439
http://creativecommons.org/licenses/by/4.0/

2 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439

a
i
u
a
f
t
t
t

i
f
i
f
d
(
d
m
p

D

I

C

r
t
E

c
b
s
T
c
t
q
c
i
m
t
a
c
a
a
(
(
s
i
e
i
m
s
s
r
m

e
c
i
t
p
t

o

Fig. 1. Responsible pattern formalization process.

llowing for a responsible development. Our recent survey [3]
dentified a first attempt towards formalization of some EIPs
sing colored Petri nets (CPNs) [8]. Although the CPN colors
bstractly account for data types, and CPNs support the control
low through control threads (i.e., tokens) progressing through
he net, carrying data conforming to colors, they cannot be used
o model, query, update, and reason on requirements inherent to
he extended EIPs [2–6] such as persistent data or timings.

To overcome these limitations, a responsible development of
ntegration solutions, i.e., solutions that can be thoroughly tested
or their correctness at design time, requires the formalization of
ts pattern foundations. Therefore we adopt a responsible pattern
ormalization process that covers the following objectives: (i)
efining the execution sematnics of EIPs and (ii) their realization,
iii) simulation of the EIP realizations as well as (iv) their vali-
ation and verification. Fig. 1 shows this process with its three
ain steps that we subsequently discuss: pattern formalization,
attern implementation, pattern correctness.

efinition The definition of a pattern starts with capturing and
specifying its semantics. With a thorough understanding
of the pattern and its variations, it can be formally repre-
sented. The resulting formal pattern model can be analyzed
and verified (i.e., model checking). With model checking
capabilities, errors in patterns can be found and either their
semantics or formal representation is revisited.

mplementations If model checking is not possible or difficult, the
formal patterns can be implemented, configured and sim-
ulated in a suitable tool. The simulation not only bridges
the implementation gap, but allows for an experimental
validation of a pattern.

orrectness The correctness of a pattern can be decided according
to its semantics, when put into the context of a dedicated,
scenario-specific configuration, and a test design, which
specifies the desired properties like the expected output
of a pattern simulation, for a given input. This test design
is instantiated and checked during the simulation of the
pattern. Any flaws found during this step can result into
another round of formal or implementation adjustments.

We argue that existing approaches do not fully support a
esponsible development and hence the following research ques-
ions are formulated to guide the design and development of an
IP formalization process living up to objectives (i)–(iv):

Q1 Which EAI requirements are relevant for the formal defi-
nition of EIPs? To which extent are they met by existing
approaches?
 b
Q2 How to design an EIP formalization to meet relevant EAI
requirements and objectives (i)–(iv)?

Q3 How to realize the EIPs and real-world integration scenar-
ios?

Q4 How to accomplish correctness testing and simulation of
EIP realizations?

The conference paper [9] that is extended in this work has
provided the foundations for Q1–Q2 (and partially Q3). The for-
malization of EIPs is based on db-nets [10] as a database-centric
extension of CPNs (with atomic transactions). In [9], db-nets have
been extended by EAI requirements such as time, resulting in so
called timed db-nets. It has been shown that with timed db-nets
a responsible development of integration solutions becomes pos-
sible. The following example leverages timed db-nets, illustrating
selected EIPs and their requirements on a formalization.

Example 1. A commonly used stateful Aggregator pattern [2]
is designed to combine a number of input messages into a single
output message. In the stateful version, the aggregator also stores
collected messages in a persistent storage. The messages can be
collected according to a Message Sequence [2], which identifies a
group of coherent messages. Fig. 2 shows how the stateful aggre-
gator pattern can be represented using timed db-nets. While the
formal aspects will be specified throughout this work (e.g., data,
queries, actions, transactions, time), the aggregator’s semantics is
subsequently described in timed db-net terms.

The aggregator starts with a number of input messages in its
input channel that is represented with a place chin. Every message
onsists of a unique message identifier msg and an information
lock data, and will be eventually put into the database (cf. DB
chema in Fig. 2 for more detailed database schema description).
o collect messages from the input channel and assign them to
orrect sequences, the net correlates every incoming (msg, data)
oken to those in place chp, that, in turn, stores pairs of se-
uences seq and lists of messages msgs that have been already
ollected and stored in the persistence storage.1 If the message
s the first in a sequence, new entries, one containing infor-
ation about the message and another containing data about

he referenced sequence, are added to tables called Messages
nd Sequences, respectively. This is achieved by checking guard
ondition isFirst(msg,msgs) = true attached to transition T1,
nd, if the condition holds, by firing that transition and executing
ction CreateSeq attached to it. The firing of T1 also starts a timer
cf. chtimer) that in 30 time units can expire the sequence status
this is done by firing transition T3 that changes the sequence
tatus in table Sequences to expired). If a message is not new
n a sequence, then it is inserted into Messages by firing T2 and
xecuting UpdateSeq (see a more detailed definition of updates
n the Actions block in Fig. 2). However, the update by UpdateSeq
ay fail if a message is already in the database or a referenced
equence has already been aggregated due to a timeout (i.e.,
tatus is expired). In this case the net switches to an alternative
oll-back flow (a directed arc from T2 to chin) and puts the
essage back to the input message channel chin.
The aggregation of a sequence of messages happens based

ither on the completion condition (i.e., the sequence status is
omplete) or on time-out of 30 time units (i.e., sequence status
s expired), and is realized by firing transition Aggregate. Since
he sequence completion logic is defined depending on a specific
attern application scenario, we use a subnet (a cloud element in
he Net block of Fig. 2) denoting a configurable part of the model.

1 To be more precise, chp is a special place that can be understood as a view
ver the database defined by a query Qmsgs (cf. Queries in Fig. 2) and that can
e accessed only by reading tokens from it.

D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439 3
Fig. 2. Aggregator pattern variant as a timed db-net.
Note that the logic must always be realized in the designated sub-
net since we explicitly guard it with transition T4 that executes
an update (using action Complete) changing a given sequence
state. ■

In this work we first devise a collection of EAI requirements
on the EIP formalization process including a comprehensive as-
sessment and elaboration on the selection of existing approaches,
i.e., Petri nets (↦→ Q1). Based on this, a formalism of db-nets
is selected and equipped with missing EAI requirements, most
prominently time, resulting in timed db-nets (↦→ Q2). The exten-
sion also includes a study of suitable time formalisms (including
the one we have chosen). The verification of reachability for
timed db-nets is shown to be decidable based on an elaborated
proof sketch. Next, an instructive catalog of pattern realizations
is provided (↦→ Q3). It is shown how to test the correctness of
various formal EIP realizations based on their execution traces
(↦→ Q4). Finally, a prototypical implementation on top of CPN
Tools [11] is used to develop a concept to experimentally test the
correctness of EIPs realised in timed db-net.

The contributions to research questions Qx are elaborated fol-
lowing the principles of the design science research methodology
described in [12]: “Activity 1: Problem identification and moti-
vation” is based on literature and assessment of vendor-driven
solutions (e.g., [3]) as well as on the harvested EAI require-
ments (i.e., existing catalogs with 166 integration patterns) in
a quantitative analysis (cf. Q1). “Activity 2: Define the objectives
for a solution” is addressed by formulating objectives (i)–(iv). For
“Activity 3: Design and development” several artifacts are created
to answer questions Q1–Q4 and meet objectives (i)–(iv), including
the formalism for EIPs, the catalog of realizations of EIP formal-

izations, and the foundations for correctness testing. “Activity 4:
Demonstration” and “Activity 5: Evaluation” are conducted based
on a prototypical implementation and case studies.

The paper is structured as follows. In Section 2, pattern re-
quirements are harvested from literature. The formalism for EIPs
timed db-nets is presented in Section 3. An instructive catalog
of formalized patterns is provided in Section 4. The foundations
for correctness testing are lied in Section 5. In Section 6, we
elaborate on the comprehensiveness of the formalism in a quan-
titative study, show a prototypical db-net realization for testing
correctness, and discuss the general applicability of PNs and,
in particular, timed db-nets for the composition of integration
patterns in a real-world example. We conclude by discussing
related work in Section 7 and outlining the main results and
future research directions in Section 8.

2. Formalization requirements analysis

In this section, we collect the EAI requirements relevant for
the formalization of the EIPs by analyzing the existing pattern
catalogs [2–6] (cf. Q1). Then we briefly discuss which of them
can be represented by the means of CPNs or db-nets, and which
require further extensions.

2.1. Pattern analysis and categories

The EIP formalization requirements are derived by an analysis
of the pattern descriptions based on the integration pattern cat-
alogs from 2004 [2] (as original) and recent extensions [3–6]
(as extended) that consider emerging EAI scenarios (e.g., cloud,
mobile and internet of things). Together, the catalogs describe
166 integration patterns, of which we consider 139 due to their
relevance for this work (e.g., excluding abstract concepts like

4 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439

R
r
o
a
a
a
o
M
a
r
t
c
T
a
t
T

2

f
b
r
c
c
f
o
B
a

a
C
m
2
d
(
t
f

Fig. 3. EIP requirement categories (with Control (Crtl.), Resource (Res.), Transaction (Tx.)).
T
F

r

Canonical Data Model [2] or Messaging System [2]). During the
analysis, we manually collected characteristics from the textual
pattern descriptions (e.g., data, time) and created new categories,
if not existent.

The reoccurring characteristics found in this work allow for
a categorization of patterns, as summarized in Fig. 3, to sys-
tematically pinpoint relevant EAI requirements into general cate-
gories (with more than one pattern). Most of the patterns require
(combinations of) Data flow, Control (Crtl.) flow, and (Transacted)
esource ((Tx.) Res.) access. While the control flow denotes the
outing of a message from pattern to pattern via channels (i.e.,
rdered execution), the data flow describes the access of the
ctual message by patterns (including message content, headers,
ttachments). Notably, most of the patterns can be classified
s control (Crtl.-only; e.g., Wire Tap [2]) and data only (Data-
nly; e.g., Splitter [2]) or as their combination (Data-Crtl.; e.g.,
essage Filter [2]), which stresses on the importance of data-
spects of the routing and transformation patterns. In addition,
esources denote data from an external service that are not in
he message (e.g., Data Store [3]). The EIP extensions add new
ategories like combinations of data and {time, resources} (Data-
ime like Message Expiration [2,3], Data-Res. like Encryptor [3])
nd control and time (Crtl.-Time; e.g., Throttler [3]). For instance,
he motivating example in Fig. 2 is classified as Data-Tx.-Res.-Time.
he different categories are disjoint with respect to patterns.

.2. From categories to requirements

We assume that the control requirement REQ-0 “Control
low” is inherently covered by any PN approach, and thus it is
y CPN and db-net. However, there are two particularities in the
outing patterns that we capture in requirement REQ-1 “Msg.
hannel priority, order”: (a) the ordered evaluation of Msg.
hannel conditions or guards of sibling PN transitions, required
or the Content-based Router pattern, (b) the enablement or firing
f a PN transition according to a ratio for the realization of a Load
alancer [3]. In both cases, neither execution priorities nor ratios
re trivially covered by CPNs or db-nets.
Furthermore, there are 77 patterns in the catalogs with data

nd 10 with message format aspects, which require an expressive
PN token representation (e.g., for encodings, security, complex
essage protocols), for which we add a second requirement REQ-
“Data, format” that has to allow for the formal analysis of the
ata. Although CPNs and db-nets have to be severely restricted
e.g., finite color domains, pre-defined number of elements) for
hat, db-nets promise a relational representation that can be
ormally analyzed [10].
able 1
ormalization requirements (covered

√
, partially (

√
), not –).

ID Requirement CPN db-net

REQ-0 Control flow (pipes and filter)
√ √

REQ-1 (a) Msg. channel priority (
√
) (

√
)

(b) Msg. channel distribution – (
√
)

REQ-2 Data, format including message protocol with
encoding, security

(
√
)

√

REQ-3 (a) Timeout on message, operation – –
(b) Expiry date on message – –
(c) Delay of message, operation – –
(d) Msg./time ratio – –

REQ-4 (a) CRUD operations on (external) resources –
√

(b) Transaction semantics on (external)
resources (incl. roll-back)

–
√

REQ-5 Exceptions, compensation similar to roll-back
in REQ-4

–
√

We capture the 11 patterns with time-related requirements
as REQ-3 “time”: (a) Timeout: numerical representation of fixed,
relative time (i.e., no global time); (b) Expiry date: discrete point
in time according to a global time (i.e., based on existing message
content); (c) Delay: numerical, fixed time value to wait or pause
until continued (e.g., often used in a redelivery policy); (d) Mes-
sage/time ratio: number of messages that are sent during a period
of time. Consequently, a quantified, fixed time delay or duration
semantics is required.

The 49 patterns with resources REQ-4 “(external) Resources”
equire: (a) create, retrieve, update and delete (CRUD) access to
external services or resources, and (b) transactional semantics on
a pattern level. Similarly, exception semantics are present in 28
patterns as REQ-5 “Exceptions”, which require compensations
and other post-error actions. Consequently, a PN definition that
allows for reasoning over time aspects and structured (persistent)
data access is required.

2.3. Requirements summary

Table 1 summarizes the formalization requirements for timed
db-nets by setting the coverage of the CPN [8] and db-net [10]
approaches into context. While CPNs provide a solid foundation
for control (cf. REQ-0) and a simple data flow representation
(cf. REQ-2), db-nets extend it towards more complex data struc-
tures — message protocols in our case (cf. REQ2), and add CRUD
operations (cf. REQ-4(a)), transactional semantics (cf. REQ-4(b)),
and exception handling (cf. REQ-5), suitable for working with
external, transactional resources. In CPNs, message channel dis-
tributions cannot be represented and priorities require explicit
modeling, leading to complex models. In this work we build

D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439 5

u
i
(
p
i

3

e
t
f

3

m
t
d
P
t
t
t
n

c
t
g
a
g
D
c
t
n
f
(
t
d
w
r
m
t
o
o

d

d
t
c
s
s

d

D

m
o
t
t
u
i
m
d
f
f
o
F
t
c
t
t
O
u
W
o

t

Fig. 4. The conceptual components of db-nets.
Source: From [10].

pon the CPN approach by subsequently defining timed db-nets
n Section 3 for the time-related requirements (cf. REQ-3(a)–
d)) and provide (less complex) realizations for message channel
riority execution (cf. REQ-1(a)) and load balancing (cf. REQ-4(b))
n Section 4.

. Integration pattern formalization

We recall the main characteristics of db-nets [10], and then
xtend them with temporal features, obtaining a formalism called
imed db-nets. We then show how decidability results on the
ormal analysis of db-nets can be lifted to timed db-nets (cf. Q2).

.1. The db-net Framework

When facing the problem of formalizing multi-perspective
odels that suitably account for the dynamics of a system (i.e.,

he process perspective) and how it interacts with data (i.e., the
ata perspective), several design choices can be made. In the
etri net tradition, the vast majority of formal models striving for
his integration approaches the problem by enriching execution
hreads (i.e., tokens) with complex data. Notable examples within
his tradition are data nets [13] and ν-nets [14], Petri nets with
ested terms [15], nested relations [16], and XML documents [17].
While all of the approaches treat data subsidiary to the

ontrol-flow dimension, the EIPs require data elements attached
o tokens being connected to each other by explicitly represented
lobal data models (cf. Section 2). Consequently, they do not
llow for reasoning on persistent, relational data such as tree or
raph structured message formats [18].
b-net. The recently proposed framework of db-nets [10] aims at
onceptually establishing this connection through a formal model
hat consists of three layers (cf. Fig. 4). On the one hand, a db-
et separately represents a persistence storage (constituted by a
ull-fledged relational database with constraints) and a control
captured as a CPN with additional, specific constructs) flow. On
he other hand, it explicitly handles their interplay through a
ata logic intermediate layer, which provides the control layer
ith queries and database operations (such as trigger, update,
ead, bind). Updates are transactional, that is, are only com-
itted if the resulting instance of the persistence layer satisfies

he database constraints. The control layer is informed about the
utcome of an update, and can consequently compensate in case
f a roll-back.
We select db-nets (see Definition 2) as a foundation of timed

b-nets for three main reasons: (i) ability to represent relational
ata (cf. REQ-2: “data”, “format”); (ii) built-in support for transac-
ional CRUD operations (cf. REQ-4); (iii) exception handling and a
orresponding compensation mechanism (cf. REQ-5). In addition,
ince db-nets are based on CPNs, it is possible to lift existing
imulation techniques from CPNs to db-nets [10].
In the remainder of this section, we recall the definition of a

b-net and its execution semantics.

efinition 2 ([10]). A db-net is a tuple ⟨D,P,L,N ⟩, where:

• D is a type domain — a finite set of data types, each of the
form D = ⟨∆D, ΓD⟩, where ∆D is the value domain of D, and
ΓD is a set of domain-specific (rigid) predicates.

• P is a D-typed persistence layer, i.e., a pair ⟨R, E⟩, where
R is a D-typed database schema, and E is a finite set of
first-order FO(D) constraints over R.2

• L is a D-typed data logic layer over P , i.e., a pair ⟨Q , A⟩,
where Q is a finite set of FO(D) queries over P , and A is a
finite set of actions over P . Each action in A is parameterized,
and uses its parameters to express a series of insertions and
deletions over P .

• N is a D-typed control layer L, i.e., a tuple (P, T , Fin,
Fout , color, query, guard, act), where:

– P = Pc ∪ Pv is a finite set of places partitioned into
control places Pc and so-called view places Pv ,

– T is a finite set of transitions,
– Fin is an input flow from P to T
– Fout and Frb are respectively an output and rollback flow

from T to Pc
– color is a color assignment over P (mapping P to a

cartesian product of data types),
– query is a query assignment from Pv to Q (mapping

the results of Q as tokens of Pv),
– guard is a transition guard assignment over T (map-

ping each transition to a formula over its input inscrip-
tions), and

– act is an action assignment from T to A (mapping
some transitions to actions triggering updates over the
persistence layer). ■

Input and output/roll-back flows contain inscriptions that
atch the components of colored tokens present in the input and
utput/roll-back places of a transition. Such inscriptions consist of
uples of (typed) variables, which then can be mentioned in the
ransition guard as well as in the action assignment (to bind the
pdates induced by the action to the values chosen to match the
nscriptions), and also, in case of the output flow, the inscriptions
ay contain rigid predicates. Specifically, given a transition t , we
enote by InVars(t) the set of variables mentioned in its input
lows, by OutVars(t) the set of variables mentioned in its output
lows, and by Vars(t) = InVars(t) ∪ OutVars(t) the set of variables
ccurring in the action assignment of t (if any). Fresh variables
reshVars(t) = OutVars(t)\InVars(t) denote those output variables
hat do not match any corresponding input variables, and are
onsequently interpreted as external inputs. While input inscrip-
ions are used to match tokens from the input places to InVars(t),
he output expressions that involve rigid predicates operate over
utVars(t). In case of numerical types, these expressions can be
sed to compare values, or to arithmetically operate over them.
e call plain a db-net that employs matching output inscriptions
nly (i.e., does not use expressions).
Intuitively, each view place is used to expose a portion of

he persistence layer in the control layer, so that each token

2 These constraints capture typical database constraints such as key and
foreign key dependencies.

6 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439

t
t
v
c
m
t
q

d
f
a

D
⟨

a

m
i
c
b
F
a

D
N
t
σ
i
o
F
F

a

c
t
c
s
a
e
s
c

E
c

t

represents one of the answers produced by the query attached
to the place. Such tokens are not directly consumed, but only
read by transitions, so as to match the input inscriptions with
query answers. A transition in the control layer may bind its input
inscriptions to the parameters of data logic action attached to the
transition itself, thus providing a mechanism to trigger a database
update upon transition firing (and consequently indirectly change
also the content of view places). If the induced update commits
correctly, the transition emits tokens through its output arcs,
whereas if the update rolls back, the transition emits tokens
through its rollback arcs.

The terms message and (db-net, CPN) token will be used
synonymously hereinafter.
Db-net execution semantics. We briefly recall the execution
semantics of db-nets. A state of a db-net captures at once a state
of the persistence layer (i.e., an instance of the database), and
that of the control layer (i.e., a net marking, where the content
of view places must be compatible with that of the database
instance). More technically, in each moment (called snapshot)
he persistence layer is associated to a database instance I , and
he control layer is associated to a marking m aligned with I
ia query (for what concerns the content of view places). The
orresponding snapshot is then simply the pair ⟨I,m⟩. Tokens in
have to carry data compatible with the color of the places and

he marking of a view place Pv must correspond to the associated
ueries over the underlying database instance.
Similar to CPNs, the firing of a transition t in a snapshot is

efined by a binding that maps the value domains of the dif-
erent layers, if several properties are guaranteed, e.g., the guard
ttached to t is satisfied. More specifically, we have the following.

efinition 3 (Transition Enablement [10]). Let B be a db-net
D,P,L,N , ⟩, and t a transition in N . Let σ be a binding for t , i.e.,
a substitution σ : Vars(t) → ∆D.3 A transition t ∈ T is enabled in
B-snapshot ⟨I,m⟩ with binding σ , if:

• For every place p ∈ P , m(p) provides enough tokens match-
ing those required by inscription w = Fin(⟨p, t⟩), once w is
grounded by σ , i.e., σ (w) ⊆ m(p);

• the guard guard(t)σ evaluates to true;
• σ is injective over FreshVars(t), thus guaranteeing that fresh

variables are assigned to pairwise distinct values of σ , and
for every fresh variable v ∈ FreshVars(t), σ (v) ̸∈

(Adomtype(v)(I) ∪ Adomtype(v)(m)).4 ■

Firing an enabled transition has the following effects: (i) all
atching tokens in control places Pc are consumed; (ii) the action

nstance action — induced by the firing — is applied on the
urrent database instance in an atomic transaction (and rolled
ack, if not successful); (iii) accordingly, tokens on output places
out or rollback places Frb (i.e., those connected via rollback flow)
re produced. Technically, we have the following.

efinition 4 (Transition Firing [10]). Let B be a db-net ⟨D,P,L,
⟩, and s1 = ⟨I1,m1⟩, s2 = ⟨I2,m2⟩ be two B-snapshots. Fix a

ransition t of N and a binding σ such that t is enabled in s1 with
(cf. Definition 3). Let I3 = apply(actionσ (t), I1) be the database

nstance resulting from the application of the action attached to t
n database instance I1 with binding σ for the action parameters.
or a control place p, let win(p, t) = Fin(⟨p, t⟩), and wout (p, t) =

out (⟨p, t⟩) if I3 is compliant with P , or wout (p, t) = Frb(⟨p, t⟩)
otherwise. We say that t fires in s1 with binding σ producing s2,
written s1[t, σ ⟩s2, if:

3 We assume σ to be naturally extended to arc inscriptions. In case when an
rc inscription contains an expression, σ will be applied to its variables.
4 Adom (X) is the set of values of type D explicitly contained in X .
D
• if I3 is compliant with P , then I2 = I3, otherwise I2 = I1;
• for each control place p, m2 corresponds to m1 with the

following changes: σ (win(p, t)) tokens are removed from p,
and σ (wout (p, t)) are added to p. In formulas: m2(pc) =

(m1(pc) − σ (win(p, t))) + σ (wout (p, t)). ■

All in all, the complete execution semantics of a db-net is
aptured by a possibly infinite-state transition system where each
ransition represents the firing of an enabled transition in the
ontrol layer of the net with a given binding, and each state is a
napshot. The infinity comes from the presence of external inputs,
nd the fact that value domains may contain infinitely many
lements. It is important to notice that the resulting transition
ystem may be infinite even if the control layer is bounded in the
lassical Petri net sense.

xample 5. The aggregator in Fig. 2 requires a view place
hp (denoted by) for storing and updating the message se-
quences as well as rollback arc (T2, chin) to manage compensa-
ion tasks (represented as). The graphical notation is in line
with [10]. ■

3.2. Timed db-nets

We now extend the db-net model so as to account for an ex-
plicit notion of time. While the implicit temporal support in PNs
(i.e., adding places representing the current time) is rather coun-
terintuitive [19], the temporal semantics of adding timestamps
to tokens [19], timed places [20], arcs [21] and transitions [22]
are well studied and naturally capture different facets of time in
dynamic systems. The temporal requirements in REQ-3 demand
a quantified, fixed or discrete time representation by timed tran-
sitions or places, representing the delay induced by a transition
firing. This is currently missing in db-nets. So, in the spectrum of
timed extensions to PNs, we extend the db-net control layer N
with a temporal semantics that achieves a suitable trade-off: it
is expressive enough to capture the requirements in REQ-3, and
at the same time it allows us to transfer the existing technical
results on the verification of db-nets to the timed extension.

We start by explaining the intuition behind the approach,
and then provide the corresponding formalization. We assume
that there is a global, continuous notion of time. The firing of a
transition is instantaneous, but can only occur in certain moments
of time, while it is inhibited in others, even in presence of the
required input tokens. Every control token, that is, token assigned
to a control place, carries a (local) age, indicating how much time
the token is spending in that control place. This means that when
a token enters into a place, it is assigned an age of 0. The age
then increments as the time flows and the token stays put in
the same place. View places continuously access the underlying
persistence layer, and consequently their (virtual) tokens do not
age. Each transition is assigned to a pair of non-negative (possibly
identical) rational numbers, respectively describing the minimum
and maximum age that input tokens should have when they are
selected for firing the transition. Thus, such numbers identify a
relative time window that expresses a delay and a deadline on
the possibility of firing.

Definition 6. A timed db-net is a tuple ⟨D,P,L,N , τ ⟩ where
⟨D,P,L,N ⟩ is a db-net with the control layer N , and τ : T →

Q≥0
× (Q≥0

∪ {∞}) is a timed transition guard mapping each
transition t ∈ T to a pair of values τ (t) = ⟨v1, v2⟩, such that: (i) v1
is a non-negative rational number; (ii) v2 is either a non-negative
rational number equal or greater than v1, or the special constant
∞. ■

D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439 7
The default choice for τ is to map transitions to the pair
⟨0, ∞⟩, which corresponds to a standard db-net transition.

Given a transition t , we adopt the following graphical conven-
tions: (i) if τ (t) = ⟨0, ∞⟩, then no temporal label is shown for
t; (ii) if τ (t) is of the form ⟨v, v⟩, we attach label ‘‘@⟨v⟩’’ to t;
(iii) if τ (t) is of the form ⟨v1, v2⟩ with v1 ̸= v2, we attach label
‘‘@⟨v1, v2⟩’’ to t .

Example 7. The aggregator in Fig. 2 defines a timed transition T3,
that can be fired precisely after 30 time units (here seconds) from
the moment when a new sequence seq has been created. Upon
firing, T3 enables the Aggregate transition, by updating the se-
quence’s status on the database to expired using the TimeoutSeq
action. ■

Timed db-net execution semantics. The execution semantics of
timed db-net builds on the one for standard db-nets, extended
with additional conditions on the flow of time and the temporal
enablement of transitions. The management of bindings, guards,
and database updates via actions, is kept unaltered. What changes
is that, in a snapshot, each token now comes with a corresponding
age, represented as a number in Q≥0.

As customary in several temporal extensions of Petri nets, we
consider two types of evolution step. The first type deals with
time lapses: it indicates that a certain amount of time has elapsed
with the net being quiescent, i.e., not firing any transition. This
results in incrementing the age of all tokens according to the
specified amount of time.

The second type deals with a transition firing, which refines
that of db-nets by checking that the chosen binding selects to-
kens whose corresponding ages are within the delay window
attached to the transition. Specifically, let B be a timed db-net
⟨D,P,L,N , τ ⟩, t a transition in N with τ (t) = ⟨v1, v2⟩, and σ a
binding for t . We say that t is enabled in a given B snapshot with
binding σ if it is so according to Definition 3 and, in addition, all
the tokens selected by σ have an age that is between v1 and v2.
Firing an enabled transition is identical to the case of standard
db-nets (cf. Definition 4), with the only addition that for each
produced token, its age is set to 0 (properly reconstructing the
fact that it is entering into the corresponding place).

The execution semantics of a timed db-net then follows the
standard construction (using the refined notions of enablement
and firing), with the addition that each snapshot may be subject
to an arbitrary time lapse. This is done by imposing that every
B-snapshot ⟨I,m⟩ is connected to every B-snapshot of the form
⟨I ′,m′

⟩ where:

• I ′ = I (i.e., the database instances are identical);
• m′ is identical to m except for the ages of tokens, which all

get incremented by the same, fixed amount x ∈ Q of time.

Given two B-snapshots s and s′, we say that s directly leads to
s′, written s → s′, if there exists a direct transition from s to s′ in
the transition system that captures the execution semantics of B.
This means that s′ results from s because of a transition firing or
a certain time lapse. We extend this notion to finite execution
traces s0 → . . . → sn. We also write s

∗
−→ s′ if s directly or

indirectly leads to s′. If this is the case, we say that s′ reachable
from s.

Example 8. To complete the aggregator, when the persisted
sequence in the aggregator is complete or the sequence times
out, then the enabled Aggregate transition fires by reading the
sequence number seq and snapshot of the sequence messages,
and moving an aggregate msg ′ to chout . Notably, the Aggregate
transition is invariant to which of the two causes led to the
completion of the sequence. ■
3.3. Checking reachability over timed db-nets

Checking fundamental correctness properties such as safety/
reachability is of particular importance for timed db-nets, in the
light of the subsequent discussion in Section 6.2 on reachable
goal states. We consider here, in particular, the following relevant
reach-template problem:

Input: (i) a timed db-net B with set Pc of control places, (ii) an
initial B-snapshot s0, (iii) a set Pempty ⊆ Pc of empty control
places, (iv) a set Pfilled ⊆ Pc of nonempty control places such
that Pempty ∩ Pfilled = ∅.

Output: yes if and only if there exists a finite sequence of B-
snapshots of the form s0 → . . . → sn = ⟨In,mn⟩ such that
for every place pe ∈ Pempty, we have |mn(pe)| = 0, and for
every place pf ∈ Pfilled, we have |mn(pf)| > 0.

Checking the emptiness of places in the target snapshot is
especially relevant in the presence of timed transitions, so as to
predicate over runs of the systems were tokens are consumed
within the corresponding temporal guards. For example, by con-
sidering transition T3 in Fig. 2, asking for the chtimer place to be
empty guarantees that T3 indeed triggered whenever enabled.

Since timed db-nets build on db-nets, reachability is highly
undecidable, even for nets that do not employ timed transitions,
have empty data logic and persistence layers, and only employ
simple string colors. As pointed out in [10], this setting is in fact
already expressive enough to capture ν-nets [13,14], for which
reachability is undecidable. Similar undecidability results can be
obtained by restricting even more the control layer, but allowing
for the insertion and deletion of arbitrarily many tuples in the
underlying persistence layer.

However, when controlling the size of information maintained
by the control and persistence layers in each single snapshot,
reachability and also more sophisticated forms of temporal model
checking become decidable for db-nets using string and real data
types (without arithmetics).

In particular, decidability has been shown for bounded, plain
db-nets. Technically, a db-net B with initial snapshot s0 is:

• width-bounded if there is b ∈ N s.t., for every B-snapshot
⟨I,m⟩, if s0

∗
−→ ⟨I,m⟩, then the number of distinct data

values assigned by m to the tokens residing in the places
of B is bounded by b;

• depth-bounded if there is b ∈ N s.t., for every B-snapshot
⟨I,m⟩, if s0

∗
−→ ⟨I,m⟩, then the number of appearances

of each distinct token assigned by m to the places of B is
bounded by b;

• state-bounded if there is b ∈ N s.t., for every B-snapshot
⟨I,m⟩, if s0

∗
−→ ⟨I,m⟩, we have |∪D∈DAdomD(I)| ≤ b.

We say that a db-net is bounded, if it is at once width-, depth-,
and state-bounded. Intuitively, a db-net is bounded if it does not
accumulate unboundedly many tokens in a place, and guarantees
that the number of data objects used in each database instance
does not exceed a pre-defined bound.

The decidability of reachability for bounded db-nets does not
imply decidability of reachability for bounded timed db-nets.
In fact, ages in timed db-nets are subject to comparison and
(global) increment operations that are not expressible in db-nets.
However, we can prove decidability by resorting to a separation
argument: the two dimensions of infinity respectively related to
the infinity of the data domains and of the flow of time can in
fact be tamed orthogonally to each other. In particular, we get
the following.

8 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439

e

t
t
i

C
t
L
t
R
c
C
i
t
s
P
t
2
i
(
l
t
c
s
S
t
o
a
b
t
s
t
o
c
a
{

i

Theorem 1. The reach-template problem is decidable for bounded
and plain timed db-nets with initial snapshot.

Proof sketch. Consider a bounded timed db-net B with initial
snapshot s0, empty control places Pempty, and filled control places
Pfilled. Using the faithful data abstraction techniques presented
in [10, Thm 2], one obtains a corresponding timed db-net B′

njoying two key properties. First, B′ is bisimilar to B, with a
data-aware notion of bisimulation that takes into account both
the dynamics induced by the net, as well as the correspon-
dence between data elements. Such a notion of bisimulation
captures reachability as defined above, and consequently reach-
emplate(B, s0, Pempty, Pfilled) returns yes if and only if reach-
emplate(B′, s0, Pempty, Pfilled) does so. Second, the only source of
nfinity, when characterizing the execution semantics of B′, comes
from the temporal aspects, and in particular the unboundedness
of token ages. This means that B′ can be considered as a “stan-
dard” temporal variant of a CPN with bounded colors that, in turn,
boils down to a temporal variant of an (uncolored) P/T net. In
particular, one can easily see that B′ corresponds to a specific type
of bounded Timed-Arc Petri Net (TAPN) [21], a classical P/T net
with continuous time, where the tokens carry an age and arcs
between places and transitions are labeled with time intervals
that restrict the age of tokens:

• whenever B′ contains a transition t with τ (t) = ⟨v1, v2⟩, its
corresponding TAPN labels each arc entering in t with the
same interval [v1, v2];

• each transition-place arc is labeled with the interval [0, 0].

Consequently, the infinity of B′ can be tamed using standard tech-
niques known for bounded TAPNs, which indeed enjoy decidabil-
ity of reachability for the queries tackled by reach-template [23,
24]. In particular, notice that reach-template does not explicitly
express constraints on the expected token ages when reaching
the final state. □

It is interesting to notice that TAPNs have a more expressive
mechanism to specify temporal guards in the net. In fact, TAPNs
attach temporal guards to arcs, not transitions, and can therefore
express different age requirements for different places, as well as
produce tokens with an age nondeterministically picked from a
specified interval. Hence, this more refined temporal semantics
can be seamlessly introduced in our timed db-net model without
compromising Theorem 1.

4. Formal pattern realizations

In this section we discuss (formal) pattern realizations using
timed db-nets. Due to the high number of patterns, the formaliza-
tion and corresponding in-detail description of all of them seems
impractical. However, thanks to the fact that patterns can be
classified into disjoint categories (see the requirement categories
in Section 2), it suffices to discuss the most representative ones
from each of such categories. We call this an instructive pattern
formalization, which strives to formalize the patterns and, at the
same time, offers modeling guidelines for other patterns of the
respective categories using the provided examples. The structure
of subsequent sections is as follows: first we give a brief descrip-
tion of the pattern and its aim in the context of the requirements,
then we discuss its relevance as candidate, and finally specify a
realization.

4.1. Control flow: Load balancer

Control flow only patterns are those that route the token flow

without looking inside the actual content of the message. a
Fig. 5. Load balancer realization in timed db-net.

andidate Selection. To demonstrate the control flow only pat-
ern (cf. requirement REQ-0 in Table 1), we have chosen the
oad Balancer pattern [3]. Interestingly, this pattern also covers
he message channel distribution requirement (cf. requirement
EQ-1(b) in Table 1) and thus can be considered as a relevant
andidate of this category as well.
andidate Description. In a nutshell, the balancer distributes the
ncoming messages to a number of receivers based on a criterion
hat uses some probability distribution or ratio defined on the
ent messages.
attern Realization. To realize the probability- or ratio-based cri-
erion in Petri nets, one could adopt the stochastic Petri nets [25,
6] or extend the db-net transition guards definition with an abil-
ty to sample probability values from a probability distribution
e.g., [27]). While the latter would extend the db-net persistence
ayer, it is unclear whether the decidability results discussed in
he previous section will still hold. Hence, we opted for the ratio
riterion that, as shown in Fig. 5, is realized using a persistence
torage and transition guards with a simple balancing scheme.
pecifically, a message msg in channel chin leads to a lookup of
he current ratio by accessing the current message counts per
utput channel in the database (via the view place message count)
nd evaluating guards assigned to one of the two transitions
ased on the extracted values. The ratio criterion is set up with
wo (generic) guards ϕ1(toCh1, toCh2) and ϕ2(toCh1, toCh2) re-
pectively assigned to T1 and T2. If one of the guards holds,
he corresponding transition fires by moving the message to its
utput place as well as updating the table by incrementing the
orresponding channel count. The latter is done by executing
ction Inc_Chi(toChi) that consecutively performs Inc_Chi·del =

CountChi(toChi)} and Inc_Chi·add = {NumberChi(toChi + 1)} (for
∈ {1, 2}).5

5 Note that in db-nets an update is realized by first deleting a tuple and then
dding its modified version.

D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439 9

4

t
p
C
c

i
r

m
(
c

4

t
C
c
o
C
m
b
h
R
P
p
t
t
t
h
i
o
i

Fig. 6. Message translator realization in timed db-net.

Fig. 7. Splitter realization in timed db-net.

.2. Data flow: Message translator, splitter

Data flow only patterns are those that access the actual con-
ent of the message mostly for data filtering and transformation
urposes.
andidate Selection. The stateless Message Translator [2] is the
anonical example of a data flow only pattern (cf. requirement
REQ-2 in Table 1).

The (iterative) Splitter [2] is an example of a non-message
transformation data flow only pattern, which is also required for
a case study scenario in Section 6.
Candidate Description. The translator works on the data rep-
resentation level (i.e., data flow) and transforms incoming mes-
sages of type TYPE1 into (output) messages of type TYPE2. The
translation mechanism is defined a-priori by the user.

The splitter represents a complex routing mechanism that,
given an iterable collection of input messages it together with
two objects pre and post , is able to construct for each of its
elements a new message of the form [⟨pre⟩]⟨it : msgi⟩[⟨post⟩]
with optional pre and post parts.
Pattern Realizations. A timed db-net representing a message
translator is shown in Fig. 6. As in the pattern’s definition, the
corresponding net performs the message transformation from
one type to another. Specifically, an incoming message of type
TYPE1 from input channel place chin is consumed (after firing
start_translate) by subnet translation that, in turn, pro-
duces (by firing end_translate) a new message of type TYPE2
into the receiver place chout .

As for the Splitter pattern, we show in Fig. 7 that, under certain
restrictions assumed for the type of the iterable collection at
hand, the pattern can be fully realized using only colored Petri
nets. The entering message payloads in ch0 are separated into
its parts: pre, post and it . While the first two are remembered
during the processing, the iterable it is iteratively split into parts
according to some criterion realized in the split subnet, which
represents a custom split logic and thus is intentionally left
unspecified (in Fig. 7 it is marked with a cloud symbol).
 r
Fig. 8. Sample split subnet realization.

Fig. 9. Content-based router realization in timed db-net.

Example 9. The split subnet can be adapted to the message
format and the requirements of a specific scenario. Fig. 8 demon-
strates a possible implementation of the subnet. Here, functions
get and drop are used to read and remove the n-th element of
an iterable object. In our case, we alternate their applications to
the iterable object it from place ch1 in order to extract and delete
ts first element that is then placed into ch2. Such a procedure is
epeated until it is empty (i.e., it is NULL). ■

Each of extracted elements from it , together with the infor-
ation about pre and post , is then used to create a new message

by calling function genMsg) that is passed to the output channel
hout (Fig. 8).

.3. Data and control flow: Content-based router

Data and control flow patterns consider the actual content of
he message for routing a token through the net.
andidate Selection. The Content-based Router pattern [2] is the
anonical candidate for data and control flow patterns and also
ne of the mostly used integration patterns (cf. [28]).
andidate Description. The Content-Based Router examines the
essage content and routes the message onto a different channel
ased on data contained in the message. The routing conditions
ave to be executed in a pre-defined order (cf. requirement
EQ-1(a) in Table 1).
attern Realization. The realization of the Content-based Router
attern with conditions ϕ1, ϕ2 is shown in Fig. 9. Given that
he router can be realized using various strategies imposed on
he conditions (for example, using priority function similarly
o [25]), we opted for more explicit realization where conditions
ave to be evaluated strictly in-order (cf. requirement REQ-1(a)
n Table 1), using pair-wise negated db-net transition guards. In
ur pattern realization, a message from input channel place chin
s first evaluated against condition ϕ1. Based on the evaluation

esult, the message is moved either to ch1 or ch2. In case it has

10 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439

b
a
t
t
r
c
c

4
q

t
f
C
s

W
n

u
i
o
o
c
r
t
e
T

4

q
w
C
b
s
r
C
h
o
e
o
c
P
r
b
e
(
a
t
s
n

Fig. 10. Content enricher realization in timed db-net.

een moved to ch2, the net proceeds with the subsequent evalu-
tion of other conditions using the same pattern. When none of
he guards can be evaluated, a non-guarded, low-priority default
ransition fires (not shown). The provided realization covers the
outer’s semantics, however, requires (k× 2)+ 1 transitions (i.e.,
ondition, negation, and only one default), with the number of
onditions k.

.4. Data flow with transacted resources: Content enricher, rese-
uencer

Data flow with transacted resource patterns consider the ac-
ual content of the message as well as additional information
rom transacted sources mostly for message transformations.
andidate Selection. The first pattern chosen for this category,
uch that it includes a data flow with transacted resources, is the
Content Enricher [2] (cf. requirements REQ-2, REQ-4 in Table 1),
which mainly reads from the transacted resource. Hence we
add the stateful Resequencer [2], which writes to a transacted
resource.
Candidate Description. The content enricher requires accessing
external resources (e.g., relational database) based on data from
an incoming message. Such data are then used to enrich the
content of the message.

The stateful Resequencer is a pattern that ensures a certain
order imposed on messages in (asynchronous) communication by
persistently storing intermediate message sequences (cf. require-
ments REQ-2, REQ-4 in Table 1).
Pattern Realizations. A Content Enricher db-net realization is
shown in Fig. 10. The message enriching processes starts with
consuming a message from the input channel place chin. The
message is represented by two elements: a message identifier key
and message content msg . We use request–reply transitions T1
and T2 to direct the net flow towards extracting message-relevant
data from an external resource. The extraction is performed by
matching the message identifier key with the one in the storage.

hile the stateless enriching part is essentially a colored Petri
et, we need db-nets in order to access a stateful resource in ch3

one needs to specify and perform queries on the external storage
(cf. REQ-4(a,b)). In addition to the specific pattern requirements,
the message processing semantics of the EIPs describes one mes-
sage (or token) at a time. Thus we assume that the represented
net model always deals with a single message as well.

Fig. 11 shows how the resequencer can be represented in db-
nets. We assume that incoming message msg comes with the
information about sequence seq it belongs to and certain order
ord, and all such data are eventually persisted in the database.
The information about stored messages can be accessed through
the view place chp. For the first incoming message in a se-
quence (i.e., the guard of T1 evaluates to true), a corresponding
sequence entry with a unique identifier value bound to sid6 will
be created in the persistent storage (sequences can be accessed
in the view place ms) using action CreateSeq, whereas for all
subsequent messages of the same sequence (i.e., when the guard
of T2 holds), the messages are simply stored in the database via
pdating action UpdateSeq. As soon as the sequence is complete,
.e., all messages of that sequence have arrived, the messages
f this sequence are queried from the database in ascending
rder of their ord component (see the view place chp′ and its
orresponding query) using transition Fetch. The query result is
epresented as a list that is forwarded to chout . Note that, similarly
o the aggregator in Section 6, the completion condition can be
xtended by a custom logic, indicated by a subnet connected to
3.

.5. Control flow with transacted resource and time: Circuit breaker

Control flow with transacted resource and time patterns re-
uire a transacted resource to route a message to their receivers,
hile involving time aspects.
andidate Selection. To demonstrate a family of patterns that are
ased on a control flow with transacted resources and time, we
elected as its representative the Circuit Breaker pattern [3] (cf.
equirements REQ-0, REQ-3, REQ-4(a)).
andidate Description. The Circuit Breaker addresses failing or
ung up remote communication, which impacts the control flow
f the request–reply pattern [2] by using transacted access to
xternal resources. Thereby the request–reply pattern is just one
ut of many control flow only pattern examples, for which the
ircuit breaker can be used.
attern Realization. Fig. 12 shows a representation of the
equest–reply pattern in timed db-nets, extended by a circuit
reaker “wrapper” that protects the remote call. At the beginning,
very (endpoint-dedicated) circuit7 in the circuit breaker is closed
that is, its status in table Circuit is initially set to closed), thus
llowing to pass the input message from input place chin to
he Request–Reply pattern part (represented with a dedicated
ubnet) by firing Send_Req. If the request–reply pattern executes
ormally (i.e., transition Receive_Resp has been executed), the

resulting message is placed in chout . Otherwise, in case when
an exception has been raised, the information about the failed
endpoint is first placed in place epexec , and then, by firing T1
and action UpdCount assigned to it, can be stored both in a
special place ch exec and the Endpoints table of the persistent
storage.8 Such a table contains all endpoints together with the
number of failures that happened at them. If the number of
failures reaches a certain limit (e.g., num > 5), the circuit trips
using transition T2 and updates its status in the corresponding
entry of the Circuit relation to open using action TripCircuit.
This in turn immediately blocks the communication process that,
however, can be resumed (i.e., the circuit is again set to open
and the failure count is set to 0) after 40 time units have been
passed and transition T3 can be fired. Note that whenever at
least one circuit remains opened, the messages from chin will be
immediately redirected to ch_exec .

6 Note that since sid is not bound to variables in the input flow of Ti
(i ∈ {1, 2, 3}), it can be treated as a fresh variable [10] that, whenever the
transition is executed, gets a unique value of a corresponding type assigned to
it.
7 For simplicity, every endpoint is identified with a unique number EPID.
8 To be more precise, UpdCount only updates the count of exceptions

occurred at a given endpoint.

D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439 11

m
t
d
t
m
z
t
m
m

u
r
t
c
t

Fig. 11. Resequencer realization in timed db-net.
4.6. Control flow with time: Throttler, delayer

Control flow with time patterns are those that route tokens
depending on the time.
Candidate Selection. The message expiration (cf. REQ-3(b)) can
be modeled implicitly in the timed db-net tokens. The patterns
that represent most natural candidates for requirements of de-
laying the messaging or an operation (cf. requirement REQ-3(c))
and processing only a certain number of messages per time
(cf. requirement REQ-3(d)) are the Delayer [3] and Throttler [3]
patterns.
Candidate Description. The first pattern is the Throttler. It helps
to ensure that a specific receiver does not get overloaded by reg-
ulating the number of transferred messages. A slightly different
pattern of this category is the Delayer that uses a timer to reduce
the frequency of messages sent to the receiving channel.
Pattern Realizations. The representative patterns of this group
mostly require control flow and time aspects, and thus can be
represented using timed colored Petri nets (e.g., [19]).

Fig. 13 shows the realization of a throttler that emits at most n
essages per 60 time units to the receiving place chout . To ensure

hat the number of messages taken from input channel place chin
oes not exceed the predefined bound, we introduce place cap
hat has n ‘‘simple’’, black tokens assigned to it with an initial
arking. Given that every token’s age in chin is initially set to
ero, one can fire T1 until the time elapses to the point that the
imed guard of T2 is satisfied. Note that every time T1 is fired,
essage token msg is getting appended to collection of messages
sgs using special function add.9
A slightly different pattern of this category is the Delayer that

ses a timer to reduce the frequency of messages sent to the
eceiving place chout . As shown in Fig. 14, the sent message from
he input channel place chin is first placed into intermediate place
h1, and then gets delayed by 60 time units (so as to make the
imed guard of T2 satisfiable).

9 For example, in CPN Tools one can define the add function on lists.
4.7. Data flow with transacted resources time: Aggregator

The combination of data, transacted resources and time as-
pects in patterns makes them the semantically most complex
ones.
Candidate Selection. One of the mostly used patterns in this
category (cf. [28]) is our leading pattern example, the Aggregator.
To be fully functional it requires access to the data (cf. require-
ment REQ-2), the configuration of a timeout (cf. requirement
REQ-3(a)), CRUD operations on transacted external resources (cf.
requirement REQ-4), and compensation (cf. requirement REQ-5).
Candidate Description. In a nutshell the aggregator is a stateful
filter that combines several incoming message into one out-
going message. Since the aggregator is our running example
throughout this work, more elaborate descriptions can be found
in Examples 1, 5, 7 and 8.
Pattern Realization. Fig. 2 specifies the semantics of a commonly
used stateful Aggregator [2] pattern. The aggregator persistently
collects messages, that can be seen in a dedicated view place chp,
and aggregates them using the Aggregate transition based on a
completion condition (i.e., a sequence that the message is related
to is complete) or on a sequence completion timeout. For this
an incoming message msg is correlated to an existing sequence
based on a sequence label seq attached to it. If the message is first
in a sequence (i.e., the guard of T1 is satisfied), a new sequence
is created in the Sequences table and the message together with
a reference to this sequence is recorded in the Messages table
in the persistent storage using action CreateSeq. If a message
correlates to an existing sequence seq (i.e., the guard of T2 is
satisfied), which has been aggregated due to a timeout (i.e., T3
has fired and updated the sequence by assigning to it the expired
status in the Sequences table), the update fails. This results in
the roll-back behavior: the database instance is restored to its
previous state, while the net uses the roll-back arc to put the
message back to the message channel chin. This message can be

then added as the first one to another newly created sequence

12 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439

s

Fig. 12. Circuit breaker realization in timed db-net.

Fig. 13. Throttler realization in timed db-net.

eq. To aggregate the messages one needs to fire Aggregate that,
in turn, can be fired if the sequence completion criterion has
been met and transition T has fired. Note that the completion
4
Fig. 14. Delayer realization in timed db-net.

criterion is user-definable and thus we leave out its concrete
implementation in this pattern realization.

4.8. Discussion

The db-net foundation implicitly covers REQs-2,4 in form of
a relational formalization with database transactions. Together
with the realizations of the Content-based Router, Load Balancer
(cf. REQ-1(a), (b)) and Aggregator Fig. 2 (cf. REQs-3(a), REQ-4
and REQ-5) we showed realizations for all of the requirements
from Section 2. The expiry of tokens, depending on time in-
formation within the message, can be represented using CPNs
and db-nets by modeling it as part of the token’s color set and
transition guards (similar to [19]). Nevertheless, to model the
transition timeouts (cf. REQ-3(a)) and delays (cf. REQ-3(c)) one
needs to resort to more refined functionality realized in timed
transitions provided by the timed extension of db-nets. Simi-
larly, the msg/time ratio (cf. REQ-3(d)) can be represented (see
Throttler pattern in Fig. 13).

The categorization of patterns according to their characteris-
tics allows for an instructive formalization based on candidates
of these categories and shows that even complex patterns can
be defined in timed db-nets. This, in turn, allowed us not to
discuss candidates of all the categories from Fig. 3, since they
can be seamlessly derived by the introduced patterns from other
categories. For example, control and data with resource patterns
do not require transacted resources, and can thus be realized
similar to their transacted resource cases by substituting view
places with normal ones. The building blocks for the realization
of transacted resource as well as data flow with time patterns can
be derived from, e.g., the Resequencer or Aggregator patterns.
Finally, the data flow with format patterns can be represented
using CPNs, and thus not further discussed here.

Thanks to our model checking results presented in the pre-
vious section, the correctness of the realization of each pattern
can be formally verified. However, due to the absence of a model
checker for (timed) db-nets, the formal analysis (cf. [10]) of such
cannot be automatically performed. Nevertheless, as an alterna-
tive to the model checking approach, it is possible to perform
the correctness testing using the experimental validation via (re-
peated) simulation of db-net models. We discuss this approach in
the following section.

5. Correctness testing

The correctness of an integration pattern realization repre-
sented in timed db-nets can be validated by evaluating the ex-
ecution traces of such models (e.g., similar to the state-oriented
testing scheme by Zu and He [29]), where at each step, an exe-
cution trace contains a B-snapshot representing a current state of
the persistence layer together with a control layer marking. Ac-
cording to the timed db-net execution semantics (see Section 3),
a consecutive, finite enactment of a pattern model starting from
an initial B-snapshot s1 = ⟨I1,m1⟩ produces several B-snapshots
s = ⟨I,m⟩ that, depending on the number of enactment steps,
generates a finite execution trace s1 → . . . → sn+1 for some
n ∈ N.

D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439 13

F

b
d o

t
A
T
w
i
S
r
b
o

Fig. 15. A finite db-net execution of a Content-based Router.

Example 10. Consider a Content-based Router model B from
ig. 9 with an initial B-snapshot s1 containing markings for mes-

sages of two employees with their age (Jane, 23), and (Paul, 65).
Since the router has no persistence, the database snapshot is
empty. Fig. 15 shows a possible, finite execution of B starting
from s1. In order to reach s2 from s1, transition T1 with routing
condition [age ≤ 25] has to be fired. The resulting marking only
contains the message of Jane that has satisfied the condition,
while the message of Paul has not been forwarded. ■

In the router example, given the initial marking {(Jane, 23),
(Paul, 65)} analyzed against the guard of T1, the marking sexpected
in Fig. 15 denotes the only allowed final (or expected) state that
can be reached from s1 in case of a properly working router.
Indeed, it is evident that the generated state s2 is identical to the
expected one and thus one could conjecture the correctness of
the presented execution. More generally this is defined in Defini-
tion 11, which, together with a comparison operator ∼, allow for
a configurable, correctness criterion definition over finite traces
induced by pattern models.

Definition 11 (Correctness Criterion). Let s1 → . . . → sn+1
be a finite execution trace of some pattern model M and C
e a set of reference B-snapshots that define a set of correct,
esired states. We say that a pattern execution is correct, if for

all c ∈ C it holds that c ∼ si, for i ∈ {1, . . . , n + 1}. The
operator ∼ typically denotes equality, but can also correspond to
more sophisticated comparison operators for relating reached and
desired snapshots. ■

For example, it is easy to see, that in Fig. 15 s2 ∼ sexpected.
Note that the definition still captures the situation where

target snapshots are enumerated explicitly. Other forms of valida-
tion (e.g., based on statistical goals formulated over the exhibited
behaviors of the system) would require a more fine-grained ap-
proach able to aggregate snapshots and traces. This is matter of
future work.

Next we discuss the application of this correctness criterion
for three different requirement categories: control flow, data
flow together with format and (transacted) resource, and timed
patterns.

5.1. Control flow patterns

To test control flow patterns for correctness, the operator

∼ can be defined so as to compare the number of tokens in
Fig. 16. A finite execution trace of a load balancer in timed db-net. Here we
use Empl to define an input place with employees and count as a function that
counts a number of tokens in marking m.

the correct, final snapshot. Nevertheless, there are control flow
patterns whose correctness testing puts additional requirements
on ∼. For example, the Load Balancer pattern (cf. REQ-1) denotes
a special case, since it requires a sequence of input tokens, which
then have to produce data entries in the output instances that
fit the probability values and distribution of the balancer (e.g.,
Kolmogorov–Smirnov test [30]). Therefore, the ∼ operator has
to check whether the number of tokens in the desirable states
follows a probability distribution.

Example 12. Consider a Load Balancer in timed db-net B from
Fig. 5 with an initial B− snapshot s1 containing a marking m with
several messages composed of employee names and ages m =

{(Jane, 23), (Lisa, 35), (Joe, 47), (Paul, 65)}. In the example shown
in Fig. 16, three of the tokens have been already distributed. This
means that the current, observable snapshot si has a database
instance with two tuples CountCh1(1) and CountCh2(2), and a
marking with one token in the input state m(chin) = {(Jane, 23)},
ne token in the first channel m(ch1) = {(Lisa, 35)} and two
okens in the second channel m(ch2) = {(Joe, 47), (Paul, 65)}.
ssuming that in the current state ϕ1 holds, we can fire transition
1. This, in turn, generates a new state si+1. In order to check
hether si+1 is an expected state, we run a correctness test that

s performed on the number of messages sent to the channels.
uch a test allows us to see whether a final, desired message
atio is produced by the model. For example, knowing that the
andwidth of the second channel is considerably greater than the
ne of the first channel, we may expect that the final ratio of ch1

ch2
is

not greater than 0.7. Our ∼ operator can be accordingly adopted
to perform such a test. ■

The example shows that, even though the correctness testing
of control flow patterns is feasible, there are cases in which such
tasks may require extra workload in form of input data, mainly
on the configuration of the testing setup.

5.2. Data flow and (transacted) resource patterns

In order to test the correctness of patterns that meet require-
ments REQ-2 and REQ-4 (cf. Table 1), one needs to consider

14 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439

w

f
i
c

E

t
d
i

o
f

Fig. 17. A partial execution of a content enricher timed db-net. For simplicity
e omit the view place marking in si+1 and sexpected .

testing not only the marking, as it is done in the case of control
flow patterns, but also to compare states of the persistent storage.
Specifically, for a given initial snapshot s1 with an instance I1,
either an expected state sn with an instance In or an expected
error state sj must be produced by the pattern. Otherwise the
pattern is considered incorrect.

Example 13. Let us consider a timed db-net B for the Content
Enricher in Fig. 10 with an initial B-snapshot s1 that contains a
marking m with a message composed of an employee name and
age such that m(chin) = (Jane, 23). In Fig. 17 the database of
the content enricher model stores information about employees
and their positions in a relation called Empl. To reach the final
state si+1 from si, we need to fire T2. The fact that we have si
with a marking containing two tokens (one with the employee’s
name and age, and another one with the same name and position)
shows that, a few steps before, the employee token (Jane, 23)
was matched to the corresponding entry in the persistent storage
and extra information about her position was extracted. If it was
not the case, the execution trace, which is partially represented
in Fig. 17, would not contain such two tokens that, in turn, would
mean that the transition used for accessing the view-place could
not fire since no matches were found. Thus, T2 does not fire and
the final state does not fulfill the correctness criterion for the
given initial snapshot. ■

Note that, however, in this example the internal database
state does not play the main role when testing the correctness.
The correctness checking is done on the markings which are
populated from the database based on the matching condition
assigned to the transition inspecting the view place.

5.3. Timed patterns

Finally, a timed pattern can be validated by extending database
schemas with extra attributes for storing timestamps (as “on-
insert timestamps” in actual databases) or by adding such times-
tamps to tokens, indicating the token creation time. This allows
for checking delays, e.g., by comparing the insert timestamps
time(I1), time(In) of data to instance I1 and those of the final
instance In, or the timestamps in the tokens, respectively. With
this, a numeric delay interval d = (d1, d2] can be checked, with
d1 = τ being the delay configured in the pattern and d2 =

τ + avg(tp) + var(tp) being a sum of τ , the average time tp
and the variance the pattern requires for the internal transition
Fig. 18. A partial execution of a delayer timed db-net.

irings without the configured delay. Since the delay τ is an
nterval itself, its upper value is taken for the application of the
orrectness criterion.

xample 14. Consider a timed db-net B for the Delayer in Fig. 14
with an initial B-snapshot s1 that has a marking m with a message
composed of an employee’s name and age m(chin) = (Jane, 23).
In Fig. 18 transition T2 fires with a time delay of 60 time units.
Since the delayer does not require a database state, the cor-
rectness of the timestamps is checked on the markings. In this
example, we assume that the average time avg(tdelayer) is 10.0 and
he variance var(tdelayer) is 5.0 without the delay. This results in a
esirable marking (Jane, 23, t) in sexpected with t ∈ (60, 75] that,
n turn, can be checked against the one in s3 using ∼ that, on top
of comparing the states by equality, also compares whether the
time stamp belongs to a desired time interval. ■

Note that the token ages cannot be used for checking delays,
since they are reset, when inserted into a timed db-net place.

5.4. Erroneous patterns

The main sources of errors during the responsible pattern for-
malization process in Fig. 1 are the conceptual work on defining
the formal representation of a pattern, as well as the model to
implementation step, in which the formal model is implemented
and configured. Subsequently, we briefly describe these types of
errors by example.
Pattern Description to Model Errors. The formal representation
of a pattern depends on different challenging factors concerning
the quality and comprehensiveness of the pattern description as
well as the clarity of its variations, and the complexity of the
formalism. Consequently, the process of formalizing a pattern can
introduce flaws due to the wrong understanding of the complex
task at hand.

Example 15 (Content-based Router). While the Content-based
Router in Fig. 9 represents the pattern correctly, one could go
wrong with the ordered execution (cf. REQ-1(a)), e.g., through
transition guards at T1 and T′

1. If these guards were set with
verlapping conditions, then several tokens are produced in dif-
erent output places, i.e., m(chout1 = {(Paul, 65)}), m(chout2 =

{(Paul, 65)}), which does not match the desired state in the ex-

ample in Fig. 15. ■

D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439 15

P
p
t
o
o
r
c

E

e
s
a
s

o
d
k
(
i
r
i
i
c
m
t
a
t
a
C
t
c
l
d

Fig. 19. Sample translation subnet realization.

attern Model to Implementation Errors. The model to im-
lementation gap specifies the difficulties that can arise during
he implementation of a formalized pattern. With the model
n one side and the tool-specificities on the other, errors can
ccur during the translation and configuration. While translation-
elated errors target particularities of the chosen tool or language,
onfiguration errors can occur in user-defined subnets.

xample 16 (Message Translator). The Message Translator in Fig. 6
allows for the configuration of a user-defined subnet that trans-
lates an input message msg of type TYPE1 into an output message
of TYPE2 using a special casting function cast . In case of an
xpected final state m(chout = {(Paul, 65, London)}) for an input
tate m(chout = {(Paul, 65, EC4M)}), a configuration of the subnet,
s shown in Fig. 19, would not suffice due to the resulting final
tate m(chout = {(Paul, EC4M)}). ■

It is important to note that in this work timed db-nets are
used to formalize various enterprise integration patterns and
integration scenarios involving them. This, in turn, facilitates
the usage of model-driven development of EIP realizations (e.g.,
Apache Camel [31]) as well as their combinations (most likely
while running a Petri net-based engine in the background of
some modeling suite that uses more conventional graphical EIP
language like the EIP icon notation [2]) since the generated in-
terfaces are having clear syntax and semantics, and thus are
less prone to errors caused by users at design time. On top
of that, designed application integration infrastructures can be
tested against various correctness guarantees using conventional
techniques such as validation through simulation. In particular,
while testing software systems can be considered more program-
based testing (e.g., [32,33]), the validation of Petri nets allows for
specification-based testing, when developing concurrent systems
like integration solutions. This enables more elaborate testing
methods like structural [34], place- or transition-oriented [35–
37], or state-oriented testing [29,36], as used in this work. Those
techniques go beyond the classical program-based testing used
for software systems by providing deeper insights, e.g., into the
actual concurrency graphs for structural testing [34] or the states
of the transition system representing the software at hand [29,
36]. Note also that the validation approach used in this paper is
similar to (Big Bang) Integration Testing [38] that aims at checking
correctness of interfaces between various software components
against a (correct) software design. Yet, when modeled with
timed db-nets, the whole testing process is facilitated with the
graphical, design-time representation of the integration scenario
“topology”, and thus allows for faster and more precise detection
of test cases.

Given that on top of the formalism of timed db-nets one
can enforce certain composition rules for designing integration
scenarios for EIPs, it would be even possible to reduce the effort
for responsible development of integration scenarios in which
manual errors are minimized. In other words, by restricting the
modeling language and giving it a blocked structure (i.e., integra-
tion scenarios can be represented only as certain compositions of

EIPs), one can facilitate user design tasks.
6. Evaluation

In this section, we quantitatively evaluate the comprehen-
siveness of the timed db-net formalism against the real-world
integration scenarios (including pattern composition cases), show
the correctness of the formal pattern realizations for the require-
ments discussed in Section 2.2 via the simulation, and quali-
tatively study the application of timed db-nets to one hybrid
integration (i.e., “on-premise to cloud” (OP2C)) and one internet
of things integration scenario (i.e., “device to cloud” (D2C)) (cf.
Q3).

6.1. Comprehensiveness of timed db-nets

The comprehensiveness of timed db-nets is evaluated with
respect to coverage of the patterns in the catalogs depicted
in Fig. 20(a). Here we compare the applicability of the existing
CPN-based formalization [8] (Current-CPN), colored Petri nets in
general (CPN (general)) and timed db-nets (timed db-net). While
the formalization proposed in [8] covers only some of the EIPs
from [2], many more EIPs as well as the recently extended
patterns can be represented by colored Petri nets. Now, as we
have indicated in the previous sections, one can formalize nearly
all of the EIPs using timed db-nets. The only exception is one
pattern, namely Dynamic Router, whose requirements cannot be
represented using Petri net classes discussed in this work. In fact,
in order to represent such a pattern one would need to employ
a formalism that, on the one hand, subsumes db-nets and thus
covers all the requirements discussed in Table 1 and, on the other
hand, supports extra requirements (i.e., dynamically added or
removed channels during runtime [8]) that, in turn, extend the
expressiveness of the formalism with the ability to generate arbi-
trary topologies. To allow for such a functionality one may opt for
an approach similar to the one in [39], where the authors enrich
classical Petri nets with tokens carrying Linear Logic formulas.
This, however, would require further investigations.

After having analyzed the pattern coverage per formalism, we
now consider the relevance of such formalisms against real-world
integration scenarios. For this we implemented a Content Monitor
pattern [3], which allows for the analysis of the actually deployed
integration scenarios that are, for example, running on SAP Cloud
Platform Integration (SAP CPI)10. Fig. 20(b) shows the coverage
f the formalisms grouped by the following integration scenario
omains, taken from [3]: On-Premise to Cloud (short OP2C, also
nown as hybrid integration), Cloud to Cloud or Business Network
native cloud applications C2C, B2B), and Device to Cloud (D2C,
ncluding Mobile, IoT and Personal Computing) integration. The
esults show that the current approach by Fahland and Gierds [8]
s only partially sufficient to cover the OP2C, C2C and B2B scenar-
os. With a more general CPN approach, more than 70% of more
onventional OP2C communication patterns can be covered. The
ore recent and complex cloud, business network and device in-

egration requires timed db-nets to a larger extent, which covers
ll analyzed scenarios. Note that the Dynamic Router with arbi-
rary topologies was not practically required for these scenarios,
nd thus seems to be rather of theoretical relevance.
onclusions. (1) timed db-nets are sufficient to represent most of
he EIPs; (2) EIPs that are generating arbitrary topologies are not
overed by considered PN classes; (3) hybrid integration requires
ess complex semantics and thus is largely in CPN; (4) timed
b-nets cover all of the current integration scenarios in SAP CPI.

10 SAP Cloud Platform Integration, visited 03/2019: https://api.sap.com/shell/
integration.

https://api.sap.com/shell/integration
https://api.sap.com/shell/integration

16 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439
Fig. 20. Timed db-net comprehensiveness.
Fig. 21. Message translator in CPN tools.

6.2. Simulation: Pattern correctness testing

We prototypically implemented the db-net formalism so as to
experimentally test the correctness of the pattern realizations via
simulation, following the idea described in Section 5. In order
to test the correctness, we simply generate a finite execution
trace, starting in an initial B-snapshot s1 and finishing in sn, using
the prototype and inspect the generated marking together with
the database instance. If sn corresponds to an expected state
according to Definition 11, then the test is considered to be
successful. Since the inner workings of a pattern can differ be-
tween various pattern implementations (e.g., the implementation
generates some intermediate states, which are not related to the
actual pattern model, but are used, for example, for collecting
statistics), the correctness can be also checked at any step of such
pattern’s finite execution trace.
Prototype. In this work we have chosen CPN Tools v4.0 [11]
(CPN Tools, visited 03/2019:) for the modeling and simulation.
As compared to other PN tools like Renew v2.5 (Renew, visited
03/2019: http://www.renew.de/), CPN tools supports third-party
extensions that can address the persistence and data logic layers
of db-nets. Moreover, CPN Tools handles sophisticated simulation
tasks over models that use the deployed extensions. To support
db-nets, our extension11 adds support for defining view places
together with corresponding SQL queries as well as actions, and
realizes the full execution semantics of db-nets using Java and a
PostgreSQL database.
Simulation. We illustrate the correctness for the majority of the
formalized patterns from Section 4 using the simulation in our
CPN Tool extension. We focus on the following case studies:
Message Translator, Splitter, Content Enricher and Aggregator. In
addition, we discuss the case of a flawed example of the Content-
based Router pattern from Example 15. Together, these patterns
denote the most frequently used patterns in practice according
to [28] and cover patterns from five out of seven categories
discussed in Section 4 (excluding “control flow only” and “control
flow with transacted resources”).
Message Translator, Splitter. The realization of a variant of the
message translator from Fig. 6 is shown in Fig. 21. Here, as input,

11 CPN Tools extension for timed db-net and pattern models is available for
download (visited 03/2019): https://github.com/dritter-hd/db-net-eip-patterns.

http://www.renew.de/
https://github.com/dritter-hd/db-net-eip-patterns

D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439 17

c
s

t

Fig. 22. Splitter in CPN tools.
Fig. 23. Content enricher in CPN tools.
the pattern receives a delimiter-separated string and translates it
into a list of strings using a special function StrToList defined in
CPN Tools. The final marking of the net shows the expected state
sexpected = ⟨Iexp,mexp⟩ in which the database instance is empty
(thus not shown) and the net is having only CH2 marked such
that mexp(CH2) = {(‘‘msg1’’), (‘‘msg2’’), (‘‘msg3’’)}.

The Splitter from Fig. 7 is implemented as shown in Fig. 22. In
this model, we have two input messages ([‘‘M1’’, ‘‘M2’’, ‘‘M3’’],A,
B) and ([‘‘M4’’, ‘‘M5’’, ‘‘M6’’],A,B) consisting of iterable objects
of size three each as well as pre and post data values A and
B. These two messages are then split into six single objects of
a shape (A, ‘‘Mi’’,B), for i ∈ {1, . . . , 6}. The partial execution
of the Splitter in Fig. 22 demonstrates the second message to
be already split (see the three output messages in place CH3),
whereas the first message is ready to be split (i.e., the split
transition is enabled12). Note that the current marking of the net
an be already intermediately tested against the expected state
expected = ⟨Iexp,mexp⟩ in which the database instance is empty and
the marking is having only CH3 marked such that mexp(CH3) =

{(A, ‘‘M1’’,B), (A, ‘‘M2’’,B), (A, ‘‘M3’’,B),

12 Graphically, enabled transitions are highlighted by a green frame, indicating
hat they are ready to fire.
(A, ‘‘M4’’,B), (A, ‘‘M5’’,B), (A, ‘‘M6’’,B)}.

Indeed, it is easy to see that m(CH3) ∼ mexp \ {(A, ‘‘M1’’,B),
(A, ‘‘M2’’,B), (A, ‘‘M3’’,B)}, indicating that elements of the second
message have been correctly processed, by duly adding pre and
post data values. The correctness of the splitter implementation,
as it is defined in Definition 11, naturally follows.
Content Enricher. The Content Enricher from Fig. 10 can be real-
ized as shown in Fig. 23.

The demonstrated net has three messages (namely, (13,
‘‘msg1’’), (17, ‘‘msg2’’) and (2, ‘‘msg3’’)) in its initial marking and
in its current state has already enriched message msg2 by adding
to a corresponding token an extra data value ‘‘appid-17’’ from the
storage (see place ch4), that is accessed through the view place
called db. The data in db is stored in a shape of key–value pairs
which are then matched with messages by their keys (that is,
first components of the pairs). One can see that the net is ready
to enrich msg1: the enrich msg transition is already enabled
and the data from the storage that match the key of the token
carrying msg1 had been fetched from db and placed in ch3. While
the type of data used in different applications may require to
reconfigure the query on the storage as well as to use a different
enrichment function, the topology of the net representing the
enricher remains the same. To test the correctness, we assume

18 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439

a
a

{

c
p
A
o

d
l
s

Fig. 24. Aggregator in CPN tools.
n expected state with a partial marking only. Specifically, we
re interested in mexp(ch4) =

(13, ‘‘msg1’’, ‘‘appid-13’’),
(17, ‘‘msg2’’, ‘‘appid-17’’),
(2, ‘‘msg3’’, ‘‘appid-2’’)}.

Given that the current net demonstrates the enricher being in its
intermediate state and having processed only message one out
of three, with its current marking in ch4 we have that m(ch4) ∼

mexp\{(13, ‘‘msg1’’, ‘‘appid-13’’), (2, ‘‘msg3’’, ‘‘appid-2’’)}, and thus
an conjecture that the given pattern realization works as ex-
ected.
ggregator. The Aggregator pattern in Fig. 2 can be realized using
ur CPN Tool extension as it is shown in Fig. 24.
Here we neglect the timed completion condition due to the

iffering temporal semantics in the tool. For the ease of simu-
ation, we added a table Test_Messages containing four test mes-
ages (1, 1, ‘‘text-1’’), (2, 2, ‘‘text-2’’), (3, 1, ‘‘text-3’’), (4, 2,
‘‘text-4’’), with ids from {1, . . . , 4}, two sequences {1, 2} and
a textual payload. The completion condition is configured to
aggregate after two messages of the same sequence and the ag-
gregation function concatenates the message payloads separated
by ‘|’. The expected result in the output place CH_out for the
first sequence is one message with both payloads aggregated
(1, ‘‘text-3–text-1’’).

Now, when establishing a connection to the database and to
the CPN Tools extension server, the data from the connected
database tables are queried and the net is initialized with the data

from the database in place CH_in. We simulated the aggregator
realization in Fig. 24 for the two test sequences, until one se-
quence was complete. The intermediate marking in m(CH_out) ∼

mexp \ {(‘‘text-4’’|‘‘text-2’’)}, for mexp(CH_out) =

{(‘‘text-3’’|‘‘text-1’’), (‘‘text-4’’|‘‘text-2’’)},

will eventually result into the expected outcome in CH_out and
the database.
Flawed Content-based Router. While the previously discussed pat-
tern implementations are correct, we added a flawed implemen-
tation of the Content-based Router, which is not required for the
subsequent case studies, so as to demonstrate how the simula-
tion could be used to detect an erroneous design. Content-based
Router is a pattern that takes one input message and passes it
to exactly one receiver without changing its content. This is done
by evaluating a condition per recipient on the content of the mes-
sage. Fig. 25(a) shows one out of many router implementations,
which may look correct, but, however, its process layer violates
the correct design.

For the evaluation we use the aforementioned method for
“data and (transacted) resource-bound patterns”, which is based
on the reachability of a correct database state. Such a correct state
would be a database instance with one entry in table Channel1
and an empty table Channel2. This should happen due to the
fact that the logical expressions on the arcs outgoing from T are
expected to be disjoint. Now, let us explore the inner workings
of the flawed pattern realization. In Fig. 25(a), transition T reads
the token in place I and then conditionally inserts it to the two
subsequent places. Since the value of the token matches all con-
ditions, both output places O and O receive a copy of the token
1 2

D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439 19

“

a
t
o
I

{

t

Fig. 25. Flawed Content-based Router in CPN tools.
Fig. 26. Database instance after flawed Content-based Router PN was executed
successfully”.

s it is shown in Fig. 25(b). In terms of application integration,
his could mean that two companies receive a payment request
r a sales order that was actually meant for only one of them.
n the net, the two subsequent transitions push1 and push2 are
enabled and fire by executing the database inserts defined in the
ADD_TO_CHANNEL(i, x) function, where i is being an index of one
of the Channel tables and x is a data value to be inserted. From
the net alone (i.e., in the initial state in Fig. 25(a)), the pattern
realization seems to be correct. However, after its execution, we
can see that no correct state has been reached. Indeed, after the
tokens have been processed on the control layer, the database
instance contains two entries (cf. Fig. 26), one in each table, that,
in turn, would mean that the logical expressions that are meant
to guard two different outputs are not disjoint, and by executing
T we populated both O1 and O2 (instead of generating a token in
only one of them).

Note that, when assuming one input token in I and a prece-
dence of push1 over push2, and considering that Iexp =

Channel1(8)}, the final database instance I(Channel1) comes out
o be as expected (that is, I(Channel1) ∼ I(Channel1)exp), whereas
I(Channel2) ̸∼ Iexp(Channel2). It is easy to see that, knowing the
control-flow and data aspects, a given timed db-net allows for
detecting flaws in a pattern realizations as well as provide richer
information for fixing them.
Conclusions. (5) The CPN Tools extension allows for EIP simula-
tion and correctness testing; (6) model checking implementations
beyond correctness testing are desirable.
6.3. Applicability: Case studies

The single patterns can be composed to represent integration
scenarios, for which we study the formalism with respect to its
applicability to two scenarios from the analysis: one hybrid OP2C
and one D2C scenario.

6.3.1. Hybrid integration: Replicate material
Many organizations have started to connect their on-premise

applications such as Customer Relationship Management (CRM)
systems with cloud applications such as SAP Cloud for Customer
(COD) using integration processes similar to the one shown in
Fig. 27. A CRM Material is sent from the CRM system via EDI
(more precisely SAP IDOC transport protocol) to an integration
process running on SAP Cloud Platform Integration (SAP CPI).13
The integration process enriches the message header (MSG.HDR)
with additional information based on a document number for
reliable messaging (i.e., AppID), which allows redelivery of the
message in an exactly-once service quality [4]. The IDOC structure
is then mapped to the COD service description and sent to the
COD receiver.
Formalization. For this study, we manually encoded the BPMN
scenario into a timed db-net as shown in Fig. 28. Since the
obtained timed db-net is mainly a composition of two patterns,
namely the Content Enricher in Fig. 10 and the Message Transla-
tor in Fig. 6, we just represent an abstract net topology, indicating
with places connecting input and output channels of the pat-
terns and leaving nets representing patterns as white boxes. The
database schema together with queries from the data logic layer
are omitted, since they are identical to those used for the content
enricher in Section 4.4. We would like to mention that, while the
message translator is close to the currently existing CPN solution

13 SAP CPI, visited 03/2019: https://api.sap.com/. The pattern compositions
in this catalog are represented in a BPMN model (e.g., [4]), and thus we
subsequently represent our examples in this way — this is also more expressive
in terms of message and data representation than the EIP icon notation [2].

https://api.sap.com/

20 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439
Fig. 27. SAP hybris cloud replicate material from sap business suite (a “hybrid integration” scenario).
Fig. 28. Replicate material scenario translated into its timed db-net representation (schematic).
Fig. 29. A pattern composition for the replicate scenario as a hierarchical net in CPN Tools.
{

in [8], the content enricher (including the need of querying the
persistent storage) should be represented using timed db-nets.
Consequently, the enricher is a pattern not covered before, for
which neither soundness nor correctness could be checked. It
is also noteworthy that, given that hybrid integration usually
denotes data movement between on-premise and cloud applica-
tions, which do not require complex integration logic (see [3]),
the timed db-net representation for such rather straightforward
hybrid integration scenarios gives richer insight into the data
stored in the database as well as their manipulation (as opposed
to, for example, BPMN), while the models remain still intuitively
understandable.
Simulation. The replicate material scenario in a timed db-net
(cf. Fig. 28) is implemented as hierarchical net with our CPN Tools
extension in Fig. 29, which references the pattern implementa-
tions of the enricher from Fig. 23 and translator from Fig. 21,
annotated with enricher and translator, respectively. In the
hierarchical model representing this scenario, the MSG message
from the ERP system is enriched with master data. The derived
enriched message of type EMSG is then sent to the translator that
maps the intermediate message format to the one understood
by the COD system, thus generating a new message of type
OUTPUT. Note that here the arc inscriptions abstractly account for
messages without revealing their concrete structure.

In order to check the correctness of the given scenario, one
has to keep in mind that, in general, the composition of the single
patterns in timed db-nets requires a careful, manual alignment of
the “shared” control places (e.g., ch0, ch4 and ch5) with respect
to the exchanged data and the characteristics of the neighboring
patterns. Thus it is required to carefully consider various pattern
characteristics together with input and output message types to
ensure its correctness. Assume that the expected marking in out
case is mexp(COD) =

(13, ‘‘DOC-1’’, ‘‘PROD-1’’, ‘‘appid-13’’),
(17, ‘‘DOC-2’’, ‘‘PROD-1’’, ‘‘appid-17’’),
(2, ‘‘DOC-3’’, ‘‘PROD-2’’, ‘‘appid-2’’)}.

Then, given the intermediate marking in COD, we can see that
m(COD) ∼ mexp \ {(13, ‘‘DOC-1’’, ‘‘PROD-1’’, ‘‘appid-13’’)}(2,
‘‘DOC-3’’, ‘‘PROD-2’’, ‘‘appid-2’’) and thus conjecture that the sce-
nario is correct. Note that, while the composition in Fig. 29
denotes a correct implementation of the replicate material sce-
nario, the general question of composition correctness remains
open.
Conclusions. (7) timed db-net representations allow for an un-
derstandable, sound and comprehensive representation of sin-
gle patterns and their compositions; (8) the correctness of the
compositions requires further considerations.

6.3.2. Internet of things: Predictive Maintenance and Service (PDMS)
In the context of digital transformation, an automated main-

tenance of industrial machinery is imperative and requires the
communication between the machines, the machine controller
and ERP systems that orchestrate maintenance and service tasks.
Integrated maintenance is realized by one of the analyzed D2C
scenarios in Section 6.1, which helps to avoid production outages
and to track the maintenance progress. Thereby, notifications are
usually issued in a PDMS solution as shown in Fig. 30 from SAP
CPI, represented in BPMN according to [4].

Although we simplified the scenario, the relevant aspects are
preserved. Industrial manufacturing machines, denoted by Ma-
chine, measure their own states and observe their environment

D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439 21
Fig. 30. Predictive maintenance — create notification scenario as modeled by a user (an “internet of things” scenario).
Fig. 31. Create notification scenario translated into its timed db-net representation (schematic).
with sensors in a high frequency. When they detect an unex-
pected situation (e.g., parameter crosses threshold), they send an
incident to a local endpoint (e.g., IoT edge system), the PDMS,
indicating that a follow-on action is required. The PDMS system
creates alerts for the different machines and forwards them to a
mediator, connecting the PDMS to the ERP system. To throttle the
possibly high frequent alerts, several incidents are collected (not
shown) and sent as list of alerts. Before the ERP notification can
be created, additional data from the machines are queried based
on the split and single alerts, and then enriched with information
that adds the feature type. The information of the single alerts is
used to predict the impact by value and machine type, and then
gets aggregated to be sent to ERP. In case the notification has
been created successfully in ERP, the PDMS gets notified including
the service task identifier and thus stops sending the alert (not
shown).
Formalization. The BPMN scenario from Fig. 30 has been man-
ually translated into a (schematically represented) timed db-net
in Fig. 31. Since the scenario mainly relies on the patterns previ-
ously discussed in the paper, we omit their explicit representation
and put instead white boxes surrounded with input and output
channel places of such patterns so as to indicate the connection
points between them. Like that, we hide the Splitter (Fig. 7),
Content Enricher (Fig. 10) and Aggregator (Fig. 2) proviso that the
queries defined on top of the persistent storage are changed ac-
cording to the database schema adopted in this scenario. Namely,
the content enricher will need to query machine states in order
to get data (more precisely, additional information about feature
types) for enriching the messages, whereas the aggregator will
deal with sequences based on the machine identifiers and as the
result will produce messages of concatenated machine names.
We reveal the only query, namely Qalert , that is used to create
alerts in the PDMS system and populates the view place it is
assigned to (chalert) with pairs containing device identifiers (ID)
and corresponding critical values (ACT_VAL). We also add a part
representing the predictor pattern. With transition Predict we
consume messages (extrep) produced by the enricher and gener-
ate new ones together with the prediction by calling a function
predict .
Simulation. The predictive maintenance scenario in timed db-
nets (cf. Fig. 30) is implemented as hierarchical net with our
CPN Tools extension in Fig. 33, which references the pattern
implementations of the enricher from Fig. 23 and translator
from Fig. 24, annotated with enricher, aggregator, respec-
tively. In the original scenario, the PDMS sends lists of incidents
to the integration system to reduce the number of requests as
shown in Fig. 32. The incidents have an incident ID, a machine
ID, and the actual critical incident value (e.g., (101, 1, 76)). Un-
fortunately, due to the fact that CPN Tools does not support
third party extensions with complex data types like lists, it was
decided to make the PDMS component emit single messages
using the get report transition together with its outgoing place
PDMS (see Fig. 32). Consequently, the splitter is not required
for separating the single incidents, but the incident messages

22 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439

o
A
o
p
w
r
t
a
p
w
g
s
m
‘
R
m

u
n
m
C
p
n
c
a

6

a
a
i
r
t
(
t
c
t
p

n
t
F

Fig. 32. Create notification pattern composition as a hierarchical net in CPN tools (in the initial state).
Fig. 33. Create notification pattern composition as a hierarchical net in CPN tools (in the final state).
o
i
o
c
B
n
e
e
P
s
t

c
t
s
t
e
m
a

7

3
P
d

7

f
s
t
o
d
w
Z
s
i
t
d

f type REPORT are immediately enriched by the enricher.
fter master data has been added to the message, a new one
f type E_REPORT has been produced. The net then immediately
roceeds with predicting the impact using transition predict,
hich usually assesses the probability of a timely machine er-
or based on previous experiences with the particular machine
ype. Here, for simplicity, the prediction is always set to true
nd the results are placed into prediction result . Tokens in this
lace are then used to aggregate several incidents by machine,
here, for simplicity, we use machine identifiers to identify ag-
regator’s sequences. The aggregated incident messages are then
ent to the ERP system. With the final marking in m(ERP) and
exp(ERP) = {‘‘Assembly Robot’’, ‘‘Engine Robot’’|‘‘Engine Robot’’|

‘Engine Robot’’}, for the three incidents from machine Engine
obot and one from Assembly Robot, we can see thatm(ERP) ∼

exp and thus conjecture that the scenario is correct.
Although the resulting timed db-net provides so far

nmatched insights into the different aspects of integration sce-
arios, the complexity of the composed patterns increased even
ore, when using hierarchical nets.
onclusions. (9) timed db-net representations allow for an ex-
licit modeling of all data aspects in complex data-aware sce-
arios (e.g., roll-back, queries); (10) the formalism’s technical
omplexity might prevent non-technical users from using it on
regular basis.

.4. Discussion

With the timed db-net formalization, it is possible to model
nd reason about EAI requirements like data, transacted resources
nd time (cf. conclusions (1), (5)), going beyond the simple hybrid
ntegration scenarios (cf. conclusion (3)). Thereby the pattern
ealizations are self-contained, can be composed into complex in-
egration scenarios (e.g., Fig. 31; cf. conclusion (7)) and analyzed
cf. conclusions (4)), while leaving the extension of our tool pro-
otype to model checking as well as a formal treatment of pattern
ompositions as future work (cf. conclusions (6), (8), respec-
ively). The composition is facilitated through “sharing” control
laces, preventing unwanted side-effects between patterns.
However, there are some limitations that we briefly discuss

ext. PN classes considered in this work fall short when it comes
o generation of places, transitions or arcs (cf. conclusion (2)).
or example, Dynamic Router requires a proper representation
 d
f dynamically added or removed channels. Further, the deep
nsights into data-aware patterns and scenarios lead to the trade-
ff between sufficient information and model complexity (cf.
onclusion (9)). The complexity of PN models compared to their
PMN counterparts in Fig. 30 might not allow for modeling by
on-technical users (cf. conclusion (10)). Hence, we propose mod-
ling in a less technical modeling notation, which can be then
ncoded into PN models, e.g., for verification. Further, while the
N formalism closes the conceptual vs. implementation gap by
imulation, we leave a translation of existing EIP implementations
o timed db-nets for verification as future work.

In summary, timed db-nets allow to represent patterns not
overed before (e.g., the stateful aggregator with a timeout or
he content enricher with external resources) and check their
oundness and correctness. Note that for more complex scenarios
he timed db-net representation might become very complex,
.g., compared to a BPMN representation, and thus might be
ore suitable as formalism and not as modeling language for the
verage user (e.g., integration developer).

. Related work

We discussed related Petri net approaches in Sections 2 and
. We now briefly situate our work within the context of further
etri net formalisms, and formalizations from EAI and related
omains.

.1. Petri net formalizations

Using PNs, van Hee et al. [40] define an alternative approach
or representing and reasoning on database transactions using
pecial token vectors with identifiers and inhibitor nets. While
his could also be used similar to db-nets, we build our formalism
n db-nets due to their more comprehensive focus on (relational)
ata, operations, and persistent storage. Furthermore, there is
ork on ITCPN by van der Aalst [19] and stochastic PNs by
enie [25] that are either too restricted by time intervals with a
ingle global time in case of ITCPN or hard to practically reason as
n case of the stochastic nets. However, both works helped during
he specification of the timed db-net models. Stochastic PNs [25]
efine a priority function, whose execution semantics however
oes not suffice in representing the required ordering in REQ-1(a).

D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439 23

Q
p
i
d
a
t
c
t
r
p

i
c
t
t
f
c
o

D

c
t

A

n
2

7.2. Enterprise application integration

We found [3] that the only existing formalization of EIPs
is provided in [8] using CPNs. In particular, Fahland et al. [8]
define messages as colored tokens and uses PN transition guards
as conditions. However, it does not cover all requirements we
singled out, and hence we employ db-nets [10] as an extension
of CPNs that covers all but one of the EIPs as discussed before.
In the business process domain PNs were successfully used to
model and reason about workflow nets [41] and some resource-
[42] and data-aware [43]) extensions, without however tackling
EIP requirements. Although our create notification and predictive
maintenance scenarios have been captured in BPMN [4], we do
not consider BPMN as a suitable formalism for our objectives
(i)–(iii), however, build on a formalization by PNs, which were
employed to define the BPMN control-flow semantics [44].

Similar to the BPMN and PN notations, several domain-specific
languages (DSLs) have been developed that describe integration
scenarios. Apart from the EIP icon notation [2], there is also
the Java-based Apache Camel DSL by Ibsen et al. [31], and the
UML-based Guaraná DSL by Frantz et al. [45]. However, none of
these languages aim to be verification-friendly formal integration
scenario representations. Conversely, we do not strive to build
another integration DSL. Instead we claim that all of the inte-
gration scenarios expressed in such languages can be formally
represented in our formalism, so that formal analysis can be
applied to their scenarios.

There are also other works on formal representations of in-
tegration patterns, e.g., Mederly et al. [46] represents messages
as first-order formulas and patterns as operations that add and
delete formulas, and then applies AI planning to find a process
with a minimal number of components. While this approach
shares the formalization objective, our approach applies to a
broader set of objectives (e.g., formal analysis, simulation). Fur-
thermore, the data, transactional database and time semantics are
not covered (e.g., cf. REQ-2, REQ-3, REQ-4). Mendes et al. [47] use
“high-level” Petri nets as a language for the verification of service-
oriented manufacturing systems, that is similar to the approach
of Fahland and Gierds [8] for the integration patterns.

7.3. Interaction and architecture patterns

In the related service-oriented architecture domain, service
interactions and service interaction patterns were formalized.
Works on service interactions largely target formalizations of
service orchestration and choreographies (i.e., similar to composi-
tions of patterns). Those, e.g., for web services [48–50] are mainly
based on process algebras that account for our time requirements,
but, however, lack database transaction semantics (cf. REQ-4).
The same holds true for approaches using π-calculus (e.g., by
Decker et al. [51]) or coming from the workflow domain (e.g., by
Puhlmann et al. [52]).

The approaches to formalize object-oriented, architectural pat-
terns, or component-based systems (e.g., Alencar et al. [53] or
Allen et al. [54]) focus on pattern descriptions up to runtime in-
stantiation. Nevertheless, they do not cover, e.g., time, transaction
and execution semantics (cf. REQ-3, REQ-4).

7.4. Business process management

An early algorithmic work by Sadiq and Orlowska [55] applied
reduction rules to workflow graphs for the visual identification of
structural conflicts (e.g., deadlocks) in business processes. From a
control flow perspective, we use a similar base representation,
which we extend by data, transacted database semantics, and
time (e.g., cf. REQ-2, REQ-3, REQ-4). Furthermore, we use graph
 o
rewriting for optimization purposes. In Cabanillas et al. [56], the
structural aspects are extended by a data-centered view of the
process that allows to analyze the life cycle of an object, and
check data compliance rules. Although this provides a view over
the required data, it neither covers transactional database or
time aspects (e.g., cf. REQ-3, REQ-4) nor proposes formal analysis
capabilities for the extended EIPs. All in all, the main focus is
rather left on the object life cycle analysis of the process.

In the workflow interaction domain, again workflow nets and
workflow modules are used, e.g., by van der Aalst and Weske [57],
and Martens [58], respectively. Furthermore, service interaction
patterns are formalized using the composition capabilities of Petri
nets provided by open nets (e.g., by van der Aalst et al. [59] or as
open workflow nets by Massuthe et al. [60]) that will become of
interest for formalizing compositions of timed db-nets, which is
left as future work.

8. Conclusion

This work aims at providing the formal underpinning for re-
sponsible EAI along research questions Q1–Q4. Responsible EAI
means to ground EIPs as basic building blocks on a formalization
that meets relevant EAI requirements with respect to control
flow, data, time, and transactional properties (↦→ Q1). Q1 could be
sufficiently addressed by a thorough analysis of EAI requirements
in comparison with existing formalisms and the development of
the timed db-net formalism that adds the crucial, yet missing time
requirement to existing formalism of db-nets [10]. Moreover,
the formalism is supposed to be equipped with full execution
semantics which was achieved for timed db-net in this work (↦→
2). With this the formalization and execution of EIPs becomes
ossible. In order to bridge the EIP formalization to EIP real-
zations, an instructive catalog of realizations of EIPs as timed
b-net models was provided (↦→ Q3). With the verification results
nd the possibility of correctness testing based on execution
races, validation of EIPs realizations is enabled (↦→ Q4). This is
omplemented with the possibility to simulate EIP realizations
hrough a prototypical implementation (↦→ Q4). In summary, the
esearch questions and objectives set out in the beginning of the
aper could be addressed.
This work focuses on the formalization and realization of EIPs

n an isolated manner. EAI solutions, however, often require the
omposition of EIPs. Such EIP composition necessitate formal
reatment as well. Putting the responsible design of EIPs at stake
hrough their informal compositions is counterproductive. Hence,
uture work will address the formalization and realization of EIP
ompositions in interplay with the formalization and realization
f EIPs as proposed in this work.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

This research has been partially supported by the project Plan-
ing for WORkflow Management (PWORM), funded through the
017 call issued by the Research Committee of the Free University

f Bozen-Bolzano, Italy.

24 D. Ritter, S. Rinderle-Ma, M. Montali et al. / Information Systems 101 (2021) 101439
References

[1] D.S. Linthicum, Enterprise Application Integration, Addison-Wesley, 2000.
[2] G. Hohpe, B. Woolf, Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions, Addison-Wesley, 2004.
[3] D. Ritter, N. May, S. Rinderle-Ma, Patterns for emerging application

integration scenarios: A survey, Inf. Syst. 67 (2017) 36–57.
[4] D. Ritter, J. Sosulski, Exception handling in message-based integration

systems and modeling using BPMN, Int. J. Coop. Inf. Syst. 25 (2) (2016).
[5] D. Ritter, S. Rinderle-Ma, Toward a collection of cloud integration patterns,

arXiv preprint arXiv:1511.09250, 2015.
[6] D. Ritter, M. Holzleitner, Integration adapter modeling, in: Interna-

tional Conference on Advanced Information Systems Engineering (CAiSE),
Springer, 2015, pp. 468–482.

[7] V.G. Cerf, Responsible programming, Commun. ACM 57 (7) (2014) 7–7.
[8] D. Fahland, C. Gierds, Analyzing and completing middleware designs for

enterprise integration using coloured petri nets, in: International Confer-
ence on Advanced Information Systems Engineering (CAiSE), 2013, pp.
400–416.

[9] D. Ritter, S. Rinderle-Ma, M. Montali, A. Rivkin, A. Sinha, Formalizing ap-
plication integration patterns, in: 2018 IEEE 22nd International Enterprise
Distributed Object Computing Conference (EDOC), IEEE, 2018, pp. 11–20.

[10] M. Montali, A. Rivkin, Db-nets: On the marriage of colored petri nets and
relational databases, T. Petri Nets Other Models Concurr. 12 (2017) 91–118.

[11] K. Jensen, L.M. Kristensen, L. Wells, Coloured petri nets and cpn tools for
modelling and validation of concurrent systems, Int. J. Softw. Tools Technol.
Transf. 9 (3–4) (2007) 213–254.

[12] K. Peffers, T. Tuunanen, M.A. Rothenberger, S. Chatterjee, A design science
research methodology for information systems research, JMIS 24 (3) (2007)
45–77.

[13] S. Lasota, Decidability border for petri nets with data: WQO dichotomy
conjecture, in: Application and Theory of Petri Nets and Concurrency -
37th International Conference (ICATPN), Springer, 2016, pp. 20–36.

[14] F. Rosa-Velardo, D. de Frutos-Escrig, Decidability and complexity of
petri nets with unordered data, Theoret. Comput. Sci. 412 (34) (2011)
4439–4451.

[15] M. Triebel, J. Sürmeli, Homogeneous equations of algebraic petri nets, arXiv
preprint arXiv:1606.05490, 2016.

[16] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, J. Van den Bussche,
DFL: A dataflow language based on petri nets and nested relational
calculus, Inf. Syst. 33 (3) (2008) 261–284.

[17] E. Badouel, L. Hélouët, C. Morvan, Petri nets with structured data, in:
Application and Theory of Petri Nets and Concurrency - 36th International
Conference (ICATPN), 2015, pp. 212–233.

[18] D. Ritter, Database processes for application integration, in: British
International Conference on Databases (BICOD), Springer, 2017, pp. 49–61.

[19] W.M. van der Aalst, Interval timed coloured petri nets and their anal-
ysis, in: Application and Theory of Petri Nets and Concurrency - 14th
International Conference (ICATPN), 1993, pp. 453–472.

[20] J. Sifakis, Use of petri nets for performance evaluation, Acta Cybernetica 4
(2) (1980) 185–202.

[21] L. Jacobsen, M. Jacobsen, M.H. Møller, J. Srba, Verification of Timed-Arc
Petri Nets, in: SOFSEM 2011: Theory and Practice of Computer Science -
37th Conference on Current Trends in Theory and Practice of Computer
Science, Springer, 2011, pp. 46–72.

[22] W. Zuberek, D-timed petri nets and modeling of timeouts and protocols,
Trans. Soc. Comput. Simul. 4 (4) (1987) 331–357.

[23] B. Berthomieu, M. Diaz, Modeling and verification of time dependent
systems using time petri nets, IEEE Trans. Softw. Eng. 17 (3) (1991)
259–273.

[24] S. Akshay, B. Genest, L. Hélouët, Decidable classes of unbounded petri
nets with time and urgency, in: Application and Theory of Petri Nets and
Concurrency - 37th International Conference (ICATPN), Springer, 2016, pp.
301–322.

[25] A. Zenie, Colored stochastic petri nets, in: International Workshop on
Timed Petri Nets, 1985, pp. 262–271.

[26] G. Balbo, Introduction to stochastic petri nets, in: Lectures on Formal
Methods and Performance Analysis: First EEF/Euro Summer School on
Trends in Computer Science (FMPA), Springer, 2001, pp. 84–155.

[27] Y. Hu, S. Sundara, J. Srinivasan, Supporting time-constrained sql queries in
oracle, in: VLDB, 2007, pp. 1207–1218.

[28] D. Ritter, N. May, K. Sachs, S. Rinderle-Ma, Benchmarking integration
pattern implementations, in: Proceedings of the 10th ACM International
Conference on Distributed and Event-Based Systems, ACM, 2016, pp.
125–136.

[29] H. Zhu, X. He, A methodology of testing high-level petri nets, Inf. Softw.
Technol. 44 (8) (2002) 473–489.

[30] A. Kolmogorov, Sulla determinazione empirica di una leggi di distribuzione,
Inst. Ital. Attuari Giorn. 4 (1933) 83–91.

[31] C. Ibsen, J. Anstey, Camel in Action, Manning, 2010.
[32] B. Beizer, Software Testing Techniques, Dreamtech Press, 2003.
[33] G.J. Myers, T. Badgett, T.M. Thomas, C. Sandler, The Art of Software Testing,

Vol. 2, Wiley Online Library, 2004.
[34] R.N. Taylor, D.L. Levine, C.D. Kelly, Structural testing of concurrent

programs, IEEE Trans. Softw. Eng. 18 (3) (1992) 206–215.
[35] S. Morasca, M. Pezze, Using high-level petri nets for testing concurrent

and real-time systems, Real-Time Syst.: Theory Appl. 132 (1990) 119–131.
[36] D. Lee, M. Yannakakis, Principles and methods of testing finite state

machines-a survey, Proc. IEEE 84 (8) (1996) 1090–1123.
[37] R.M. Hierons, Checking states and transitions of a set of communicating

finite state machines, Microprocess. Microsyst. 24 (9) (2001) 443–452.
[38] B. Beizer, Software Testing Techniques, second ed., Van Nostrand Reinhold

Co., New York, NY, USA, 1990.
[39] B. Farwer, I.A. Lomazova, A systematic approach towards object-based petri

net formalisms, in: Perspectives of System Informatics, 4th International
Andrei Ershov Memorial Conference (PSI), 2001, pp. 255–267.

[40] K.M. Van Hee, N. Sidorova, et al., Generation of database transactions with
petri nets, Fund. Inf. 93 (1–3) (2009) 171–184.

[41] W.M. Van der Aalst, The application of petri nets to workflow management,
J. Circuits Syst. Comput. 8 (01) (1998) 21–66.

[42] M. Martos-Salgado, F. Rosa-Velardo, Dynamic soundness in resource-
constrained workflow nets, in: Formal Techniques for Distributed Systems,
Springer, 2011, pp. 259–273.

[43] R. De Masellis, C. Di Francescomarino, C. Ghidini, M. Montali, S. Tessaris,
Add data into business process verification: Bridging the gap between
theory and practice, in: Proceedings of the 31st Conference on Artificial
Intelligence (AAAI), 2017, pp. 1091–1099.

[44] R.M. Dijkman, M. Dumas, C. Ouyang, Formal semantics and analysis of
bpmn process models using petri nets, Tech. rep., Queensland University
of Technology, 2007.

[45] R.Z. Frantz, A.M. Reina Quintero, R. Corchuelo, A domain-specific language
to design enterprise application integration solutions, Int. J. Coop. Inf. Syst.
20 (02) (2011) 143–176.

[46] P. Mederly, M. Lekavỳ, M. Závodský, P. Navra, Construction of messaging-
based enterprise integration solutions using AI planning, in: CEE-SET, 2009,
pp. 16–29.

[47] J.M. Mendes, P. Leitão, A.W. Colombo, F. Restivo, High-level petri nets
for the process description and control in service-oriented manufacturing
systems, Int. J. Prod. Res. 50 (6) (2012) 1650–1665.

[48] A. Brogi, C. Canal, E. Pimentel, A. Vallecillo, Formalizing web service
choreographies, Electron. Notes Theor. Comput. Sci. 105 (2004) 73–94.

[49] R. Gorrieri, C. Guidi, R. Lucchi, Reasoning about interaction patterns in
choreography, in: Formal Techniques for Computer Systems and Business
Processes, Springer, 2005, pp. 333–348.

[50] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, G. Zavattaro, Choreography and
orchestration: A synergic approach for system design, in: 3rd International
Conference on Service-Oriented Computing (ICSOC), Springer, 2005, pp.
228–240.

[51] G. Decker, F. Puhlmann, M. Weske, Formalizing service interactions, in:
4th International Conference on Business Process Management (BPM),
Springer, 2006, pp. 414–419.

[52] F. Puhlmann, M. Weske, Using the π-calculus for formalizing work-
flow patterns, in: 2nd International Conference on Business Process
Management (BPM), Springer, 2005, pp. 153–168.

[53] P.S. Alencar, D.D. Cowan, C.J.P.d. Lucena, A formal approach to architectural
design patterns, in: 3rd International Symposium of Formal Methods
Europe (FME), Springer, 1996, pp. 576–594.

[54] R. Allen, D. Garlan, A formal basis for architectural connection, ACM Trans.
Softw. Eng. Methodol. (TOSEM) 6 (3) (1997) 213–249.

[55] W. Sadiq, M.E. Orlowska, Analyzing process models using graph reduction
techniques, Inf. Syst. 25 (2) (2000) 117–134.

[56] C. Cabanillas, M. Resinas, A. Ruiz-Cortés, A. Awad, Automatic generation
of a data-centered view of business processes, in: 23rd International Con-
ference on Advanced Information Systems Engineering (CAiSE), Springer,
2011, pp. 352–366.

[57] W.M. van der Aalst, M. Weske, The p2p approach to interorganizational
workflows, in: 13th International Conference on Advanced Information
Systems Engineering (CAiSE), Springer, 2001, pp. 140–156.

[58] A. Martens, Analyzing web service based business processes, in: 8th Inter-
national Conference on Fundamental Approaches To Software Engineering
(FASE), Springer, 2005, pp. 19–33.

[59] W.M. van der Aalst, A.J. Mooij, C. Stahl, K. Wolf, Service interaction:
Patterns, formalization, and analysis, in: International School on For-
mal Methods for the Design of Computer, Communication and Software
Systems, Springer, 2009, pp. 42–88.

[60] P. Massuthe, W. Reisig, K. Schmidt, An Operating Guideline Ap-
proach to the SOA, Humboldt-Universität zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultät II, Institut für Informatik, 2005.

http://refhub.elsevier.com/S0306-4379(19)30491-0/sb1
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb2
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb2
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb2
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb3
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb3
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb3
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb4
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb4
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb4
http://arxiv.org/abs/1511.09250
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb6
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb6
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb6
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb6
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb6
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb7
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb8
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb8
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb8
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb8
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb8
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb8
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb8
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb9
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb9
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb9
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb9
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb9
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb10
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb10
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb10
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb11
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb11
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb11
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb11
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb11
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb12
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb12
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb12
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb12
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb12
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb13
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb13
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb13
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb13
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb13
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb14
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb14
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb14
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb14
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb14
http://arxiv.org/abs/1606.05490
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb16
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb16
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb16
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb16
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb16
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb17
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb17
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb17
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb17
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb17
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb18
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb18
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb18
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb19
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb19
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb19
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb19
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb19
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb20
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb20
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb20
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb21
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb21
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb21
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb21
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb21
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb21
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb21
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb22
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb22
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb22
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb23
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb23
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb23
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb23
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb23
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb24
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb24
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb24
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb24
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb24
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb24
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb24
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb25
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb25
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb25
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb26
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb26
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb26
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb26
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb26
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb27
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb27
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb27
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb28
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb28
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb28
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb28
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb28
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb28
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb28
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb29
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb29
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb29
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb30
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb30
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb30
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb31
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb32
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb33
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb33
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb33
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb34
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb34
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb34
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb35
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb35
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb35
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb36
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb36
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb36
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb37
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb37
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb37
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb38
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb38
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb38
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb39
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb39
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb39
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb39
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb39
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb40
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb40
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb40
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb41
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb41
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb41
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb42
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb42
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb42
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb42
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb42
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb43
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb43
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb43
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb43
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb43
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb43
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb43
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb45
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb45
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb45
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb45
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb45
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb46
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb46
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb46
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb46
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb46
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb47
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb47
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb47
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb47
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb47
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb48
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb48
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb48
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb49
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb49
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb49
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb49
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb49
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb50
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb50
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb50
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb50
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb50
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb50
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb50
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb51
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb51
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb51
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb51
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb51
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb52
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb52
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb52
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb52
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb52
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb53
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb53
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb53
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb53
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb53
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb54
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb54
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb54
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb55
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb55
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb55
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb56
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb56
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb56
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb56
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb56
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb56
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb56
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb57
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb57
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb57
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb57
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb57
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb58
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb58
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb58
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb58
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb58
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb59
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb59
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb59
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb59
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb59
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb59
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb59
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb60
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb60
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb60
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb60
http://refhub.elsevier.com/S0306-4379(19)30491-0/sb60

	Formal foundations for responsible application integration
	Introduction
	Formalization requirements analysis
	Pattern analysis and categories
	From categories to requirements
	Requirements summary

	Integration pattern formalization
	The db-net Framework
	Timed db-nets
	Checking reachability over timed db-nets

	Formal pattern realizations
	Control flow: Load balancer
	Data flow: Message translator, splitter
	Data and control flow: Content-based router
	Data flow with transacted resources: Content enricher, resequencer
	Control flow with transacted resource and time: Circuit breaker
	Control flow with time: Throttler, delayer
	Data flow with transacted resources time: Aggregator
	Discussion

	Correctness testing
	Control flow patterns
	Data flow and (transacted) resource patterns
	Timed patterns
	Erroneous patterns

	Evaluation
	Comprehensiveness of timed db-nets
	Simulation: Pattern correctness testing
	Applicability: Case studies
	Hybrid integration: Replicate material
	Internet of things: Predictive Maintenance and Service (PDMS)

	Discussion

	Related work
	Petri net formalizations
	Enterprise application integration
	Interaction and architecture patterns
	Business process management

	Conclusion
	Declaration of competing interest
	Acknowledgment
	References

