
Preventing Object-centric Discovery of Unsound
Process Models for Object Interactions with

Loops in Collaborative Systems:
Extended Version

Janik-Vasily Benzin1, Gyunam Park2, and Stefanie Rinderle-Ma1

1 Technical University of Munich, Germany; TUM School of Computation,
Information and Technology

{janik.benzin,stefanie.rinderle-ma}@tum.de
2 Chair of Process and Data Science, Computer Science, RWTH-Aachen University,

gnpark@pads.rwth-aachen.de

Abstract. Object-centric process discovery (OCPD) constitutes a para-
digm shift in process mining. Instead of assuming a single case notion
present in the event log, OCPD can handle events without a single case
notion, but that are instead related to a collection of objects each having
a certain type. The object types constitute multiple, interacting case no-
tions. The output of OCPD is an object-centric Petri net, i.e. a Petri net
with object-typed places, that represents the parallel execution of mul-
tiple execution flows corresponding to object types. Similar to classical
process discovery, where we aim for behaviorally sound process models as
a result, in OCPD, we aim for soundness of the resulting object-centric
Petri nets. However, the existing OCPD approach can result in viola-
tions of soundness. As we will show, one violation arises for multiple
interacting object types with loops that arise in collaborative systems.
This paper proposes an extended OCPD approach and proves that it
does not suffer from this violation of soundness of the resulting object-
centric Petri nets. We also show how we prevent the OCPD approach
from introducing spurious interactions in the discovered object-centric
Petri net. The proposed framework is prototypically implemented.

Keywords: Process mining · Object-centric Process Discovery · Object-
centric Petri Nets · Behavorial Soundness.

1 Introduction

Object-centric process discovery (OCPD) shifts the focus of process discovery
from classical event logs with a single case notion relating events of a single busi-
ness process execution to the often more realistic object-centric event logs [3,4,5].
Events in an object-centric event log are not related to a single case notion, but
instead are related to multiple objects of a certain object type. Each of these
objects’ execution flow is recorded in the respective events. If multiple objects
interact, the corresponding event is related to these multiple objects. Hence, an

ar
X

iv
:2

30
3.

16
68

0v
1

 [
cs

.A
I]

 2
9

M
ar

 2
02

3

2 Janik-Vasily Benzin et al.

object-centric event log records the execution history of multiple, interacting ex-
ecution flows. Since classical process discovery techniques such as the Inductive
Miner [15] assume a single case notion, none of the existing techniques can be
directly applied to an object-centric event log. Although flattening presents an
approach to extract single case notions from object-centric event logs, the re-
sulting simple event logs can suffer from the issues of convergence, i.e., events
have to be duplicated, divergence, i.e., the actual order of events is lost, and
deficiency, i.e., events are missing in the simple event log [4,5].

To discover holistic process models that highlight the relationship between
the various execution flows based on object-centric event logs, [5] proposes the
only existing OCPD approach that discovers holistic process models in the form
of object-centric Petri nets. Object-centric Petri nets are better suited than
artifact-centric process models [11,10] and Object-centric Behavioral Constraint
(OCBC) models [8,16,6,7] as starting point for analysing processes spanning mul-
tiple object types as artifact-centric process models do not visualize the overall
business process in a single diagram and OCBC models tend to quickly be-
come too complex and the corresponding discovery and conformance checking
approach are not very scalable [5].

Similar to classical process discovery [1,3], OCPD should discover sound
object-centric Petri nets, since otherwise objects may be left at some point in
their execution flow leading to an object-centric Petri net that only accepts
the empty language or some activities can never be executed. For the exist-
ing OCPD approach, two limitations can be identified for settings in which the
OCPD approach fails to discover sound process models or introduces restrictions
for the business process that are not supported by the given object-centric event
log. These settings can arise in multi-agent systems [19], service compositions,
service orchestrations [20], and process choreographies [12], i.e., in collaborative
systems characterized by collaboration between various entities whose workflows
are modeled as a business process [21,14].

In these settings, OCPD can discover process models of a multi-agent sys-
tem, a service composition, a service orchestration, and a process choreography
by conceptualizing similarly behaving agents, similarly behaving services, and
business processes in process choreographies as object types respectively. As
a consequence, object interactions in the object-centric Petri net model syn-
chronous interaction patterns between collaborating agents, services and busi-
ness processes. These interaction patterns can quickly become complex [14] and
atypical for classic object-centric settings due to the lack of a central control-
ling authority [21,20]. To handle synchronous interaction patterns in OCPD, [19]
propose to specify a set of interaction pattern models as additional input that
result in sound process models by design. Hence, the approach in [19] depends
on specified interaction pattern models as additional input to discover sound
process models. As the approach in [19] does not allow loops in the workflow
of an agent, the set of discoverable process models is limited. In contrast, our
proposed extensions to overcome the two limitations of OCPD do not require
models of interface patterns and can handle loops.

Title Suppressed Due to Excessive Length 3

Table 1. Two fragments L1, L2 of event logs (fragments are separated by the horizontal
line in the table). Each event can refer to objects of a certain object type (columns
services to service provider are object types). An event is represented by a row (except
the header).

id activity timestamp retail credit
corporate

credit
coordinator customer

service
provider

0ab63 initialize 2023-03-10T15:55:28 H H {151a3} H H

6b0b9 receive request 2023-03-10T15:55:29 H H {151a3} H {0a3a3}
ddf21 delegate request 2023-03-10T15:55:30 H H {151a3} {ec135} H

kj875 fail on request 2023-03-11T11:00:31 H H {ec135} H

9c7f8 receive request 2023-03-11T11:00:32 H H {151a3} {ec135} H

207f2 escalate request 2023-03-11T11:00:33 H H {151a3} H H

b2589 check statement 2023-03-12T15:50:25 {a0287} H H H H

9e602 check statement 2023-03-12T15:50:26 H {677f7} H H H

65145 report to authority 2023-03-12T15:50:37 {a0287} {677f7} H H H

To illustrate the benefits and limitations of applying OCPD to collaborative
systems, Table 1 contains two object-centric event log fragments L1 and L2. The
first fragment is recorded in information systems that support a “coordinator”
agent in running a marketplace that matches requests by “customer agents”
with services to fulfil the requests offered by “service provider” agents. Hence,
to discover a process model for the multi-agent system in terms of the respective
agent’s workflow and the interaction patterns between agents, we conceptualize
the three agent types as object types. Given the process model, we can apply
further techniques such as conformance checking to uncover problems in the
marketplace [12].

The multi-agent system of matching requests results in the following inter-
action pattern. After initializing, the “coordinator” receives a request from the
“customer”, i.e., event with id “6b0b9” records objects of types “coordinator”
and “customer”. The “coordinator” delegates the request to a matching “service
provider” that subsequently fails on the request and, thus, gives the request back
to the “coordinator”. From the point of the ”coordinator”, another request is
received (cf. event with id “9c7f9”). This request is at last escalated to signal
employees of the “coordinator” agent that a manual matching has to take place.
From the viewpoint of the “coordinator”, the activity “receive request” repre-
sents the DO-part of a loop with the REDO-part being the “delegate request”.
From the viewpoint of “customer”, the three activities are in sequential order
due to the first “receive request” being unrelated to “customer”. The mismatch
of activity labels recorded in the event log with the semantics of the real-world
activities, namely that the activity receiving a request is semantically depen-
dent on further attributes, e.g., customer agents vs. service provider agents in
this case, and the context, e.g., the fact that the second request was already
delegated before, presents a serious problem for the existing OCPD techniques
in [5,19]. The loop for the “coordinator” agent excludes the technique in [19].
While the technique in [5] is generic enough that it can be applied, it discovers an

4 Janik-Vasily Benzin et al.

object-centric Petri net depicted in Figure 1 that deadlocks after transition “t1”
fired, i.e., the model is unsound. As we assume an event log as the only input
and require handling of loops, we extend the OCPD approach to overcome the
limitation of discovering unsound process models in light of object interactions
with loops.

escalate request

delegate request fail on request

receive request

initialize

Coordinator

Coordinator Coordinator

Coordinator

Customer

Customer

Service Provider Service Provider Service Provider

Service Provider

c1

p1
p2

p3

p4

p4

p5

t1

t2

t5t3

t4 1

1

1

c2

c3 c4

Fig. 1. Unsound accepting object-centric Petri net AN1 discovered for the first event
log fragment L1 by the OCPD approach [5] due to object interactions with loops
contained in L1. Object types of places, e.g. coordinator, are denoted below a place
and depicted by color and final markings are denoted as red number next to a place.
Initial markings are depicted by tokens and chosen in [5] such that the respective
agent’s workflow starts with its’ first activity.

report to authoritycheck statementRetail Credit Retail Credit

Retail

Credit

Corporate Credit
Corporate Credit Corporate Credit

s1

g1 g2 g3

s2

s3

t1 t2

1

1

Fig. 2. Sound accepting object-centric Petri net AN2 discovered for the second event
log fragment L2 by the OCPD approach [5]. Due to the spurious interaction introduced
by the OCPD approach, the object-centric Petri net AN2 cannot replay the event log
fragment L2, as transition t1 can only fire once.

The second fragment L2 shows three events recorded in information systems
of a bank. These information systems support a bank’s different business pro-
cesses “retail credit” and “corporate credit” transactions [13]. Despite the differ-
ence in business processes, every transaction has to be similarly reported in the
annual report to an authority 3. Consequently, the first two events recording the
activity of checking credit statements are only related to either “retail credit” or
“corporate credit”, but an event recording the activity of reporting to an author-
ity is related to both “retail credit” and “corporate credit”. Although the event

3 https://www.ifrs.org/

Title Suppressed Due to Excessive Length 5

log does not record any interaction between the “retail credit” and “corporate
credit” business processes for “check statement”, the OCPD approach introduces
a spurious interaction (cf. Figure 2). The spurious interaction restricts the exe-
cution of the respective business processes in the process orchestration without
support by the object-centric event log.

To discover process models for collaborative systems, we formalize the two
identified limitations for the OCPD approach. We propose three extensions of
the generic OCPD approach to overcome the limitations. To that end, generaliza-
tions of workflow nets and soundness to the object-centric setting are defined and
a constructive approach to formalize and prove how properties of object-centric
event logs translate into desired properties of the discovered object-centric Petri
net is presented.

The remainder is structured as follows. Section 2 introduces preliminaries on
OCPD. Section 3 formalizes desired properties of OCPD concepts and interaction
patterns contained in event logs that represent problems for the OCPD approach
and identifies two such patterns, i.e., two limitations of the OCPD approach.
Then, Section 4 presents three extensions of the OCPD approach to overcome
the limitations with tool support. Next, Section 5 describes related work. Finally,
Section 6 concludes this work and presents limitations.

2 Preliminaries

We state basic notations and definitions (Sect. 2.1) required for OCPD (Sect. 2.2).
The existing generic OCPD approach [5] is presented in Sect. 2.2. d.

2.1 Basic Notations and Definitions

Given a function f P X Ñ Y , we denote it’s domain X as dompfq “ X and its
range as ranpfq “ ty P Y |DxPXfpxq “ yu Ď Y . Given set X 1 Ď X, we denote
the restriction of function f on X 1 as fæX1“ tpx

1, fpx1qq|x1 P X 1u4. We extend
function application to sets fpX 1q “ ty P Y |DxPX1fpxq “ yu for X 1 Ď X, also
for n-ary functions fn P X1 ˆ . . . ˆXn Ñ Y , fpX 1q “ fpX 1 ˆ . . . ˆX 1q “ ty P
Y |Dx1,...,xnPX1fpx1, . . . , xnq “ yu. A partial function f P X Û Y is only defined
for elements x P X that are in the domain x P dompfq, i.e., fpx1q is undefined
for x1 R dompfq.

A trace σ of length n over X is an ordered collection σ P t1, . . . , nu Ñ X with
|σ| “ n. The set of all sequences over X is denoted as X˚. Given a universe of
activity names Uact, a simple event log is a multiset of traces LSEL P BpUact˚q “
USEL. Traces record business process executions that are modelled as a labeled
Petri net. In the following, we use common definitions, semantics and notation
for labeled Petri nets, accepting Petri nets, workflow nets and soundness of
workflow nets and refer to [5,25,1] for details. The universe of accepting Petri
nets is denoted as UAPN . A place-bordered fragment N 1 of a labeled Petri net N

4 The restriction is similarly defined and denoted for relation R Ď X ˆX.

6 Janik-Vasily Benzin et al.

is a weakly connected subnet with N 1 “ pP 1, T 1, FæP 1ˆT 1 , læT 1q, P
1 Ď P , T 1 Ď T ,

FæP 1ˆT 1“ F XppP 1ˆT 1qY pT 1ˆP 1qq such that all vertices x1 P P 1YT 1 that are
connected to vertices x P pP Y T q zpT Y P q in N that do not belong to N 1 are
places, i.e., tx1|px1, tq P F zF 1 _ pt, x1q P F zF 1u Ď P 1.

A discovery technique disc is a function mapping simple event logs onto
accepting Petri nets, i.e., disc P USEL Ñ UAPN [5]. In the following, we denote
with IM P USEL Ñ UAPN the Inductive process discovery technique (Inductive
miner) [15]. The Inductive miner discovers process trees that correspond to sound
accepting Petri nets [15,25], e.g., Ñ pa,ö pb, cqq for activities a, b, c P Uact a
sequence of activity a and a loop with DO-part b and REDO-part c.

2.2 Object-centric Event Logs, Petri Nets and Process Discovery

Events in an object-centric event log are defined with the following universes.

Definition 1 (Object-centric Event Log [5]). L “ pE,ĺEq is an object-
centric event log with E Ď Uevent and ĺEĎ E ˆ E such that:

– ĺE defines a partial order (reflexive, antisymmetric, and transitive),
– @e1,e2PEπeipe1q “ πeipe2q ñ e1 “ e2,
– @e1,e2PEe1 ĺE e2 ñ πtimepe1q ď πtimepe2q,

given the following universes:

– Uevent “ Uei ˆ Uact ˆ Utime ˆ Uomap ˆ Uvmap is the universe of events.
– Uei is the universe of event identifiers,
– Utime is the universe of timestamps,
– Uot is the universe of objects types,
– Uoi is the universe of object identifiers,
– type P Uoi Ñ Uot assigns precisely one object type to each object identifier,
– Uomap “ tomap P Uot Û PpUoiq|@otPdompomapq@oiPomappotqtypepoiq “ otu is

the universe of all object mappings indicating which object identifiers are
included per type5,

– Uatt is the universe of attribute names,
– Uval is the universe of attribute values, and
– Uvmap “ Uatt Û Uval is the universe of value assignments.

Given e “ pei, act, time, omap, vmapq P Uevent, we define the following event
projections: πeipeq “ ei, πactpeq “ act, πtimepeq “ time, πomappeq “ omap,
πvmappeq “ vmap. We denote the set of event logs as UOCEL.

Hence, an event e “ pei, act, time, omap, vmapq P Uevent is identified by
its unique event identifier ei, the activity act, a timestamp time and the two
mappings omap and vmap that reference the objects related to the event and
the attribute values. For the first row of Table 1 describing event e0, we have
πeipe0q “ 0ab63, πactpe0q “ initialize, πtimepe0q “ 2023-03-10T15:55:28,

5 We assume that if ot R dompomapq, then omappotq “ H.

Title Suppressed Due to Excessive Length 7

πomappe0qpcoordinatorq “ t151a3u, πomappe0qpCustomerq “
πomappe0qpservice providerq “ H, andπvmappe0qpatq “ K for all at P UAN .

As stated in Section 1, a single case notion is missing in an event log L P
UOCEL, but instead each event is related to objects of certain object types that
is captured in omap. Any of these object types ot can be used to flatten the event
log into a simple event log Lot having a single case notion defined by objects of
that object type. We denote the flattening of an event log as flattenot and refer
to [5] for a formal definition.

Note, that after flattening, the flattened event log can be used as a simple
event log such that all classical process discovery techniques can be applied on
the flattened event log. As described in Section 1, flattening can introduce serious
issues into the flattened, simple event log in the form of divergence, convergence
and deficiency. As these issues are not critical to the limitations in Section 3 and
extensions in Section 4, we refer to [4,5] for a formalization of these issues.

By typing places with a function pt P P Ñ Uot, the respective execution flows
of objects of a certain type are distinguished in a labeled Petri net. Furthermore,
multiple objects of a given object type can be related to a single event e such
that variable arcs connected to a transition labeled with the activity of e are
possible. Extending labeled Petri nets with place types and variable arcs results
in an object-centric Petri net.

Definition 2 (Object-centric Petri Net [5]). An object-centric Petri net
is a tuple ON “ pN, pt, Fvarq where N “ pP, T, F, Lq is a labeled Petri net,
pt P P Ñ Uot maps places onto object types, and Fvar Ď F is the subset of
variable arcs.

Without the well-formed property stated in [5], it is possible for a transition
to have a variable arc from a place of object type ot1 and a non-variable arc to
another place of object type ot1, i.e., objects of type ot1 disappear. As this is
not desired, well-formed object centric Petri nets exclude such structures.

In the following, we omit to say well-formed object-centric Petri net, as any
forthcoming object-centric Petri net is meant to be well-formed and refer to
[5] for a formal definition. In contrast to the markings of labeled Petri nets,
markings in an object-centric Petri net carry object identifiers. Consequently,
possible tokens have to mind the respective place type. Due to variable arcs,
it is possible for a transition to consume multiple tokens at once during firing.
What tokens, i.e. what object identifiers of a certain object type, are consumed
is captured in function b P Uomap and denoted in a binding pt, bq for transition
t.

Definition 3 (Marking, Binding Execution [5]). Let ON “ pN, pt, Fvarq
be an object-centric Petri net with N “ pP, T, F, lq. QON “ tpp, oiq P P ˆ
Uoi|typepoiq “ ptppqu is the set of possible tokens. A marking M of ON is
a multiset of tokens, i.e., M P BpQON q. Let ON “ pN, pt, Fvarq be an object-
centric Petri net with N “ pP, T, F, lq. B “ tpt, bq P TˆUomap|dompbq “ tplptq^
@otPtplnvptq|bpotq| “ 1u is the set of all possible bindings. pt, bq P B is a binding
and corresponds to the execution of transition t consuming selected objects from

8 Janik-Vasily Benzin et al.

the input places and producing the corresponding objects for the output places
(both specified by b). conspt, bq “ rpp, oiq P QON |p P ‚t ^ oi P bpptppqqs is the
multiset of tokens to be consumed given binding pt, bq. prodpt, bq “ rpp, oiq P
QON |p P t ‚^oi P bpptppqqs is the multiset of tokens to be produced given binding
pt, bq. Binding pt, bq is enabled in marking M P BpQON q if conspt, bq ďM . The
occurence of an enabled binding pt, bq in marking M leads to the new marking

M 1 “M ´ conspt, bq ` prodpt, bq. This is denoted as M
pt,bq
ÝÝÝÑM 1.

In contrast to labeled Petri nets, the execution of a transition t P T in an
object-centric Petri net consumes objects from its pre-set ‚t and produces objects
to its post-set t‚ as tokens are objects.

Similar to the accepting Petri nets, an accepting object-centric Petri net
defines an initial and final marking.

Definition 4 (Accepting Object-centric Petri Net [5]). An accepting object-
centric Petri net is a tuple AN “ pON,Minit,Mfinalq composed of an object-
centric Petri net ON “ pN, pt, Fvarq, an initial marking Minit P QON , and a
final marking Mfinal P QON . The universe of all accepting object-centric Petri
nets is denoted as UAN .

Analogous to a process discovery technique disc P USEL Ñ UAPN that
discovers accepting Petri nets given a simple event log, OCPD techniques ocpd P
UOCEL Ñ UAN discover accepting object-centric Petri nets given an event log.
As the only existing OCPD technique that discovers accepting object-centric
Petri nets, the idea behind the generic OCPD approach of [5] is as follows.

As depicted in Figure 3, the generic OCPD approach ocpdbase is decom-
posed into three general mappings. First, discOT flattens the event log for each
of the n “ |OT | object types appearing in the log and discovers accepting
Petri nets with a process discovery technique disc. Second, mergen merges all
discovered accepting Petri nets into a single labeled Petri net by taking the
union of places, transitions, the flow relation and labeling function. The merg-
ing is defined such that only transitions having the same activity label result
in the same transition name, i.e., only transitions with the same activity la-
bel result in the same transition in the merged Petri net. Third, finalize adds
place types, variable arcs and initial and final markings to yield an accept-
ing object-centric Petri net. All in all, the resulting object-centric Petri net
ON is characterized by the n accepting Petri nets discovered for each object
type: ONæot“ APNot “ pNot, T ot, F ot, læT otq with Not “ tp P P |ptppq “ otu,
T ot “ tt P T |DpP‚tYt‚ptppq “ otu, and F ot “ F X ppP ot ˆ T otq Y pT ot ˆP otqq (cf.
Figure 3).

Despite its flexibility with respect to the employed process discovery tech-
nique and the method to identify variable arcs, the proposed OCPD approach
has two limitations for discovering process models for collaborative systems.

Title Suppressed Due to Excessive Length 9

Object-centric
event log

Simple
event logs

Accepting
Petri nets

Labeled
Petri net

Accepting
Object-centric

Petri net

Fig. 3. Overview of OCPD approach [5].

3 Limitations of OCPD Approach: Object Interactions
with Loops and Spurios Interactions

First, we elaborate on discovering process models for collaborative systems that
lead to the limitations of the OCPD approach in Sect. 3.1. To represent and
formalize the limitations of the OCPD approach, we propose generalizations
of desired properties for object-centric Petri nets, introduce the notion of an
interaction pattern contained in the event log that constitutes a problem for
the OCPD approach and isolate the merging and finalizing mappings as critical
for discovering desired object-centric Petri nets in a central property of OCPD
(Sect. 3.2). Then, the object interactions with loops limitations is defined as
a pattern and shown to be leading to the discovery of unsound object-centric
Petri nets by the OCPD approach (Sect. 3.3). Finally, the spurious interaction
limitation is conceptualized (Sect. 3.4).

3.1 Discovery of Process Models for Collaborative Systems

The main conceptual idea behind the discovery of process models for collabora-
tive systems, i.e., multi-agent systems, service compositions, service orchestra-
tions and process choreographies, is the interpretation of similarly behaving (=
similar workflow) system entities, e.g., agents, services or partner business pro-
cesses, as object types. We can abstract from the specific entity of the respective
collaborative system, e.g., an agent or a service, as long as we have an event log
from the collaborative system and aim to discover a process model, because each
entity exhibits a workflow recorded through events in the event log.

If OCPD aims to discover a business process instead of a collaborative sys-
tem process model, an object type groups objects with a similar workflow, e.g.,
“orders”, “items”, and “packages” in [4], such that the OCPD approach discov-
ers WF-nets for each object type. For a business process, object interactions are
the result of relationships between object types in the data model of the busi-
ness process, e.g., a one-to-many relationship between the “order” object type

10 Janik-Vasily Benzin et al.

and the “item” object type. By conceptualizing similarly behaving entities of
collaborative systems as object types, the OCPD approach discovers a process
model of a collaborative system and the collaboration model of the collaborative
system replaces the data model of a business process.

public task control flow message flow

+

Cu
st

om
er

start

+

Prepare
own

services

Receive
request

Finalize
request

Se
rv

ic
e

Pr
ov

id
er

Acquire
end

customer

Fulfil
end

customer end

start

Delegate
request

Fail on
request

end

Bundle
offering

Succeed on
request

Co
or

di
na

to
r

Initialize
start

Receive
request

Receive
request

Receive
request

Delegate
request

end

Finalize
 request

Escalate
request

Manual
matching

Fig. 4. Collaboration model resulting in the object interaction with loops pattern.
Activities in gray are not in the event log fragment L1 in Table 1.

In Figure 4, a collaboration model for the example of a multi-agent system
with a “coordinator”, “customer” and “service provider” from Section 1 is de-
picted. Activities of the collaboration model correspond to activity labels of the
respective event recorded in the event log fragment L1. Activities in gray are not
part of the event log fragment. The collaboration model shows that the “coor-
dinator” models receiving requests from the “customer” with the same activity
label as receiving requests from the “service provider”. Hence, the interaction
pattern depicted in the collaboration model and explained in detail in Section 1
results in the object interactions with loops pattern. The OCPD approach dis-
covers unsound process models (cf. Figure 1) for collaborative systems that ex-
hibit the object interactions with loops pattern, because it has the limitation
of expecting similar activity labels to refer to similar object interactions that is
particularly problematic for discovering process models of collaborative systems.

Collaborative systems are characterized by a lack of a central authority gov-
erning the system [21] such that activity labels have to be interpreted with more
caution than in the settings with a central authority, e.g., a business process
of a company. A controlled vocabulary cannot be assumed in these situations
[20] and interaction patterns in a collaboration model can become more complex
than data model relationships [19]. Moving to the more fine-grained attribute
equivalence [20] reveals that the activity label of receiving a request in Figure 4

Title Suppressed Due to Excessive Length 11

from a “customer” and a “service provider” is not the same. One of our exten-
sions to the OCPD approach in Section 4 builds on the concept of attribute
equivalence.

3.2 Properties of Object-centric Petri Nets

The workflow net as a structural property and its soundness as a behavior prop-
erty are central concepts in process mining [1]. In object-centric process mining,
these concepts are generalized to object-centric workflow nets and object-centric
soundness.

Definition 5 (Object-centric Workflow Net). An object-centric Petri net
ON “ pN, pt, Fvarq is an object-centric WF-net iff:

– Every ot-type projection of the well-formed object-centric Petri net is a WF-
net, i.e., for every ot P ranpptq, ONæot is a WF-net. We denote the respective
source places as iot and sink places as oot of the ot-type projection ONæot.

– N is weakly connected.

Hence, we require each ot-type projection to be a WF-net and we only al-
low object types to occur in an object-centric WF-net for which the event log
recorded at least one object interaction with other object types appearing in the
event log.

Definition 6 (Object-centric Soundness). An accepting object-centric WF-
net AN “ pON,Minit,Mfinalq is sound iff:

– Initial and final marking agree with ot-type projections’ ON æot source and
sink, i.e., @otPranpptq Minit z ptiotuˆUoiq “ H^Mfinal z ptootuˆUoiq “ H.

– Option to complete, i.e., let RpON,Mq denote the set of markings reachable
from marking M , then @MPRpON,Minitq Mfinal P RpON,Mq.

– No dead transitions, i.e., @tPT DM,M 1PRpON,MinitqDbPB M
pt,bq
ÝÝÝÑM 1.

We say sound object-centric WF-net instead of object-centric sound object-centric
WF-net.

Since an object-centric WF-net has as many source and sink places as it has
object types, the initial and final marking of the accepting object-centric Petri
net is only allowed to mark these. The property of ”option to complete” and ”no
dead transitions” is a straightforward generalization for object-centric Petri nets
using the binding executions. In Figure 5, a sound object-centric WF-net for the
log fragment L1 in Table 1 is depicted. Similar to the corresponding collaboration
model in Figure 4, the “coordinator” first receives a request from a “customer”
and only later receives a request from the “service provider”. Despite the object
interactions with loops pattern in the log fragment, Figure 5 shows that a sound
object-centric WF-net exists that can model the behavior of the collaborative
system.

12 Janik-Vasily Benzin et al.

delegate request

fail on request

receive request

initialize

Coordinator

Coordinator

Coordinator

Coordinator CoordinatorCoordinator

Customer
Customer

receive requestc1
p4

p5

t1

t2 t5

t6

t3 t4

1

1

1

c2

c2

c3

c4

c5
c6

Service Provider

Service Provider

Service Provider

p1

p2 p3

escalate request

Fig. 5. Sound object-centric WF-net for the log fragment L1 that corresponds to the
collaboration model of the collaborative system.

As explained in Section 1, we only assume an event log as input to the OCPD
approach such that the collaboration model in Figure 4 cannot be directly used.
Nevertheless, the collaboration model defines the interaction patterns between
the entities of a collaborative system. As explained in Sect. 3.1, these interaction
patterns correspond to object interactions in the event log. Consequently, we
formalize interaction patterns of collaborative systems as object interactions on
an event log.

The notion of an object-centric event log pattern is a logical formula that is
satisfied iff the interaction pattern of a collaboration model is contained in the
event log. Therefore, it can be checked for a given event log whether the OCPD
approach faces the corresponding interaction pattern by evaluating the logical
formula defining the pattern given events of the event log.

Definition 7 (Object-centric Event Log Pattern). An event log pattern is
a formula ϕ in first-order logic with variables over the universe of events Uevent
that corresponds to an interaction pattern of the collaborative system such that
the set of event logs satisfying ϕ is a strict subset of the universe of event logs,
i.e., UOCELæϕ“ tL “ pE,ĺEq P UOCEL|DE1ĎE ϕpE1qu Ă UOCEL. We say that
if L P UOCELæϕ, the event log L contains the pattern ϕ. We denote the universe
of event log patterns as Upt. Given L P UOCELæϕ, we define the event log L ϕ
as the event log in which all the events that satisfy pattern ϕ are removed, i.e.,
L ϕ “ pE ϕ,ĺE ϕ

q with E ϕ the largest subset of E such that ϕpE ϕq.

In Figure 4, the first interaction between the “customer” and the “coordi-
nator” corresponds to the object-centric event log pattern ϕ that is true for
an event e iff there exist two distinct object types ot1, ot2 appearing in the
event log such that the event records objects of both types, i.e. πomappeqpot1q ‰
H ^ πomappeqpot2q ‰ H. By defining interaction patterns on event logs, we do
not require collaboration models in discovering process models of collaborative
systems with the OCPD approach. As defined, given a pattern and an event
log containing the pattern, we denote the largest event (sub)log by L ϕ that
does not contain the pattern anymore. This allows us to isolate the problematic
events from the other events in an event log, thus, enabling us to prove for OCPD
approach extensions that the extension discovers sound object-centric Petri nets
given event logs containing the pattern.

Definition 8 (PT -Sound Object-centric Process Discovery Technique).
Let PT Ď Upt be a set of event log patterns and L “ pE,ĺEq P UL be an event

Title Suppressed Due to Excessive Length 13

log with object types OT . Let ocpd P UOCEL Ñ UAN be an OCPD approach that
can be decomposed into three mappings ocpd “ finalize ˝mergen ˝ discOT with
discOT P UOCEL Ñ UAPN ˆ . . . ˆ UAPN , mergen P UAPN1 ˆ . . . ˆ UAPNn Ñ

UON , and finalize P UN Ñ UAN . OCPD approach ocpd is PT -sound iff for ev-
ery object-centric event log pattern ϕ P PT and for every event log L P UOCELæϕ
containing the pattern ϕ such that ocpdpL ϕq is a sound object-centric WF-net
and discOT pLq is a |OT |-length tuple of sound WF-nets it holds that:

– finalize ˝ mergenpdiscOT pLqq is a sound object-centric WF-net.

The notion of a PT -sound OCPD technique maintains the flexibility inher-
ent in the proposed generic OCPD approach and isolates potentially problematic
constructions of merging and finalizing from potential problems during the pro-
cess discovery on simple event logs. Furthermore, the patterns in focus, i.e.,
members of PT , are isolated from potential further problematic patterns in an
event log by requiring discovery of a sound object-centric WF-net for the sublog
L ϕ. As mentioned, this isolation enables proving sound OCPD techniques for
single or multiple patterns, in particular for the object interactions with loops
pattern.

3.3 Object Interactions with Loops

As described in Section 1 for the example in Table 1, the OCPD approach
discovers unsound process models in light of the object interactions with loops
pattern. The pattern is characterized by two object types in an object-centric
event log for which a loop of length one is recorded for the first object type and
the activities recorded in the DO-part of the loop do not match with respect to
the recorded object interactions.

Definition 9 (Object Interactions with Loops Pattern).
Let L “ pE,ĺEq be an object-centric event log. The object-centric event log

pattern
ϕoiwlppe1, e2, e3, e4q is true iff for events e1, e2, e3, e4 it holds that
Dot1,ot2PUot

Dact1,act2PUact
such that:

i all four events are different, i.e., πeipe1q ‰ πeipe2q ‰ πeipe3q ‰ πeipe4q,
ii the activities of the first three events are a loop of length one, i.e., πactpe1q “
act1 ^ πactpe2q “ act2 ^ πactpe3q “ act1 ^ act1 ‰ act2 ^ e1 ĺE e2 ĺE

e3 ^ πtimepe1q ă πtimepe2q ă πtimepe3q,
iii the first three events share an object of object type ot1, i.e.,

πomappe1qpot1q X πomappe2qpot1q X πomappe3qpot1q ‰ H,
iv only the second and third event share an object of object type ot2, i.e.,
πomappe1qpot2q X πomappe2qpot2q X πomappe3qpot2q “ H ^ πomappe2qpot2q X
πomappe3qpot2q ‰ H, and

v events with activity act1 before the second event are not related to the cur-
rent workflow of ot2, i.e., @oiPπomappe2qpot2qe4 ĺE e2 ^ πactpe4q “ act1 Ñ
πomappe4qpot2q X toiu “ H.

14 Janik-Vasily Benzin et al.

is the object interactions with loops object-centric event log pattern (object inter-
actions with loops pattern).

The log fragment L1 in Table 1 contains the object interactions with loops
pattern ϕoiwlp, as the second row is event e1, the third row is event e2, the
fourth row is event e4 and the fifth row is event e3 in the pattern. We conject
that both of our extensions proposed in Section 4 discover sound process models
for collaborative systems exhibiting the object interactions with loops pattern.
However, we only prove our conjecture for the following subpattern of the object
interactions with loop pattern.

Definition 10 (Object Interactions with Loops Subpattern). Let L “
pE,ĺEq be an object-centric event log. The object-centric event log pattern
ϕoiwlsppe1, e2, e3, e4q is true iff for events e1, e2, e3, e4 it holds that
Dot1,ot2PUot

Dact1,act2PUact
such that:

i all four events are different, i.e., πeipe1q ‰ πeipe2q ‰ πeipe3q ‰ πeipe4q,
ii the activities of the first three events are a loop of length one, i.e., πactpe1q “
act1 ^ πactpe2q “ act2 ^ πactpe3q “ act1 ^ act1 ‰ act2 ^ e1 ĺE e2 ĺE

e3 ^ πtimepe1q ă πtimepe2q ă πtimepe3q,
iii the first three events share an object of object type ot1, i.e.,

πomappe1qpot1q X πomappe2qpot1q X πomappe3qpot1q ‰ H,
iv the first three events do not share an object of object type ot2, i.e.,
πomappe1qpot2q X πomappe2qpot2q X πomappe3qpot2q “ H,

v the second and third event share an object of object type ot2, i.e.,
πomappe2qpot2q X πomappe3qpot2q ‰ H,

vi the fourth event and no other event contains the activities act1 or act2, i.e.,
πactpe4q ‰ act1 ^ πactpe4q ‰ act2 ^ Ee5PE πactpe5q “ act1 ^ πactpe5q “ act2,
and

vii before the third event records the second execution of the DO-part of the ob-
ject execution workflow of object type ot1, arbitrary events can be recorded
for both object types as long as they do not share activities with events ”out-
side” of the loop and introduce further object interactions, i.e., πeipe1q ‰
πeipe2q ‰ πeipe3q ‰ πeipe4q ^ e1 ĺE e4 ĺE e3 ^ πtimepe1q ă πtimepe4q ă
πtimepe3q^ ppπomappe4qpot1qXπomappe1qpot1q ‰ H^πomappe4qpot2q “ Hq_
pπomappe4qpot2q X πomappe2qpot2q ‰ H^ πomappe4qpot1q “ Hqq
^Ee5PE pπtimepe5q ă πtimepe1q_πtimepe3q ă πtimepe5qq^πactpe5q “ πactpe6q.

is the object interactions with loops object-centric event log pattern (object inter-
actions with loops pattern).

The object interactions with loops subpattern additionally requires that no
further object interactions are recorded ”within” the loop of length one and that
the activities recorded ”within” the loop do not occur outside of the loop. Hence,
the activity act1 in the DO-part of the loop represents a clearly defined border
of the subpattern. This border allows us to show that the object-centric WF-
net discovered for the events of the subpattern is a place-bordered fragment of
the object-centric WF-net discovered for the whole event log that contains the
subpattern.

Title Suppressed Due to Excessive Length 15

Lemma 1. Given the object interactions with loops subpattern ϕ “ ϕoiwlsp P
Upt, let L P UOCEL æϕ be an event log that contains the object interactions
with loops subpattern, OT be the object types and A the activities appearing in
event log L. Let Lϕ “ pE z E ϕ,ĺE z E ϕ

q be the event (sub-)log containing all
events that satisfy the subpattern ϕ and OTϕ Ď OT be the object types appearing
in Lϕ. If ocpdpL ϕq “ AN ϕ is an object-centric WF-net, ocpdpLϕq “ ANϕ
is an object-centric WF-net, and the Inductive miner IM is applied as pro-
cess discovery technique in discOT , then ANϕ is a place-bordered fragment of
ocpdpLq “ AN .

Proof. From the subpattern’s definition (vi) and (vii) (cf. Definition 10), it fol-
lows that the two object-centric WF-nets AN ϕ and ANϕ do not share any
activities and, thus, any transition labels. From the subpattern’s definition (ii)
and (vii), every trace σ P Lot1ϕ starts with act1 and ends with act1, while act1
not occurring more than twice in any of the traces. Hence, the Inductive miner
finds a loop cut at first applied on Lot1ϕ that is also a node in the process tree
discovered for Lot1 . From the subpattern’s definition (ii) and (vii), every trace
σ P Lot2ϕ starts with act2, ends with it, and neither act1 nor act2 occurring a
second time in any of the traces. Hence, the Inductive miner finds a sequence cut
first applied on Lot2ϕ that is also a node in the process tree discovered for Lot2 .
Altogether, by definition of the process tree operators and their transformations
to WF-nets [25], the object-centric WF-net ANϕ is a place-bordered fragment
of AN . ˝

The place-bordered fragment ANϕ discovered for Lϕ constitutes the fragment
of AN that is critical in the following statements about PT -soundness (cf. The-
orem 1, Theorem 2 and Theorem 3).

Theorem 1. For PT “ tϕoiwlspu the OCPD approach ocpdbase is PT -unsound.

Proof. We prove the theorem by providing a counterexample for the opposite.
Let L be an event log with the six events with event ids 0ab63, 6b0b9, ddf21,
kj875, 9c7f8 and 207f2 in Table 1. The four events with event ids 6b0b9, ddf21,
kj875 and 9c7f8 satisfy ϕoiwlsp such that event log L contains subpattern ϕoiwlsp.
L ϕoiwlsp

consists of events with event ids 0ab63 and 207f2, for which ocpdbase
trivially discovers a sound object-centric WF-net. As can be seen in Figure 1,
ocpdbase discovers sound WF-nets for all three object types coordinator, Cus-
tomer and service provider, e.g. with α` miner [18], Inductive miner [15], Heuris-
tics miner [22], ILP miner [24] or Region-based miner [2] for discotpLotq. The
accepting object-centric Petri net in Figure 1 shows that after transition ”t1”
labeled with activity ”initialize” no further transition can fire, thus violating
the ”no dead transitions” property required for an object-centric sound object-
centric WF-net. ˝

Theorem 1 shows that the existing OCPD approach discovers unsound pro-
cess models for all event logs containing the object interactions with loops sub-
patterns. In Section 4, we propose two extensions to the OCPD approach such
that the extended approaches discover sound process models for all event logs
containing the subpattern.

16 Janik-Vasily Benzin et al.

3.4 Spurious Interactions

The spurious interactions pattern ϕsi P Upt is contained in an event log L P
UOCEL æϕsi

iff for two different object types ot1, ot2 appearing in the event
log there exist at least two different events e1, e2 with the same activity label
πactpe1q “ πactpe2q “ act such that these two events do not share objects of type
ot1, ot2, one event of the two events is related to an object of type ot1, the other
related to an object of type ot2 and there does not exist any other events e3 with
the same activity label that share objects of types ot1, ot2.

Since the OCPD approach ocpdbase expects in the merging of accepting Petri
nets mergen for transitions t1 P discpL

ot1q, t2 P discpL
ot2q with the same activity

label lot1pt1q “ lot2pt2q “ act that these are supported by object interactions in
the event log, all transitions with the same activity label are merged into a
single transition of the merged labeled Petri net (cf. Figure 2). In case of an
event log containing the spurious interactions pattern, this merging results in
merged transitions for activity label act that are not supported by the event log.
Consequently, the accepting object-centric Petri net restricts the behavior of the
process model, i.e., the respective object execution workflows for ot1, ot2 cannot
execute the transition labeled with act independently, but have to synchronize.
However, this restriction on the behavior in the process model is not supported by
the event log. In Sect. 4.2, the approach to overcome this limitation is presented.

4 Approaches to Overcome Limitations: Object
Interactions with Loops and Spurious Interactions

The two limitations object interactions with loops and spurious interactions are
both caused by the expectation of the merging mergen of the OCPD approach
ocpdbase that similar activity labels indicate similar object interactions. Despite
the same cause in the OCPD approach, the result of the two limitations on
the discovered process model are different, as the former causes the ocpdbase
to discover unsound process models, while the latter does not affect soundness,
but restricts the behavior possible in the process model without support by the
event log. In Sect. 4.1, two extensions to ocpdbase are proposed that overcome
the object interactions with loops pattern and it is shown for its subpattern that
these extensions discover sound process model despite the event log containing
the problematic subpattern. In Sect. 4.2, an extension to ocpdbase is proposed
that overcomes the spurious interactions limitation by removing the restriction
introduced to the process model without support of the event log.

4.1 Object Interactions with Loops Pattern

We propose two different approaches, different activity and similar activity, of
extending the OCPD approach ocpd to overcome the limitation of discovering
unsound process models in light of event logs containing the object interactions
with loops pattern. In the following, we present the two approaches as extensions
to the mergen and finalize mappings of the OCPD approach (cf. Sect. 2.2).

Title Suppressed Due to Excessive Length 17

Different Activity Extension of OCPD Approach Given an event log
L “ pE,ĺEq containing the object interactions with loops pattern. Identify
all events e P E that constitute the object interactions with loops pattern and
identify event e1 of the pattern, i.e., the event with id “6b0b9” and activity label
“receive request” in Table 1 that records the first execution of the receiving a
request from a “customer” (cf. collaboration model Figure 4). Relabel every
event e P E that matches the object interaction with loops pattern in the form
of e1 to a new activity label act P Uact z tπactpeq|e P Eu. Then, apply ocpdbase.
Finally, relabel the transition t P T of the accepting object-centric Petri net that
is labeled with the new activity label act back to the original activity label act1.

The process model in Figure 5 is discovered with the OCPD approach ex-
tended with the different activity extension. The process model has two transi-
tions with the activity label “receive request” corresponding to act1 in the object
interactions with loops pattern. The process model is a sound object-centric WF-
net, because the problematic object interaction in the loop discovered without
the extension (cf. Figure 1) is now separated into two distinct transitions.

In general, the OCPD approach extended with different activity ocpdda breaks
the problematic loop recorded for object type ot1 up by relabeling the first DO-
part execution such that process discovery techniques discover a sequential rela-
tionship between the relabeled activity and the subsequent activities instead of
a loop for Lot1 . For the Inductive miner, we prove this conjecture.

Lemma 2. Given the object interactions with loops subpattern ϕoiwlsp P Upt, let
L P UOCELæϕoiwlsp

be an event log that contains the object interactions with loops
subpattern, OT be the object types and A the activities appearing in event log L.
Let Lϕoiwlsp

“ pE z E ϕoiwlsp
,ĺE z E ϕoiwlsp

q be the event (sub-)log containing all

events that satisfy the subpattern ϕoiwlsp and OTϕoiwlsp
Ď OT be the object types

appearing in Lϕoiwlsp
. Let ot1, ot2 P OTϕoiwlsp

be the two object types that are
instantiated for the two variables of the same name in ϕoiwlsp and act1, act2 P
A that are instantiated for the two variables of the same name in ϕoiwlsp for
satisfying the subpattern. Then, for flattenot1prelabelϕoiwlsp

pLϕoiwlsp
qq “ Lot1

the Inductive miner discovers a process tree with a sequence operator at the root
of the tree, i.e. IMpLot1q “Ñ pact, IM1psplitÑpL

ot1qq, act1q with act P Uact z A
the new activity label 6, and for flattenot2prelabelϕoiwlsp

pLϕoiwlsp
qq “ Lot2 the

Inductive miner discovers a process tree with a sequence operator at the root of
the tree, i.e. IMpLot2q “Ñ pact2, IM1psplitÑpL

ot2q, act1q.

Proof. Because of (ii), (iii) and (vi) in Definition 10 and by definition of
relabelϕoiwlsp

, Lot1 only contains traces that start with act, end with act1, and
do not contain act1 in between, i.e., Inductive miner first applies a sequence
cut on the directly-follows graph built for Lot1 . From Definition 10 (iv) and the
definition of relabelϕoiwlsp

, it follows that no events are relabelled in Lot2 . From
Definition 10 (ii), (iv), (v) and (vi), it follows that Lot2 only contains traces

6 splitÑ is the Inductive miner’s split into sublog function for the sequence operator
[15,3].

18 Janik-Vasily Benzin et al.

that start with act2, end with act1 and do not contain neither act1 nor act2 in
between such that the Inductive miner will first apply a sequence cut. ˝

By considering the now ”aligned” sequential relationship of activities (dis-
covered by the Inductive miner) for which the two object interactions between
ot1 and ot2 are recorded, the previously problematic place-bordered fragment
ANϕ (cf. Theorem 1) becomes sound such that ocpdda becomes tϕoiwlspu-sound.

Theorem 2. If the Inductive miner is used for process discovery on flattened
event logs, then OCPD Approach extended with different activity ocpdda is a
tϕoiwlspu-sound OCPD technique.

Proof. Given the object interactions with loops subpattern ϕ “ ϕoiwlsp P Upt, let
L P UOCELæϕ be an event log containing the subpattern with object types OT “
tot1, . . . , otnu Ď Uot and activities A Ď Uact appearing in the event log such that
ocpddapL ϕq “ AN ϕ is a sound object-centric WF-net (I) and discOTda pLq is a
|OT |-length tuple of sound WF-nets (II). Let Lϕ “ pE z E ϕ,ĺE z E ϕ

q be
the event log containing all events that satisfy the subpattern ϕ. Assume that
ocpddapLq “ AN is an unsound object-centric WF-net (III). From (I), it follows
that object-centric soundness can only be violated through discovery on Lϕ.
From (II), it follows that each of the object types appearing in Lϕ result in
sound WF-nets through discovery by discda. Hence, object-centric soundness of
ocpddapLq “ AN can only be violated through finalize ˝ mergenpdiscOT pLqq.
From Lemma 1 and Lemma 2, it follows that the discovered object-centric Petri
net ocpddapLϕq “ ANϕ discovered for Lϕ is a place-bordered fragment of the
overall object-centric Petri net ocpddapLq. From (I), (II) and (III), it follows
that ANϕ is the largest place-bordered fragment of AN that is object-centric
unsound. From Lemma 2 and by definition of finalizeda, the initial and final
marking of ANϕ “ pONϕ,Minit,ϕ,Mfinal,ϕq agree with the ot-type projections’
ONϕæot source and sink for ot P OTϕ. From (II), Lemma 2, and by definition of
the subpattern (cf. Definition 10) and the mapping mergenbase, it follows that the
only markings M P RpONϕ,Minit,ϕq that do not have the ”option to complete”
property for object-centric soundness, can be markings in which a transition t P
Tϕ synchronizes the execution flows of two object types, i.e., tplptq “ tot1, ot2u Ď
OTϕ and two object types ot1, ot2 that were instantiated to satisfy subpattern ϕ,
cannot fire anymore (coinciding with the ”no dead transition” property). From
(iii-vii) of the subpattern’s definition, it follows that there are exactly two events
e2 and e3 in the event log Lϕ that constitute an object interaction. Since the
only event e1 in Lϕ with the same activity label act1 as e3 is relabeled to an
new activity label act P Uact z A, the mapping mergenbase merges exactly two
transitions that are labeled with act1 and act2, resulting in two synchronizing
transitions t1, t2 P Tϕ. Hence, for at least one of the two transitions t1 and t2
it must hold, that there does not exist a marking M P RpONϕ,Minit,ϕq such
that the transition is enabled. From Lemma 2, these two labels are sequentially
related such that the merging cannot have introduced a marking M into the set
of reachable markings RpONϕ,Minit,ϕq that does not enable either of the two

Title Suppressed Due to Excessive Length 19

transitions anymore, contradicting the assumption that AN is an object-centric
unsound WF-net. ˝

Hence, the extension construction of the OCPD approach results in a
tϕoiwlspu-sound OCPD technique. Consequently, we can apply the extended
OCPD approach to event logs recorded from multi-agent systems, service com-
positions and service orchestrations for cases in which attribute equivalence in-
dicates different real-world activities despite the same activity label. If an object
of type ot2 in event e1 of subpattern ϕoiwlsp with an identifier also recorded for
the events e2 and e3 is missing or given domain knowledge the activities of the
two events e1 and e3 refer to the same real-world activity, then the different
activity extension should not be used.

The reasoning for the similar activity interpretation, missing objects or do-
main knowledge, must be further differentiated, since the missing object can be
added to the event e1 after careful analysis of the event log such that the origi-
nal OCPD approach ocpdbase can be used. If there is no missing object and the
activity labels recorded in e1 and e3 refer to the same real-world activity, then
the similar activity extension should be used.

act1

t1

p
1

p
0

p
2

p
3

p
4

p
5

p
6

t2

te2
te1

ot1
ot1 ot1

ot2
ot2 ot2 ot2

act2 N2

N4 N3

Fig. 6. Sound accepting object-centric Petri net fragment transpANϕoiwlspq discov-
ered by the OCPD approach extended with similar activity extension by first apply-
ing the OCPD approach ocpdbase and then transforming the place-bordered fragment
ANϕoiwlsp such that it is sound. The newly added place p1, the two new silent transi-
tions t1, t2 and the respective new arcs are highlighted in blue. N1, N2, N3, N4 are the
place-bordered fragments that are discovered for events e4 in ϕoiwlsp.

The idea for the construction of the extension is to first applying the original
approach ocpdbase. Then, the extension transforms the unsound object-centric
WF-net such that the workflow of object type ot1 becomes a loop with DO-part
act1 and REDO-part act2, i.e., the workflow of object type ot2 can ”mimick” the
loop of object type ot1. Figure 6 depicts a fragment of the object-centric WF-net
that is discovered on all events that satisfy the object interactions with loops

20 Janik-Vasily Benzin et al.

pattern only. The fragment ANϕoiwlsp
is entered by marking rp0, p3s

7. Without
the new silent transition t2, the transition te1 labeled with act1 is never enabled.
The only enabled transition is t2 such that after firing t2, transition te1 is enabled.
Hence, the first executed activity is act1. After place-bordered fragments N3

and N1 are executed (corresponding to the activities of events e4 in ϕoiwlsp),
the object types ot1, ot2 can synchronize on te2 labeled with act2. Then, place-
bordered fragments N2 and N4 are executed after which ot1, ot2 synchronize on
te1 labeled with act1 again. Note, that this exactly replays the behavior recorded
in the event log Lϕoiwlsp

. For the ”option to complete” property, object type ot1
may only exit the place-bordered fragment transpANϕoiwlsp

q by synchronizing
with ot2, thereby marking the exiting places discovered for the object interactions
with loops subpattern.

Similar Activity Extension of OCPD Approach Given an event log L “
pE,ĺEq containing the object interactions with loops pattern. Identify all events
e P E that constitute the object interactions with loops pattern and identify the
corresponding two object types ot1 and ot2. The similar activity extension of the
OCPD approach works by first applying the original OCPD approach ocpdbase
and then transforming the resulting object-centric WF-net as follows.

Step 1. Apply the original OCPD approach ocpdbase “ AN with AN “

pON,Minit,Mfinal), ON “ pN, pt, Fvar, and N “ pP, T, F, lq.

Step 2. Apply a post-transformation trans P UAN Ñ UAN that transforms
the labeled Petri net N underlying the accepting object-centric Petri net AN .

Step 2a. The transformation starts by adding a place, P 1 “ P Y tp1u for
p1 R P , typing the newly added place to object type ot1, i.e., pt1 “ pt‘pp1, ot1q,
and by adding two silent transitions, i.e., T 1 “ T Y tt1, t2u for t1, t2 R T , l1 “
l ‘ pt1, τq ‘ pt2, τq.

Step 2b. The flow relation is transformed by first removing all arcs that
connect transition pte1 labeled with activity act1 to places of its post-set, because
the newly added place and one of the newly added silent transitions will connect
transition pte1 with all places of its post-set after the transformation, i.e., F b “
F ztpte1 , pq|Dte1PT lpte1q “ act1 ^ p P te1‚ ^ptppq “ ot1u.

Step 2c. The transformation adds arcs to connect transition te1 with the new
place, the new place with a new silent transition and the new silent transitions
with all places in the original post-set of the transition te1 for object type ot1, i.e.,
F c “ F bYpte1 , p1q, pp1, t1qcuptpt1, pq|Dte1PT lpte1q “ act1^p P te1‚^ptppq “ ot1u.

Step 2d. The transformation adds arcs to connect the newly added silent
transition t1 with the place in the original post-set of transition te1 of object
type ot2, i.e., F d “ F c Y tpt1, pq|Dte1PT lpte1q “ act1 ^ p P te1‚ ^ptppq “ ot2u.

Step 2e. Next, the transformation connects the place in the pre-set of tran-
sition te2 labeled with act2 with the newly added silent transition t1 and t2 and
t2 with the place in the pre-set of transition te1 , i.e., F e “ F d Y

7 We abstract from the object identifier of the marking in an object-centric Petri net
here.

Title Suppressed Due to Excessive Length 21

tpp, t1q, pp, t2q, pt2, p
1q|Dte2PT lpte2q “ act2 ^ p P ‚te2 ^ ptppq “ ot2 ^ p1 P te2‚

^ptpp1q “ ot2u.
Step 2f. Then, the place in the pre-set of transition te2 gets an incoming arc

from transition te1 such that it can fire its transition again after executing the
silent transition, i.e., F f “ F eYtpte1 , pq|Dte1 ,te2PT lpte1q “ act1^ lpte2q “ act2^
p P ‚te2 ^ ptppq “ ot2u.

Step 2g. Finally, variable arcs are transformed such that paths of variable
arcs in the original WF-net can still be traversed by variable arcs in the trans-
formed WF-net, i.e. F 1var “ Fvar X F 1 Y tpn11, n

1
2q P F zF 1|Dpn1,n2qPF

˚
var
n1 “

n11 ^ n2 “ n12u.
Step 3. Return the transformed object-centric Petri net transpANq “ AN 1

with AN 1 “ pON 1,Minit,Mfinalq, ON
1 “ pN 1, pt1, F 1varq, N

1 “ pP 1, T 1, F 1, l1q.
Transforming the object-centric Petri net changes the workflow of object type

ot2 from a sequential order to a loop such that it can ”participate” in each loop
cycle of object type ot1 and both exit the loop by synchronizing on the silent
transition t1. Similar to the different activity extension, we prove the similar
activity extension to discover sound process models for event logs containing the
object interactions with loops pattern.

Theorem 3. If the Inductive miner is used for process discovery on flattened
event logs, OCPD Approach extended with similar activity is a PT -sound OCPD
technique for PT “ tϕoiwlspu.

Proof. The proof is analogous to the proof of Theorem 2 such that we only need
to prove that the place-bordered fragment ANϕoiwlsp

is a sound object-centric
WF-net after the post-transformation trans is applied. As aforementioned, the
place-bordered fragment transpANϕoiwlsp

q is sound (cf. Figure 6). ˝

All in all, it is proven through Theorem 2 and Theorem 3 that the two
extensions overcome the object interactions with loops limitation of the OCPD
approach ocpdbase.

In general, we cannot prefer one approach over the other, as they treat the
”problematic” activity (cf. ”receive request” in Table 1 and Figure 1) in the DO-
part of the loop that first records no object interaction, but records an object
interaction in the second execution of the DO-part, fundamentally different.

The different activity approach interprets the two events recorded for the
DO-part of the loop as referring to two different activities in spite of the same
activity label. Cases that support the different activity approach are based on
information systems that record a too coarse-grained semantic granularity for ac-
tivity labels in its events such that the label equivalence becomes too imprecise.
Moving from label equivalence to attribute equivalence [20] tackles the imprecise
distinction between two events as referring to two different real-world activities
solely based on the activity label for event logs from those information systems.
By taking the object interactions into account, the two events recorded for the
DO-part refer to two different real-world activities. In contrast, the similar activ-
ity approach maintains the interpretation that the ”problematic” activity is the
same despite having no object interaction recorded between the two object types

22 Janik-Vasily Benzin et al.

in question. Cases that support the similar activity approach are data quality
issues in the form of a missing object or additional domain knowledge that leads
to the decision that the activity label recorded in the events refers to the same
executed activity in the real world.

For example, the event log depicted in Table 1 is recorded by an information
system that uses a too coarse-grained semantic granularity for its activity labels
(cf. collaboration model in Figure 4). The first ”receive request” recorded in the
event with id 6b0b9 refers to an activity in which the coordinator receives a new
request from service provider. After delegating the request to Customer, Cus-
tomer sends the request back to the coordinator, i.e., an old request is received
from a participant that is supposed to handle the request. Hence, the event with
id 9c7f8 refers to a real-world activity that is different to the previously referred
real-world activity.

Depending on the interpretation of the mismatch between activity labels
and object interactions in practice, either the different activity or the similar
activity extension is beneficial. Both extensions are prototypically implemented
in https://gitlab.com/janikbenzin/ocpd/ by extending the original OCPD
approach implemented in the Python library PM4PY8

4.2 Spurios Interactions

The spurious interaction limitation can be overcome by first relabeling one of
the two different events e1, e2 that satisfy the pattern ϕsi (cf. Sect. 3.4) to a
new activity label actnew P UactzA for A the set of activities appearing in the
event log before applying ocpdbase. After discovery of an accepting object-centric
Petri net by ocpdbase the transition labeled with actnew is relabeled back to the
original activity label act of the two events e1, e2 that satisfied the pattern.
This relabeling approach to overcome the spurious interactions limitations is
also prototypically implemented by extending the original OCPD approach (cf.
Sect. 4.1).

5 Related Work

For a comprehensive overview for related work on the OCPD approach in terms
of classical process discovery and object-centric process discovery, we refer to
[5]. [19] proposes a compositional object-centric process discovery technique for
multi-agent systems that takes the system architecture in terms of interaction
patterns into account. Various common synchronous and asynchronous interac-
tion patterns are defined using labeled Petri nets. Given an interface pattern,
the technique searches for a series of structural Petri net refinement transfor-
mations that are soundness-preserving [9] to map parts of the given interface
pattern with parts of a process model discovered for each agent individually. If a
mapping can be found, then the overall discovered process model is guaranteed

8 https://pm4py.fit.fraunhofer.de/

https://gitlab.com/janikbenzin/ocpd/
https://pm4py.fit.fraunhofer.de/

Title Suppressed Due to Excessive Length 23

to be sound. Due to the additional input of an interface pattern and the limited
set of transformations, the technique in [19] cannot discover process models for
the settings our extensions can handle.

[17] study properties of object-centric Petri nets without taking the discovery
technique into account. [17] propose a variant of our sound object-centric WF-
net definition that focuses on a single object o of a certain object type and
ignores the behavior of other objects that are required to complete o’s workflow.
Hence, our notion of a sound object-centric WF-net is stricter. [23] generalize
object-centric Petri nets to Petri nets with Identifiers and prove decidability and
verification properties of the generalized class of Petri nets.

6 Conclusion and Limitations

Analogous to classical process discovery, OCPD takes an object-centric event log
as input and discovers a process model that represents the real-world business
process in terms of the control-flow recorded in the event log. By conceptualizing
similarly behaving entities in a collaborative system as object types, we discover
a process model of the collaborative system instead of a business process. For the
only existing OCPD approach that discovers object-centric Petri nets, we iden-
tify the two limitations object interactions with loops and spurious interactions
for discovering process models of collaborative systems. The first limitation is
proven to result in an unsound process model, while for the second limitation
it is demonstrated that the resulting process model restricts the behavior of the
process model without support in the event log. Both limitations are formalized
by means of a pattern contained in the event log. We propose three extensions
for the OCPD approach to overcome the two limitations. For the two extensions
that target the object interactions with loops limitation, we design the exten-
sions such that it results in sound process models given event logs containing
the pattern.

Nevertheless, our set of interaction patterns that represent a limitation of the
OCPD approach is limited to two, although there exist more interaction patterns.
Moreover, we do not provide a proven statement on discovery of sound process
models for all patterns an event log can contain. Hence, we only demonstrate
desired properties for the process model given two limitations.

Acknowledgments

This work has been supported by Deutsche Forschungsgemeinschaft (DFG),
GRK 2201 and by the Austrian Research Promotion Agency (FFG) via the
Austrian Competence Center for Digital Production (CDP) under the contract
number 881843.

24 Janik-Vasily Benzin et al.

References

1. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova et al., N.:
Soundness of workflow nets: classification, decidability, and analysis. Form. Asp.
Comput. 23(3), 333–363 (2011)

2. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen et al., B.F.: Pro-
cess mining: a two-step approach to balance between underfitting and overfitting.
SoSyM 9(1), 87–111 (2010)

3. van der Aalst, W.M.P.: Process Mining. Springer (2016)

4. van der Aalst, W.M.P.: Object-Centric Process Mining: Dealing with Divergence
and Convergence in Event Data. In: Software Engineering and Formal Methods.
pp. 3–25. Springer (2019)

5. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fundam
Inform 175(1-4), 1–40 (2020)

6. van der Aalst, W.M.P., Li, G., Montali, M.: Object-Centric Behavioral Constraints
(Mar 2017), http://arxiv.org/abs/1703.05740, arXiv:1703.05740 [cs]

7. Artale, A., Calvanese, D., Montali, M., van der Aalst, W.M.: Enriching Data Mod-
els with Behavioral Constraints. Ontology Makes Sense 316, 257–277 (2019)

8. Artale, A., Montali, M., Tritini, S., van der Aalst, W.M.: Object-centric behavioral
constraints: Integrating data and declarative process modelling. In: Proceedings of
the 30th International Workshop on Description Logics (DL). vol. 1879. CEUR-
WS.org (2017)

9. Bernardinello, L., Lomazova, I., Nesterov, R., Pomello, L.: Property-Preserving
Transformations of Elementary Net Systems Based on Morphisms. In: Koutny,
M., Kordon, F., Moldt, D. (eds.) Transactions on Petri Nets and Other Models of
Concurrency XVI, pp. 1–23. LNCS, Springer, Berlin, Heidelberg (2022)

10. van Eck, M.L., Sidorova, N., van der Aalst, W.M.P.: Guided Interaction Explo-
ration in Artifact-centric Process Models. In: 2017 IEEE CBI. vol. 01, pp. 109–118
(Jul 2017)

11. van Eck, M.L., Sidorova, N., van der Aalst, W.M.P.: Multi-instance Mining: Dis-
covering Synchronisation in Artifact-Centric Processes. In: Daniel, F., Sheng, Q.Z.,
Motahari, H. (eds.) BPM Workshops. pp. 18–30. LNBIP, Springer International
Publishing, Cham (2019)

12. Fdhila, W., Knuplesch, D., Rinderle-Ma, S., Reichert, M.: Verifying compliance in
process choreographies: Foundations, algorithms, and implementation. Information
Systems p. 101983 (Jan 2022)

13. Jacobson, T., Lindé, J., Roszbach, K.: Credit risk versus capital requirements under
Basel II: are SME loans and retail credit really different? Journal of Financial
Services Research 28, 43–75 (2005), publisher: Springer

14. Jung, J.y., Hur, W., Kang, S.H., Kim, H.: Business process choreography for B2B
collaboration. IEEE Internet Computing 8(1), 37–45 (Jan 2004)

15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Event Logs - A Constructive Approach. In: Application and
Theory of Petri Nets and Concurrency. pp. 311–329 (2013)

16. Li, G., de Carvalho, R.M., van der Aalst, W.M.P.: Automatic Discovery of Object-
Centric Behavioral Constraint Models. In: Abramowicz, W. (ed.) Business Infor-
mation Systems. pp. 43–58. Springer International Publishing, Cham (2017)

17. Lomazova, I.A., Mitsyuk, A.A., Rivkin, A.: Soundness in Object-centric Workflow
Petri Nets (Dec 2021), http://arxiv.org/abs/2112.14994, arXiv:2112.14994 [cs]

http://arxiv.org/abs/1703.05740
http://arxiv.org/abs/2112.14994

Title Suppressed Due to Excessive Length 25

18. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.: Workflow Min-
ing: Current Status and Future Directions. In: Meersman, R., Tari, Z., Schmidt,
D.C. (eds.) On The Move to Meaningful Internet Systems 2003: CoopIS, DOA,
and ODBASE. pp. 389–406. LNCS, Springer, Berlin, Heidelberg (2003)

19. Nesterov, R., Bernardinello, L., Lomazova, I., Pomello, L.: Discovering
architecture-aware and sound process models of multi-agent systems: a compo-
sitional approach. SoSyM (1), 351–375 (2023)

20. Rinderle-Ma, S., Reichert, M., Jurisch, M.: On utilizing web service equivalence for
supporting the composition life cycle. Int. J. Web Serv. Res. 8(1), 41–67 (2011)

21. Sundaramurthy, C., Lewis, M.: Control and Collaboration: Paradoxes of Gover-
nance. Acad Manage Rev 28, 397–415 (Jul 2003)

22. Weijters, A., Ribeiro, J.: Flexible Heuristics Miner (FHM). In: 2011 IEEE CIDM.
pp. 310–317 (Apr 2011)

23. van der Werf, J.M.E.M., Rivkin, A., Montali, M., Polyvyanyy, A.: Correctness
Notions for Petri Nets with Identifiers (Dec 2022), http://arxiv.org/abs/2212.
07363, arXiv:2212.07363 [cs]

24. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Dis-
covering workflow nets using integer linear programming. Computing 100(5), 529–
556 (2018)

25. van Zelst, S.J., Leemans, S.J.J.: Translating Workflow Nets to Process Trees: An
Algorithmic Approach. Algorithms 13(11) (2020)

http://arxiv.org/abs/2212.07363
http://arxiv.org/abs/2212.07363

	Preventing Object-centric Discovery of Unsound Process Models for Object Interactions with Loops in Collaborative Systems: Extended Version

