
Towards Standardized Modeling of Collaboration
Processes in Collaboration Process Discovery

Janik-Vasily Benzin1(�) and Stefanie Rinderle-Ma1

Technical University of Munich, TUM School of Computation, Information and
Technology, Garching, Germany

{janik.benzin,stefanie.rinderle-ma}@tum.de

Abstract. Collaboration processes represent behavior of collaborating
cases within multiple process orchestrations that interact via collabora-
tion concepts such as organizations, agents, objects, and services. The
heterogeneity of collaboration concepts and types such as message ex-
change and synchronous collaboration has led to different models tar-
geted by collaboration process discovery (CPD) techniques, but a stan-
dard model class is lacking. In this paper, in order to reduce heterogeneity
among model classes and to reveal similarities between CPD techniques,
we prove that the synchronous collaboration type simulates message ex-
changes, but not vice versa. This constitutes a step towards a standard
CPD model class that achieves comparability between CPD techniques,
enables approach and property transfer, and is a condition for a stan-
dardized collaboration mining pipeline similar to process mining.

Keywords: Collaboration Process Discovery · Collaboration Process
Models · Standardization of Nets · Bisimulation · Collaboration Mining

1 Introduction

Business processes define the control-flow of business activities, i.e., what work
has to be done in what order [13]. Process discovery [1], so far, has mostly
discovered process orchestrations represented by, e.g., Petri nets, from a set of
process instances correlated by similar cases [6]. Collaboration processes define
the control-flow for similar collaborating cases [3]. As a collaboration process
consists of multiple process orchestrations that collaborate to achieve a common
business goal, its collaborating cases consist of multiple cases each corresponding
to one of the process orchestrations. Collaboration process discovery (CPD) tech-
niques such as [2,5,15] aim at discovering a process model from a set of process
instances grouped by collaborating cases.

Each collaboration occurs via various types of collaboration concepts such as
a hospital’s departments [15] or a company’s agents [24]. Also, collaboration be-
tween collaboration concepts can be classified into four collaboration types Υ : υm
is the message exchange (e.g., hospital department d1 sends a health record to
d2), υh is the handover-of-work (e.g., d1 sends a message to d2 such that d2 can

https://orcid.org/0000-0002-3979-400X
https://orcid.org/0000-0001-5656-6108

2 J.-V. Benzin and S. Rinderle-Ma

only start working on the patient as soon as the message is received), υr is the re-
source sharing (e.g., both departments use the same information system), and υs
is the synchronous collaboration (e.g., both departments consult together on how
to treat the patient) [27,16,3]. Hence, a collaboration process consists of multi-
ple collaboration concepts whose behavior is modeled as a process orchestration
that collaborate with each other. Although different proposals exist to represent
the discovered collaboration processes, e.g., composed RM WF nets [16,15] and
BPMN collaboration diagrams [20,4], a standard model class is missing [3]. Sim-
ilar to the de-facto standard of workflow nets to model process orchestrations
in process mining, a standard for collaboration processes achieves comparabil-
ity between techniques, enables transfer of approaches and properties, and lays
the foundation for a standardized and modular collaboration mining pipeline.
To delineate a potential standard model class for CPD techniques, we consider
existing model classes and aim to prove similarities between them. Hence, our
research question is: How can we reduce heterogeneity among existing
model classes of collaboration process discovery by proving similari-
ties towards standardization?

In this work, we use Petri nets as notation, as either Petri nets or BPMN
diagrams are targeted by CPD techniques and BPMN diagrams can be trans-
formed into an equivalent Petri net, e.g., [4]. Overall, we reduce heterogeneity
among existing model classes by proving that the synchronous type simulates
message exchanges, but not vice versa. We repeat basic definitions and notations
in Sec. 2. In Sec. 3, we introduce model classes for collaboration processes that
are discovered by CPD techniques. In Sec. 4, we show that models with message
exchanges are similar to models with synchronous collaboration and present the
impact of our result. Lastly, we conclude and give an outlook in Sec. 5.

2 Labeled Petri Nets, Reachability, Language, WF-Net

In the following, we shortly repeat definitions and notation.
A labeled Petri net is a 5-tuple N = (P, T, F, l, Λ{τ}), where P is the set of

places, T is the set of transitions with P ∩ T = ∅, F ⊆ ((P × T) ∪ (T × P))
is the flow relation, l : T → Λ{τ} is the labeling function, and Λ a finite set of
activity labels with the silent activity τ . We define the preset of x ∈ P ∪ T by
•x = {y | (y, x) ∈ F} and the postset of x by x• = {y | (x, y) ∈ F}. A multiset
of places m ∈ B(P) is called a marking. Given a marking m, m(p) specifies the
number of tokens in place p. The tuple (N,m) is called a marked Petri net. The
transition enabling (N,m)[t⟩ for t ∈ T is defined by (N,m)[t⟩ iff m(p) ≥ 1 for all
p ∈ •t. An enabled transition (N,m)[t⟩ can fire, which removes a token from each
of it’s input places, adds a token to each of it’s output places, and executes an
activity α ∈ Λ{τ} represented by l(t). We define this behavior in the firing rule:

(N,m)
l(t)−→ (N,m′) iff (N,m)[t⟩ and m′ + •t = m + t•1. We omit the labelled

Petri net N , if the context is clear. A trace σ = ⟨α1, . . . , αn⟩ ∈ Λ∗
{τ}

2 is a firing

1 Addition, subtraction etc. are lifted to multisets in the common way.
2 The universe of traces over alphabet Λ{τ} is denoted as Λ∗

{τ}.

Towards Standardized Modeling of Collaboration Processes 3

trace of (N,m0) iff m0
α1−→ . . .

αn−→ m′, in short m0
σ−→ m′. We define the set of

reachable markings by R(N,m0) = {m′ | ∃σ∈Λ∗
{τ}

m0
σ−→ m′} and the language

given final marking mf ∈ B(P) by L (N,m0,mf) = {σ ∈ Λ∗
{τ} | m0

σ−→ mf}. N
is a workflow net (WF-net) iff (i) there exists a single source place i ∈ P such
that its preset is empty: •i = ∅; (ii) there exists a single sink place o ∈ P such
that its postset is empty: o• = ∅; and (iii) every node x ∈ P ∪T is on a directed
path from i to o.

3 Model Classes in Collaboration Process Discovery

This section gives an overview on existing model classes targeted by CPD tech-
niques. In the past 16 years, research on collaboration mining has proposed 15
CPD techniques as depicted in Tab. 1. Each of the 15 CPD techniques target a
different model class to represent the discovered collaboration process model. 12
techniques target Petri nets and 3 techniques target BPMN models. The four dif-
ferent collaboration types (Υ): message exchange (υm), handover-of-work (υh),
resource sharing (υr), and synchronous collaboration (υs) are discovered by CPD
techniques with varying degree. Most techniques discover message exchange and
synchronous collaboration. Note that if a CPD technique discovers υm, it also
discovers υh, because υh is a special case of υm. υh corresponds to the “message
start” BPMN element, i.e., handover-of-work is a message exchange in which the
sent message enables the “first” activity in the receivers process [16,15,4].

Table 1. Overview of existing CPD techniques and their model classes.

CPD Year Model Col. Types
Comm.
Model

Net

[10] 2008 WF-nets υm - Labeled
[27] 2013 Integrated RM WF nets υm, υr, υs P2P Labeled
[19,21] 2013/15 Artifact-centric models υs - NA
[23] 2019 Communication nets υm, υh P2P Higher
[1] 2020 Object-centric Petri nets υs - Higher
[26] 2020 Top-level process model υm, υh P2P Higher
[12] 2021 BPMN Choreography υm, υh P2P Higher
[14] 2022 Industry net υm, υh P2P Labeled
[9] 2022 System net υm, υh, υs P2P Higher
[16,15] 2020/23 Composed RM WF nets υm, υh, υs, υr P2P Labeled
[24] 2023 Multi-agent system net υh P2P Labeled
[2] 2023 Typed Jackson nets υs - Higher
[18] 2023 Generalized WF-nets υm, υh, υs P2P Labeled

[20] 2023
BPMN collab. diagram

without signals
υm, υh P2P Labeled

[4,5] 2022/24 BPMN collab. diagram υm, υh P2P, Pub/Sub Higher

Interestingly, almost all CPD techniques represent a message exchange by a
place, a shared resource by a place, and a synchronous collaboration by a (fused
via equal labels) transition. The only exception for message exchanges is [4] due
to supporting a Pub/Sub communication model. In contrast to a point-to-point

4 J.-V. Benzin and S. Rinderle-Ma

(P2P) communication in which a single message is only sent and received once,
a Pub/Sub communication model allows that a sent message msg is received as
often as there are receivers subscribed (Sub) to a published (Pub) message msg.
In Tab. 1, any extension or change to the labeled Petri net definition in Sec. 2 is
considered a higher Petri net. For example, the Pub/Sub communication cannot
be represented in a labeled Petri net [11] such that the Petri net that is equivalent
to the BPMN collab. diagram of [4] is classified as a higher Petri net. In the next
section, we show how the different model classes targeted by CPD techniques
can be brought closer together.

4 Simulating Collaboration Types

In the following, we bring the various model classes closer together by showing
that synchronous collaboration suffices to also model message exchanges, but not
vice versa. To that end, we state prerequisites of our proof in Sect. 4.1. Next,
we introduce a simulation relation on collaboration types to state and prove our
claim in Sect. 4.2. Lastly, we discuss the impact of our results in Sect. 4.3.

4.1 Prerequisites

We focus on labeled Petri nets for two reasons. First, quality metrics that mea-
sure the quality of discovered models , e.g., alignment-based metrics, are mostly
defined on this “basic” formalism [7] such that a standard model class within
labeled Petri nets enables use of the majority of quality metrics. Second, labeled
Petri nets allow us to balance the complexity of the proof in the next section and
the extent to which our results impact CPD (there exists a 50/50 split between
labeled and higher in Tab. 1). As a consequence, we restrict message exchanges
to the P2P communication model.

Next, we introduce the collaboration composition (CC) as an abstract model
class that concisely represents the process orchestrations of n collaboration con-
cepts collaborating via message exchange, handover-of-work, and synchronous
collaboration in a collaboration process.

Definition 1 (Collaboration Composition). Let V = {Nc | c ∈ {1, . . . , n}}
be a set of n disjoint3 WF-nets and let PAC be a set of message types with
sending send : PAC → P(Tn

̸τ)
4 and receiving transitions rec : PAC → P(Tn

̸τ)
for Tn

̸τ = Tn \ {t ∈ Tn | l(t) = τ}, Tn =
⋃

c∈{1,...,n} Tc. The collaboration

composition (CC) is a labeled Petri net C(V, PAC , send, rec) = (P, T, F, l, Λ{τ})
defined by:

1. P =
⋃

c∈{1,...,n} Pc,

2. l′ : Tn → Λ{τ}, l
′(t) = lc(t) with c ∈ {1, . . . , n} and t ∈ Tc,

3 Two WF-nets N1, N2 are disjoint iff their place names P1 ∩ P2 = ∅ and transition
names T1 ∩ T2 = ∅ are disjoint.

4 Given set X, P(X) = {X ′ | X ′ ⊆ X ∧X ′ ̸= ∅}.

Towards Standardized Modeling of Collaboration Processes 5

3. T =
⋃

c∈{1,...,n} r(Tc), with r a renaming function: r(x) = ts if there exists
Ts ∈ ET such that x ∈ Ts and ts ∈ Ts a fixed transition with ET =
{Ts ⊆ Tn | ∀t,t′∈Ts l

′(t) = l′(t′) ∧ l′(t) ̸= τ} the set of equally-labeled (syn-
chronous) transition subsets, otherwise r(x) = x,

4. F = {(r(x), r(y)) | (x, y) ∈
⋃

c∈{1,...,n} Fc} ∪
{(r(t), pac), (pac, r(t′)) | pac ∈ PAC ∧ t ∈ send(pac) ∧ t′ ∈ rec(pac)}, and

5. l(t) = l′(t) for t ∈ T .

A CC C(V, PAC , send, rec) can only have initial markings m0 ∈ B(P) that specify
non-zero tokens m0(p) ̸= 0 for source places p = ic, c ∈ {1, . . . , n} of its Nc.

Fig. 1 depicts a marked CC (C(V, PAC , send, rec),m0) with V = {N1, N2},
PAC = {pac,1, pac,2}, send = {(pac,1, {t4}), (pac,2, {t2})}, and rec = {(pac,1, {t1}),
(pac,2, {t5})}. Note that t3 in Fig. 1 embodies the fused transition as defined in
(3), i.e., t3, t6 ∈ T 2 with l1(t3) = l2(t6) = c.

Since resource sharing υr is modeled as marked self-loop places by CPD
techniques [27,16,15], we deliberately left υr out of a CC. Self-loop places marked
with a token can be removed without changing the behavior of labeled Petri nets
[17], e.g., the language does not change. As υh is a special case of υm (cf. Sec. 3
and Fig. 1), we do not need to represent it in a CC on its own. Overall, we
focus on collaboration types Υms = {υm, υs}. We say collaboration type υs is
contained in C(V, PAC , send, rec) iff ET ̸= ∅. Likewise, we say collaboration type
υm is contained in C(V, PAC , send, rec) iff PAC ̸= ∅. For example, the CC in
Fig. 1 contains both υm and υs.

Handover-
of-work

Message
exchange

Synchronuos
Collaboration

1N

2N

t
t

t

i

p
1

pac,1

11 t

1 p2

p3

2

p4

o

o
2 2

3

pac,2
t4 5i

a

d

b

e
c

Fig. 1. Collaboration composition
C(V, PAC , send, rec) with initial
marking and two collaboration
concepts collaborating via υh, υm,
and υs.

In the next section, we apply the weak
bisimulation equivalence [25] on collabora-
tion types Υms (cf. Def. 2) to show that
message exchanges are “syntactic sugar” for
synchronous collaborations (cf. Theorem 1),
but not vice versa (cf. Theorem 2). Because
the silent activity is typically “disregarded”
for the purpose of analyzing a discovered
Petri net, e.g., by conformance checking us-
ing alignments, the weak bisimulation equiv-
alence that also “disregards” silent activities
comes with a suitable granularity of differen-
tiating labeled Petri nets. We define weak bisimulation as follows.

A labeled transition system (LTS) is a 4-tuple Γ = (S,Λ{τ}, s0,−→), where
S is a set of states, Λ{τ} is the set of labels, s0 ∈ S is the initial state, and
−→⊆ S×Λ{τ} ×S the set of labeled edges. Note that we overload the notation

of −→ similar to the firing rule in Sec. 2. We write s1
σ−→ sn+1 iff there exists

σ = ⟨α1, . . . , αn⟩ ∈ Λ∗
{τ} and s1, . . . , sn+1 ∈ S such that s1

α1−→ s2 . . . sn
αn−→

sn+1. We define the weak transition relation
α

=⇒ ⊆ S ×Λ{τ} × S with α ∈ Λ{τ}

by (i) s (
τ−→)∗ s1

α−→ s2 (
τ−→)∗ s′, if α ̸= τ , and (ii) s (

τ−→)∗ s′, if α = τ ,

where (
τ−→)∗ is the reflexive, transitive closure of

τ−→. We lift the notation
of the weak transition relation to traces in the same manner as for −→. We

6 J.-V. Benzin and S. Rinderle-Ma

define the weak bisimulation equivalence on the set of all LTS with labels Λ{τ}.

Let Γ1 =
(
S1, Λ{τ}, s0,1,−→1

)
and Γ2 =

(
S2, Λ{τ}, s0,2,−→2

)
be two LTSs. A

relation R ⊆ S1 × S2 is a weak simulation, denoted by Γ1 ⪯R Γ2, iff

i (s0,1, s0,2) ∈ R, i.e., the initial states are related; and

ii for every (p, q) ∈ R and α ∈ Λ{τ} it holds that: if p
α−→1 p′, then α = τ and

(p′, q) ∈ R, or there exists q′ ∈ S2 such that q
α

=⇒2 q′ and (p′, q′) ∈ R.

If R is symmetric, it is a weak bisimulation equivalence, written Γ1 ≈R Γ2. We
also say Γ1 is weakly bisimilar to Γ2. Two marked Petri nets (N,m0), (N

′,m′
0)

are weakly bisimilar, written (N,m0) ≈ (N ′,m′
0), iff the two LTSs ΓN,m0 =(

B(P), Λ{τ},m0,−→
)
, ΓN ′,m′

0
=

(
B(P ′), Λ{τ},m

′
0,−→′) are weakly bisimilar5.

4.2 Synchronous Collaboration simulates Message Exchange

By means of the weak bisimulation equivalence, we state the two theorems of
this paper as follows. First, any CC that only contains υm is weakly bisimilar
to another CC that only contains υs (cf. Theorem 1). Second, any CC that only
contains υs does not have a CC that only contains υm such that both are weakly
bisimilar (cf. Theorem 2). To formalize both statements, we introduce our notion
of simulating collaboration types.

Definition 2 (Simulating Collaboration Types). A type υ1 ∈ Υms sim-
ulates type υ2 ∈ Υms with υ1 ̸= υ2 iff for any marked collaboration composi-
tion (C(V, PAC , send, rec),m0) = (N,m0) that only contains type υ2, there ex-
ists a marked collaboration composition (C(V ′, P ′

AC , send
′, rec′),m′

0) = (N ′,m′
0)

that only contains type υ1 such that V ′ = V ∪ {Nc | c ∈ {n + 1, . . .}} and
(N,m0) ≈ (N ′,m′

0).

In the construction of a (N ′,m′
0) that simulates (N,m0), it is important

to prohibit changes to the WF-nets V except than extending to V ′, as other
changes to V would mean that we allow simulating collaboration types by a
collaboration concept’s internal WF-net and not by some other collaboration
type. In the following, we show that synchronous collaboration υs simulates
message exchanges υm , under three conditions: neither τ -labeled skipping nor
τ -labeled loop for sending messages of type pac ∈ PAC exist and there does not
exist a token generator [8] that can infinitely often send a message of type pac.
A τ -labeled skipping for sending pac exists iff σ ∈ Λ∗

{τ}, m1 ∈ R(N,m0) exist

such that m1
σ−→ m2, m1

τ
=⇒ m2, and sending activity l(t) occurs in σ, i.e.,

l(t) ∈ σ6 for t ∈ send(pac). A τ -labeled loop in (N,m0) for sending messages

of type pac exists iff m1
l(t)−→ m2, m1 ∈ R(N,m0) and m2

τ
=⇒ m3 such that

(N,m3)[t
′⟩ for some t, t′ ∈ send(pac). A token generator results in unbounded

states of the coverability graph (ω-states) [17] and is characterized by: There

existsm ∈ R(N,m0), σ ∈ Λ∗
{τ},m

′ ∈ B(P) such that |m′| > 0 andm
σ−→ m+m′.

5 −→ is the firing rule for (N,m0) and −→′ the firing rule for (N ′,m′
0) (cf. Sec. 2).

6 For σ = ⟨α1, . . . , αn⟩ ∈ Λ∗
{τ} and α ∈ Λ{τ}, we write α ∈ σ iff ∃i∈{1,...,n} αi = α.

Towards Standardized Modeling of Collaboration Processes 7

Theorem 1 (Synchronous execution simulates message exchange). υs
simulates υm, if for all pac ∈ PAC in C(V, PAC , send, rec): no τ -labeled skipping,
no τ -labeled loop, and no token generator exist.

Proof. Let (C(V, PAC , send, rec),m0) = (N,m0) be a marked CC that only con-
tains message exchanges υm. We prove the statement by constructing a new
WF-net Npac

for each message type pac ∈ PAC such that the new marked CC
(C(V ′, ∅, ∅, ∅),m′

0) = (N ′,m′
0) with V ′ = V ∪ {Npac

| pac ∈ PAC} is weakly
bisimilar to the CC (N,m0). Our construction is structured into four steps: Dis-
tinguishing three cases of how message exchanges occur (step 1), determining
respective transition sets for two of the cases through analyzing the coverability
graph (step 2), constructing a new WF-net Npac

given the transition sets (step
3), and defining a weak bisimulation Q ⊆ R(N,m0) × R(N ′,m′

0) to complete
the proof (step 4).
Step 1.Given pac ∈ PAC , either 1 message type pac is dead, 2 pac is optional, or
3 pac is compulsory. First, message type pac is dead iff for all t ∈ send(pac) there
is no reachable marking m ∈ R(N,m0) such that (N,m)[t⟩, i.e., the message
exchange via type pac can never occur. Second, pac is optional iff there exist
at least two firing traces σ¬, σ ∈ L(N,m0,mf) such that ∀α∈l(send(pac)) α ̸∈ σ¬
(i.e., no sending activity occurs in σ¬) and ∃α∈l(send(pac)) α ∈ σ (i.e., a sending
activity occurs in σ). The final marking mf specifies that as many tokens are
on a WF-nets Nc’s sink place oc, as the initial marking specifies for a Nc’s
source place ic, i.e., for c ∈ {1, . . . , n}: if m0(ic) = x, then mf (oc) = x. The
final marking specifies mf (p) = 0, if p ∈ P is not a sink place, i.e., p• ̸= ∅.
Third, pac is compulsory iff for every firing trace σ ∈ L(N,m0,mf) it holds that
∃α∈l(send(pac)) α ∈ σ (i.e., at least one sending activity always occurs).
Step 2. Fig. 2 depicts the WF-net Npac

that is constructed in this and the next
step. For 2 , we ensure that the WF-net Npac

that “simulates” optional mes-
sage type pac with synchronous collaboration is able to skip all transitions with
sending activities, as otherwise the corresponding markings would be missing in
R(N ′,m′

0). Skipping has to occur synchronously with transitions Tpac,× “after”
which sending cannot occur anymore (cf. Fig. 2). Also, sending activities may
be repeated in the firing trace σ (cf. 2 and 3) by traversing a loop. Hence,
our construction must ensure that the transitions Tpac,⟲ “after” which sending
occurs again and Tpac, ̸⟲,× “after” which repeated sending stops are also copied
to Npac (cf. Fig. 2). In the following, we determine the necessary transition sets
by sets of markings in the coverability graph.
Determine by breadth-first search for each pac ∈ PAC a unique set of markings
M× ⊆ R(N,m0) and set of markings M⟲ ⊆ R(N,m0) in the coverability graph.
M× is characterized by the following formula that identifies the markings from
which activities “decide” whether a message is sent or never sent. For each
m× ∈ M× it holds that m× is reachable by paths in the coverability graph in
which no sending activities α ∈ l(send(pac)) have occurred and formula γ(m×)

holds. γ(m) holds iff there exist two sets of activities A0, A1 ⊆ Λ with m
α0=⇒

m¬, α0 ∈ A0 such that for all m′ ∈ R(N,m¬) sending activities cannot occur

¬(N,m′)[t⟩ for all t ∈ send(pac) and m
α1=⇒ m1, α1 ∈ A1 such that there exists

8 J.-V. Benzin and S. Rinderle-Ma

pac

paci,

p

i

paco

ac

"skip"

"repeat"
"no repeat"

'

'pac
pt

p ,ac
p ,ac

l(

l(

)

l()

)

p ,ac

p ,ac

p ,ac

p

paco,t

pacr,p
l()
'

'

'

l()

Fig. 2. WF-net Npac constructed for message type pac ∈ PAC and its sending send(pac)
and receiving activities rec(pac). Conditional parts of the WF-net that are only con-
structed in certain cases are highlighted in blue and green.

m′ ∈ R(N,m1) that enables sending activities (N,m′)[t⟩ for some t ∈ send(pac).
Note that A0, A1 exist iff 2 holds or 3 with repeated sending, as sending and
receiving transitions cannot be labeled with the silent activity (cf. Def. 1) and no
τ -labeled skipping exists. Let A× =

⋃
m×∈M×

A0,m× be the union of activities

A0,m× that are computed to satisfy γ(m×). Define Tpac,× = {t ∈ Tn | l(t) ∈ A×}.
Note that l is a bijection for l(t) ∈ Λ, i.e., transitions are uniquely determined
by their observable label. If a transition in Tpac,× fires, no sending activity for
messages of type pac can occur.

To “simulate” loops, determine M⟲ whose markings are characterized by the
following formula that identifies the markings from which activities “decide”
whether a message will be sent again or not. For each m⟲ ∈ M⟲ it holds that
m⟲ is reachable by paths in the coverability graph in which some sending activity
α ∈ l(send(pac)) has occurred and γ(m⟲) holds. If a sending activity is repeated,
the set M⟲ cannot be empty, since the CC does not contain any τ -labelled
loops for all pac ∈ PAC . Let A⟲ =

⋃
m⟲∈M⟲

A1,m⟲ be the union of activities

A1,m⟲ that are computed to satisfy γ(m⟲). These activities indicate that sending
activities are executed again. Let Tpac,⟲ = {t ∈ T | l(t) ∈ A⟲} be the set of
transitions for message exchange pac that, if executed, result in firing traces
with repeated sending activities. Observe that Tpac,⟲ = ∅, if there are no loops
involving sending activities. We refer to Tpac,⟲ = ∅ with ̸⟲ and to the opposite
with ⟲ . Since Tpac,× only covers transitions that indicate no message of type
pac is sent at all for 2 , it misses transitions that indicate no message of type
pac is sent after a message has been sent already, i.e., a loop of repeated sending
activities is not “traversed” again. Let A0,m⟲ for m⟲ ∈ M⟲ be the sets of
activities that were computed to satisfy γ(m⟲), i.e., an activity α ∈ A0,m⟲

indicates that after some sending activity has occurred, it will not occur again.
Next, A ̸⟲,× =

⋃
m⟲∈M⟲

A0,m⟲ , and similarly: Tpac ,̸⟲,× = {t ∈ T | l(t) ∈ A ̸⟲,×}.

Towards Standardized Modeling of Collaboration Processes 9

Observe that Tpac ,̸⟲,× ̸= ∅ if ⟲ , because no token generator exists, no place
p ∈ {p | p ∈ •t ∧ t ∈ Tpac ,̸⟲,×} is a sink place, and N is composed of WF-nets.

Step 3. If either 2 or 3 , construct WF-net Npac = (Ppac , Tpac , Fpac , lpac , Λ{τ})
as depicted in Fig. 2. Note that if we say Npac

contains a part of Fig. 2, the
renamed transitions depicted by a dotted oval with their labeling depicted inside
the oval are added to Tpac

and lpac
along with the places in their depicted pre-

and postset to Ppac and depicted arcs to Fpac . For example, the green part in
Fig. 2 consists of renamed transitions T ′

pac,× with respective labels l(T ′
pac,×), i.e.,

Tpac
= Tpac

∪ T ′
pac,× and lpac

(t′) = l(t) for t′ ∈ T ′
pac,×. Also, the green part adds

the depicted arcs to Fpac
. We distinguish four cases from the combination of 2

and 3 with ̸⟲ and ⟲ . All four constructed WF-nets include the black parts in
Fig. 2 that represent a WF-net with sending and receiving transitions of pac.
Case 2 , ̸⟲ : In addition to the black part in Fig. 2, Npac

contains the green part
to skip sending messages.
Case 2 , ⟲ : In addition to the black part in Fig. 2, Npac contains the green
parts to skip sending messages and the blue part to repeat and stop repeating
sending messages. Hence, Npac

is equal to all depicted parts in Fig. 2.
Case 3 , ̸⟲ : Npac

contains the black part in Fig. 2 only.
Case 3 , ⟲ : In addition to the black part in Fig. 2, Npac

contains the blue part
to repeat and stop repeating sending messages.

Step 4. Define V ′ = V ∪{Npac
| pac ∈ PAC} with Npac

as constructed in step 3.
Then, (C(V ′, ∅, ∅, ∅),m′

0) = (N ′,m′
0). Define m′

0 similar to m0 for source places
ic of WF-nets Nc ∈ V , additionally m′

0(p) = 1 if p = ipac
, and m′

0(p) = 0
otherwise. Observe that the set of equally-labeled transitions ET ′ includes for
each pac the following transitions:
Case 3 , ̸⟲ : Because Npac only contains the black part in Fig. 2 in this case,
ET ′ includes only renamed, equally-labeled sending and receiving transitions.
Formally, for each t ∈ ET ′ such that t ∈ send(pac), t ∈ Tn another t′ ∈ ET ′

exists such that t′ ∈ send(pac)
′, t′ ∈ Tpac

with l(t) = lpac
(t′). Similarly, ET ′

includes for each t ∈ rec(pac), t ∈ Tn another t′ ∈ rec(pac)
′, t′ ∈ Tpac with

l(t) = lpac(t
′). The remaining three cases are analogous.

Define relation Q ⊆ R(N,m0)×R(N ′,m′
0) such that (m,m′) ∈ Q iff m(p′) ≤

m′(p′) for all places p′ ∈ P ′ of N ′7. Then, (N,m0) ≈Q (N ′,m′
0), since with the

exception of new τ -labelled transitions in Npac
for a message type pac, all transi-

tions of the constructed WF-nets Npac are fused with their original counterparts
in N , exactly the same flow relation is encoded in •pac and pac• as is defined by
(4) in Def. 1, and optional and repeating behavior is exactly encoded. ■

To illustrate the construction in the last theorem’s proof, Fig. 3 depicts the
marked CC (C(V ∪ {Npac,1

, Npac,2
}, ∅, ∅, ∅),m′

0) that only contains synchronous
collaboration and that is weakly bisimilar to the CC in Fig. 1. Except for fused
transitions, Npac,1 and Npac,2 are highlighted in grey in Fig. 3.

Although υs simulates υm under three conditions, all three conditions are
not realistic in many real-world collaboration processes, as τ -labeled skipping

7 If p′ ̸∈ P , m(p) = 0.

10 J.-V. Benzin and S. Rinderle-Ma

1N

N
2N

t
t

t

i
p

1

pac,1
ac,1

11

t1

p2

p3

2

p4

o

o
2 2

3

pac,2 t

4

5

i
pi

ac,1,spp

ac,1r,p

t
ac,1i,p

t
ac,1o,p

p

ac,1po

ac,2pi

ac,2,spp
t

ac,2i,p

t
ac,2o,p

ac,2r,pp

ac,2p ac,2p

N ac,1p

o

a

d

b

e
c

Fig. 3. Marked collaboration composition (C(V ∪ {Npac,1 , Npac,2}, ∅, ∅, ∅),m′
0) con-

structed to simulate υm in C(V, PAC , send, rec) (Fig. 1) by υs as shown in Theorem 1.

would mean that a collaboration concept can skip a collaboration without no-
tifying the other collaborating concepts, the τ -labelled loop condition excludes
arbitrary, non-observable sending of messages, and the existence of a token gen-
erator excludes arbitrarily creating collaboration concept instances.

The next theorem proves that synchronous collaboration υs cannot be sim-
ulated by message exchange υm.

Theorem 2 (Synchronous collaboration cannot be simulated). υm does
not simulate υs.

Proof. We prove by contradiction. Assume υm simulates υs. Let (C(V, ∅, ∅, ∅),m0)
= (N,m0) be a marked CC that contains only υs and (C(V ′, PAC , send, rec),m

′
o)

= (N ′,m′
0) be a marked CC that contains only υm such that (N,m0) ≈ (N ′,m′

0).
Observe that collaboration type υm is represented by PAC , send, and rec. From
Def. 1 (3) and (4), it follows that no transitions with different labels are merged
or changed for exchanging messages of type pac ∈ PAC . Hence, from Def. 2 it
follows that all transitions t ∈ Ts, Ts ∈ ET are still merged in (N ′,m′

0) (changing
V is prohibited) such that ET ̸= ∅ and υs is contained in (N ′,m′

0)
8. ■

Overall, our theory on collaboration types in labeled Petri nets demonstrates
that modulo weak bisimilarity, message exchange can be simulated by syn-
chronous collaboration, but not vice versa. In the next section, we elaborate
on the implications.

4.3 Impact on Collaboration Process Discovery

The impact of the two theoretical results on simulating collaboration types on
collaboration process discovery is twofold.
1. Since all CPD techniques in Tab. 1 that discover υs share the design choice to
represent υs by fusing transitions similar to a CC (cf. Def. 1 (3)), the following
statement holds at least for CPD techniques [14,24,20] that target labeled Petri

8 The statement still holds, if we enable synchronizing arbitrary transitions in a CC,
which is rarely done. Message exchange does not merge transitions and requires non-
silent sending and receiving transitions, so we can never construct a single label out
of at least a sending and receiving label.

Towards Standardized Modeling of Collaboration Processes 11

net-based classes. If a CPD technique targets a model class that does not repre-
sent synchronous collaboration υs, the CPD technique can only be advanced to
discover υs by both a structural change to the targeted model class and an algo-
rithmic change to the technique. The statement is conjectured to also hold for
CPD techniques [23,26,12,5,4] that target higher Petri net-based classes (cf. next
section). Moreover, CPD techniques that can only discover υs can be tweaked
to also discover υm by mirroring the construction of Theorem 1 in the event log,
i.e., these techniques do not need to be changed.
2. Considering labeled Petri nets for a start, the standard model class for CPD
must represent synchronous collaboration, but does not have to represent mes-
sage exchanges, as it is “syntactic sugar”. Interestingly, our result is supported
by [22] that proposes an abstraction-based technique for discovering collabora-
tion process models in a privacy-sensitive setting using the synchronous type
only. Also, the two theorems indicate that the model classes of [27,9,16,15] (incl.
υs) are indistinguishable modulo weak bisimilarity. Additionally, models in these
classes (incl. υs) can weakly simulate models from model classes [14,24,20] (excl.
υs), but not vice versa.

All in all, the apparent heterogeneity in model classes among CPD techniques
is misleading, as their models have more in common than is obvious.

5 Conclusion and Outlook

In this paper, we prove two statements that show to what extent heterogene-
ity in modeling collaboration by CPD techniques can be reduced to achieve
a more standardized model class in collaboration mining. The first statement
means that message exchanges are non-essential for discovering collaboration
processes, while the second statement means that synchronous collaborations
are essential. Hence, both a standard model class and a standard collaboration
mining pipeline must be built with synchronous collaboration at their core. In
the future, we will analyze how we can transfer the two statements to also hold
for higher Petri nets with the aim of delineating a standard model class for all
CPD techniques. Furthermore, we will apply the theoretical results in designing
a standard benchmark for CPD techniques. Moreover, we will extend the scope
of standardizing collaboration mining towards quality metrics as proposed in
conformance checking.

References

1. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Funda-
menta informaticae 175(1-4), 1–40 (2020)

2. Barenholz, D., Montali, M., Polyvyanyy, A., Reijers et al., H.A.: There and Back
Again. In: PETRI NETS 2023. pp. 37–58 (2023)

3. Benzin, J.V., Rinderle-Ma, S.: Petri Net Classes for Collaboration Mining: Assess-
ment and Design Guidelines. In: Process Mining Workshops. ICPM 2023. (2024)

4. Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F.: A technique for discovering
BPMN collaboration diagrams. SoSyM (2024)

12 J.-V. Benzin and S. Rinderle-Ma

5. Corradini, F., Re, B., Rossi, L., Tiezzi, F.: A Technique for Collaboration Discov-
ery. In: Enterprise, Business-Process and Inf, Syst. Modeling. pp. 63–78 (2022)

6. Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and ab-
straction of event data for process mining. Data Min. Knowl. Discov. 10(3) (2020)

7. Dunzer, S., Stierle, M., Matzner, M., Baier, S.: Conformance checking: a state-of-
the-art literature review. pp. 1–10. S-BPM ONE ’19, ACM (2019)

8. Esparza, J., Nielsen, M.: Decidability Issues for Petri Nets. BRICS Report Series
1(8) (1994)

9. Fettke, P., Reisig, W.: Systems Mining with Heraklit: The Next Step (2022),
arXiv:2202.01289 [cs]

10. Gaaloul, W., Bäına, K., Godart, C.: Log-based mining techniques applied to Web
service composition reengineering. Serv. Oriented Comp. Appl. 2(2), 93–110 (2008)

11. Gutnik, G., Kaminka, G.: A Scalable Petri Net Representation of Interaction Pro-
tocols for Overhearing. In: Agent Communication. pp. 50–64. Springer (2005)

12. Hernandez-Resendiz, et al.: Merging Event Logs for Inter-organizational Process
Mining. pp. 3–26 (2021)

13. Jablonski, S., Bussler, C.: Workflow management: modeling concepts, architecture
and implementation. ITP New Media (1996)

14. Kwantes, P., Kleijn, J.: Distributed Synthesis of Asynchronously Communicating
Distributed Process Models. In: ToPNoC, pp. 49–72 (2022)

15. Liu, C., Li, H., Zhang, S., Cheng et al., L.: Cross-Department Collaborative Health-
care Process Model Discovery From Event Logs. IEEE Trans. Autom. Sci. Eng.
20(3), 2115–2125 (Jul 2023)

16. Liu, C., et al.: Cross-Organization Emergency Response Process Mining: An Ap-
proach Based on Petri Nets. Math. Probl. Eng. 2020, e8836007 (2020)

17. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

18. Nesterov, R., Bernardinello, L., Lomazova, I., Pomello, L.: Discovering
architecture-aware and sound process models of multi-agent systems: a compo-
sitional approach. SoSyM (1), 351–375 (2023)

19. Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic Discovery of Data-
Centric and Artifact-Centric Processes. In: BPM Workshops. pp. 316–327 (2013)

20. Peña, L., Andrade, D., Delgado, A., Calegari, D.: An Approach for Discovering
Inter-organizational Collaborative Business Processes in BPMN 2.0. In: Process
Mining Workshops. ICPM 2023. pp. 487–498 (2024)

21. Popova, V., Fahland, D., Dumas, M.: Artifact Lifecycle Discovery. Int. J. Coop.
Inf. Syst. 24(01), 1550001 (2015)

22. Rafiei, M., Van Der Aalst, W.M.P.: An Abstraction-Based Approach for Privacy-
Aware Federated Process Mining. IEEE Access 11, 33697–33714 (2023)

23. Stroiński, A., Dwornikowski, D., Brzeziński, J.: A Distributed Discovery of Com-
municating Resource Systems Models. Trans. Serv. Comput. 12(2), 172–185 (2019)

24. Tour, A., Polyvyanyy, A., Kalenkova, A., Senderovich, A.: Agent Miner: An Al-
gorithm for Discovering Agent Systems from Event Data. In: BPM. pp. 284–302
(2023)

25. Van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM 43(3), 555–600 (May 1996)

26. Zeng, Q., Duan, H., Liu, C.: Top-Down Process Mining From Multi-Source Run-
ning Logs Based on Refinement of Petri Nets. IEEE Access 8, 61355–61369 (2020)

27. Zeng, Q., Sun, S., Duan, H., Liu, C., Wang, H.: Cross-organizational collaborative
workflow mining from a multi-source log. Decis Support Syst 54, 1280–1301 (Feb
2013)

	Towards Standardized Modeling of Collaboration Processes in Collaboration Process Discovery

