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Abstract

Motivation: Systems Engineering is a transdisciplinary and
integrative approach, that enables the design, integration, and
management of complex systems in systems engineering life
cycles. In order to use data generated by cyber-physical sys-
tems (CPS), systems engineers cooperate with data scientists,
to develop customized mechanisms for data extraction, data
preparation, and/or data transformation. While interfaces in
CPS systems may be generic, data generated for custom appli-
cations must be transformed and merged in specific ways so that
insights into the data can be interpreted by system engineers or
dedicated applications to gain additional insights. To foster effi-
cient cooperation between systems engineers and data scientists,
the systems engineers have to provide a fine-grained specifica-
tion that describes (a) all parts of the CPS, (b) how the CPS
might interact, (c) what data is exchanged between them, (d)
how the data interrelates, and (e) what are the requirements and
goals of the data extraction. A data scientist can then iteratively
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(including further refinements of the specification) prepare the
necessary custom machine-learning models and components.
Methods: This work introduces a method supporting the col-
laborative definition of machine learning tasks by leveraging
model-based engineering in the formalization of the systems
modeling language SysML. The method supports the identi-
fication and integration of various data sources, the required
definition of semantic connections between data attributes, and
the definition of data processing steps within the machine learn-
ing support.
Results: By consolidating the knowledge of domain and
machine learning experts, a powerful tool to describe machine
learning tasks by formalizing knowledge using the systems mod-
eling language SysML is introduced. The method is evaluated
based on two use cases, i.e., a smart weather system that allows
to predict weather forecasts based on sensor data, and a waste
prevention case for 3D printer filament that cancels the print-
ing if the intended result cannot be achieved (image processing).
Further, a user study is conducted to gather insights of potential
users regarding perceived workload and usability of the elabo-
rated method.
Conclusion: Integrating machine learning-specific properties
in systems engineering techniques allows non-data scientists to
understand formalized knowledge and define specific aspects of
a machine learning problem, document knowledge on the data,
and to further support data scientists to use the formalized
knowledge as input for an implementation using (semi-) auto-
matic code generation. In this respect, this work contributes
by consolidating knowledge from various domains and there-
fore, fosters the integration of machine learning in industry by
involving several stakeholders.
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Learning, Knowledge Formalization, Data-Driven Engineering, PLM, MDE4AI

Acknowledgments. This project has been partially supported and
funded by the Austrian Research Promotion Agency (FFG) via the
Austrian Competence Center for Digital Production (CDP) under the
contract number 881843.

2



1 Introduction

Leveraging data to allow experts making informed decisions during the
product lifecycle of a product is recently defined as data-driven engineer-
ing [1]. The knowledge required for implementing data-driven engineering
can be characterized in a two-fold way [2], i.e., by i) profound machine
learning skills with respect to processing and analytics of data and imple-
mentation of algorithms, and ii) by domain knowledge regarding the
product of interest, relevant product lifecycle data, and related busi-
ness processes with the entangled IT infrastructures to identify data
provenance and information flows. Regarding i) profound machine learn-
ing skills, a recent industrial survey revealed that companies have fewer
machine learning experts and too little knowledge to implement solutions
themselves. Further, few experts are available on the market [3].

To still connect the domain and machine learning knowledge, vari-
ous methods have been recently proposed in literature [4, 5]. However,
these methods lack support for defining machine learning tasks and do
not sufficiently represent the perspective of engineers. Additionally, the
methods mainly integrate engineering methods into data science method-
ologies supporting data scientists rather than allowing engineers to apply
the methods to support the elaboration of machine learning support.

Therefore, this work aims to integrate machine learning knowledge
into systems engineering to support engineers in the definition of machine
learning tasks, to consequently enable data-driven engineering and,
ultimately, to support the product development for the definition of
prerequisites for the machine learning integration. Particularly, means
of Model-Based Engineering (MBE) are adapted to define tasks for
data-driven engineering by leveraging data from the product lifecycle
of a system. The method of this work builds upon the systems model-
ing language SysML [6], a general-purpose modeling language allowing
to formalize a system from various viewpoints and disciplines. The
interdisciplinary formalization of systems knowledge refers to the term
Model-Based Systems Engineering (MBSE) [7]. Additionally, the CRISP-
DM [8] methodology is used as a basis for the organization of the machine
learning task definition. The Cross-Industry Standard Process for Data
Mining (CRISP-DM) is a methodology consisting of common approaches
used by data mining professionals to work out a data mining project from
inception (requirements and business understanding) through processing
(data understanding, data preparation and modeling) to evaluation and

3



deployment. Ultimately, the method proposed in this work aims to for-
malize machine learning tasks during product development and to use
the formalized knowledge to derive parts of the machine learning and to
guide the implementation, respectively. The method is evaluated using
a case study representing a weather station with multiple subsystems to
predict weather forecasts and a second study to prevent wasting of 3D
printer filament by canceling the printing if the intended result cannot be
achieved.

The contribution of this work is manifold:
• The proposal of a SysML metamodel extension to include stereo-
types that are used to describe machine learning functions for
domain-specific data objects

• A method that fits to the latest research areas of the modeling
community and is called MDE4AI [9, 10]

• A means of structuring the models based on the CRISP-DM method-
ology.

• Two case studies using the proposed concepts for modeling machine
learning support based on simple input data, followed by a discussion
of the strengths and weaknesses of the method.

• A user study showing the workload and usability of the method as
rated by experts and computer scientists.

This work lays a foundation for allowing non-programmers to define
machine learning tasks by formalizing knowledge from the problem
domain into a high-level model and to communicate formalized knowl-
edge. Additionally, semantic connection of data from various Product-
Lifecycle Management (PLM) [11] sources allows to describe the origi-
nation and composition of data relations. With the availability of such
models, the goal is to support the automatic decomposition of SysML
models and the (semi-)automatic generation of executable machine
learning modules.

This work constitutes an extension of our previous work presented in
[12] and expands [12] in several ways by

• providing more extensive background information to foster under-
standing.

• extending the presented method with a generic and fine-grained
sample of the modeling method.

• applying the method in two case studies from industry.
• conducting a user study on the perceived workload and usability of
mechanical engineers and computer scientists
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• discussing advantages and disadvantages of the method in a more
thorough way.

The remainder of this paper is structured as follows: Section 2.2
presents the background regarding MBSE, data science methodologies
and related work of data-driven engineering. In Section 3, the elaborated
method is introduced in detail and evaluated based on two case studies in
Section 4. Further, a user study is presented in Section 5 that evaluates
the perceived workload and the usability of the method with mechanical
engineers and computer scientists. Based on the findings of the evaluation
and the user study, an extensive discussion on advantages and disad-
vantages is presented in Section 6. Finally, the study is summarized in
conclusion with future remarks in Section 7.

2 Background

First, the concepts of model-based systems engineering (MBSE) and the
systems modeling language SysML are explained. Second, machine learn-
ing and the CRISP-DM [8] methodology are introduced, acting as a basis
for the method presented in Section 3. Next, related methods are depicted
with special focus on data-driven engineering. Finally, Section 2.4 presents
a summary of the background.

2.1 Model-Based Systems Engineering and SysML

Systems engineering, particularly MBSE, aims to integrate various engi-
neering disciplines in product development to establish a single-source of
truth by formalizing system requirements, behavior, structure and para-
metric relations of a system. Conventional systems engineering focuses
on storing artifacts in several (text) documents maintained in case of
changes. In a model-based method, the relevant information to describe
an abstract system are stored in a model [13]. The literature concern-
ing graphical MBSE methods promises to increase design performance
while supporting the communication of relevant stakeholders of a system
[14, 15]. MBSE is a term explicitly considering aspects of a system. Nev-
ertheless, other terms can be considered interchangeable depending on
the level of automation and the focus of the application1. Independent of
the level of automation and the focus of the modeling language, a meta-
model defines the modeling concept, relations and all possible instances
of a specific set of models. Models are instances of metamodels describing

1See https://modelling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/ for a discus-
sion.
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a specific system. The model characteristics must match all aspects of the
associated metamodel. However, extensions such as additional attributes
can be added directly on a model without changing the metamodel. If a
metamodel does not represent an aspect, an extension for a specific group
of use cases can be defined using so-called stereotypes [16]. A stereotype is
a means of modeling to extend metaclasses by defining additional seman-
tics for a specific class concept. A metaclass is a class describing a set of
classes, e.g. the metaclass block is a general purpose structuring mecha-
nism that describes a system, subsystem, logical or physical component
without the software-specific details implicitly given in UML structured
classes [6]. The use of stereotypes in modeling methods have been proven
to support the understanding and standardization of a model [17]. In
MBSE, the Systems Modeling Language SysML is the most prominent
modeling language [18]. SysML is based on the UML standard with a spe-
cial focus on the formalization of systems instead of modeling classes and
objects for software engineering. The language supports the formaliza-
tion of structural, behavioral and functional specifications [19]. Structural
diagrams describe the composition of systems and subsystems with their
attributes and relations [16, 19]. Figure 1 depicts core elements of a block
definition diagram modeled in the Eclipse-based open-source software
Papyrus2. On top of Figure 1, a Block with the name Human is defined,
consisting of one attribute of type String with the attribute name Name
and the visibility public indicated by the plus (+). A block can also have
operations, ports etc. which are not relevant for this work and, therefore
not introduced here. Underneath the Human-Block, two inheriting ele-
ments are defined by the white arrows between the blocks. The attribute
Name is inherited from the parent block marked by the tailing dash. One
child has an additional property Age, which only affects the block (as
long as no deeper inheritance is available). The second block consists of
a subsystem, indicated by the black diamond being a part association
(a.k.a. composition). A part association determines that a block describes
a whole element and a part of the whole element is additionally described
in another element3. The 1 and the 0..2 indicate the multiplicity, allow-
ing to define the cardinality, e.g. number of elements. In this sample, it
means one element Child2 can have zero, one or two legs. The white dia-
mond between Leg and Shoe indicates a shared association, which is a
weaker form of the part association. It refers to a relationship where the

2https://www.eclipse.org/papyrus/index.php
3See https://sysmlforum.com/sysml-faq/what-are-diff-among-part-shared-referenced-associations.html

for a discussion
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«Block»
Human

attributes
 + Name: String

«Block»
Child1

attributes
+/ Name: String
+ Age: Integer

«Block»
Child2

attributes
+/ Name: String

«Block»
Leg

attributes
+ Length: Integer

«Block»
Shoe

attributes
+ Size_UK: Real

 1

0..2

1

 *

Fig. 1 Block Definition Diagram sample with a human.

StateMachine

State1 State2 EntryPoint  ExitPoint
    

Fig. 2 State diagram sample.

part element is still valid if the whole element is deleted, e.g. if the ele-
ment Leg is not valid anymore, the Shoe is still valid. The multiplicity *
indicates that one can have any number of shoes. Since various software
represent slightly different parts, the description of the block definition
diagram can vary.

In SysML, the execution of single activities can be modeled using activ-
ity diagrams. A state diagram has an entry-point and an exit-point. The
arrow between the states indicates a transition and describes that one
state has been completed and another is active. Behind a state, the exe-
cution of one or multiple activities can be triggered, whereas an activity
is a sequential execution of single actions [6], see Figure 2.

2.2 Data Science and Methodologies

Data Science and Business Intelligence refer to the extraction of infor-
mation and knowledge from data through analysis to assist people with
various types of insights, such as analysis or prediction, among many oth-
ers [20, 21]. The digging of such information to derive knowledge is called
data mining (DM)[22]. Machine learning (ML) is one subfield of DM,
which automatically allows computer programs to improve through expe-
rience [23]. Machine learning algorithms aim to solve a (specific) problem
to eliminate the need for being explicitly programmed [24].
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To support the implementation of machine learning applications,
methodologies have been proposed in a general manner [8, 25, 26]. Addi-
tionally, extensions of such methods with particular support for data
science in the engineering domain are introduced [4, 27]. In literature, the
methods of the CIRSP-DM [8] and KDD [26] are assessed in a compara-
tive study [28]. According to [28], CRISP-DM is a kind of implementation
of the KDD process. In the following, CRISP-DM is described and used
as basis for the structure of the proposed method described in Section 3.

In CRISP-DM, six core steps are defined supporting the implementa-
tion of a DM application:
1. Business Understanding: Project objectives, requirements and an

understanding from a business level is achieved. Based thereon, a DM
problem is defined and a rough roadmap is elaborated.

2. Data Understanding: Data is collected to understand the situation
from a data point of view.

3. Data Preparation The construction of the final dataset for the
learning algorithm based on raw data and data transformations.

4. Modeling: Various or sometimes one algorithm is selected and
applied to elaborated dataset from the previous step. In this step, so-
called hyperparameter tuning is applied to vary on parameter values
and achieve a most valuable result.

5. Evaluation: The result of the algorithm is evaluated against metrics
and the objectives from the first step.

6. Deployment: The achievements are presented in a way that a cus-
tomer or an implementation team can use it for further integration.

2.3 Related Work

In literature, various methods supporting the formalization of data-driven
engineering or machine learning using modeling languages, are given. The
method of [29] is based on the Kevoree Modeling Framework KMF [30],
which is similar to the Eclipse Modeling Framework (EMF) that is the
basis for the open source modeling framework Papyrus4. [29] proposes to
model the domain knowledge and small learning units in a single domain
modeling method since both are highly entangled. The method is based
on a textual modeling syntax and describes what should be learned, how
and from which attributes and relations. Additionally, templates are given
to render code based on the model. However, the open-source framework

4https://www.eclipse.org/papyrus/
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seems to be out of maintenance since the repository is not updated since
20175.

An active maintained framework family with means to model machine
learning is shown in [31]. The method is based on the MontiAnna
framework [32] and focuses on modeling artificial neural networks. The
MoniAnna framework is part of the MontiCore Workbench Family[33].
Similar to [29], textual modeling is used to formalize the learning units
and related input and output. The formalization is used as input for
template-based code generation. However, the method does not reflect
domain-specific (business) knowledge from an engineering perspective.

In [34], focus is put on the integration of executable machine learn-
ing units modeled on a cloud platform, enabling the fast deployment
of distributed systems. However, the method is stiff regarding extend-
ability and advanced data preparation as of the current development
state.Additionally, the integration of domain knowledge is hardly given
and the focus on the formalisation of data-driven algorithms is not
present.

The integration of ML in CPS modeling is supported by the textual
modeling framework ThingML+[35]. The method extends the ThingML
[36] modeling method, intended to support the development of IoT
devices. As with the other methods, focus is put on machine learning mod-
eling without considering domain knowledge. The method allows deriving
executable code based on model transformation using xtext.

2.4 Summary

MBSE has been proven beneficial in increasing the design performance of
systems [14, 15]. According to [37], the number of components and func-
tions are increasing in future, leading to more complex systems, requiring
advanced support in the development and analysis using means of data
science. Development support for data science is given in methodolo-
gies such as CRISP-DM. However, guidance specific for the engineering
domain is limited [27] and the integration in a model-based method is
unavailable as of the author’s knowledge. In literature, various methods
introduce specific metamodels and languages to describe a data science
task and eventually enable to derive executable code. However, the meth-
ods are not based on a MBSE compatible modeling language such as
SysML rather than introducing single domain-specific modeling environ-
ments. Therefore, little support for interdisciplinary communication is

5https://github.com/dukeboard/kevoree-modeling-framework
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given and the methods are more applicable for computer scientists than
to domain outsiders such as mechanical engineers with little knowledge in
programming. Moreover, the domain-specific modeling methods are not
aligned with the CRISP-DM methodology, leading to little support from
a methodological perspective. Last but not least, the proposed methods
use model transformation to reduce the implementation effort, but are
seldomly built in a generic way, allowing to extend the modeling or the
derivation of code without extensive changes in the generation. Therefore,
maintenance and applicability in practice is rather limited.

3 Method

This section describes a method to formalize machine learning tasks based
on SysML and the application of an extended metamodel. In the fol-
lowing, first, the extension of the SysML metamodel using stereotypes is
described. Special attention is given to the package structure for organiz-
ing the stereotypes, extensibility for different purposes, and generalization
so that stereotypes can be used for multiple use cases. Second, a package
structure aligned with the CRISP-DMmethodology is presented, enabling
to guide the application of the newly defined stereotypes. Next, a syntax
and semantic is introduced, allowing to interpret the formalized machine
learning model enriched with the introduced stereotypes. Finally, means
of SysML state diagram is used to define the tasks’ execution order.

3.1 Metamodel Extension using Stereotypes

In the following subsections, six packages are introduced, which allow
to group stereotypes that semantically describe required functionalities.
Subsequently, an exemplary stereotype hierarchy for defining higher-order
functions for domain-specific data transformation purposes is described
in detail.

3.1.1 Stereotype Package Structure

SysML packages are used to group and organize a model and to reduce
the complexity of system parts. Similarly, it can be applied for the
organization of stereotypes, as depicted in Figure 3.

The organization of the stereotypes is as follows: in Common, gen-
eral stereotypes are defined that are used in other packages as basis, e.g.
a stereotype ML is defined in Common, each defined stereotype related
to machine learning inherits from this stereotype to indicate that it is
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Algorithms

PreProcessingDataStorage

Common

AlgorithmWorkflow

Attributes

Fig. 3 The organization of the metamodel.

a machine learning stereotype. Additionally, stereotypes can be defined
allowing to categorize other stereotypes, e.g. an abstract Pre-Processing
stereotype allows to identify that all inheriting stereotypes are intro-
duced for the data preparation step of the CRISP-DM methodology. In
Attributes, stereotypes for a more detailed definition of attributes are
defined. These attribute stereotypes cannot be applied to blocks, only to
attributes of a block. Consequently, the stereotypes extend primitive data
types such as Integer or Float. The purpose of the extension are addi-
tional characteristics to describe the data, e.g. valid ranges of a value or
the format of a datetime property or a regular expression to collect or
describe a part of a text value. The package DataStorage defines avail-
able data interfaces from a general perspective required for the loading
and processing of data from various data sources, e.g. SQL servers, Appli-
cation Programmable Interface (API) or other file formats (e.g. CSV).
The purpose of the stereotypes are to support the data understanding of
the CRISP-DM methodology. Additionally, it allows to bridge the gap
between business and data understanding due to the explicit formats.
Further details in Section 3.3. In the Algorithm package, various machine
learning algorithms are defined and grouped with respect to algorithm
types, e.g. regression or clustering algorithms. Particularly, the focus
is put on key characteristics of an algorithm implementation, such as
mandatory hyper-parameter or the stereotype description. Optional algo-
rithm parameters are not described in the stereotype, but can be added
during the modeling, as later illustrated in Figure 6. The PreProcessing
package (a.k.a. as data preparation) is the most complex and extensive
package due to the number of functionalities required. Additionally, a
survey revealed that computer scientists spend the most effort in prepar-
ing and cleaning data [38]. Within this package, functions are defined
allowing to transform data so that a cleaned and applicable dataset for
the machine learning algorithm is defined. Finally, the AlgorithmWork-
flow package, consisting of stereotypes for states of the state diagram,
allowing to define the implementation order of the machine learning
tasks. Typically in SysML, states are connected to activities, which are a
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sequence of execution steps. However, in practice, we found out that it is
very time consuming to prepare activities first. Additionally, a function
abstracted as a single block can be considered as a set of activities. Con-
sequently, state diagrams are used instead of activity diagrams to reduce
the implementation effort and complexity.

3.1.2 Stereotypes Hierarchy

As mentioned in Section 3.1.1, each package represents a specific hier-
archy of stereotypes, allowing to describe various aspects of machine
learning subtasks. An example definition of stereotypes related to data
pre-processing is depicted in Figure 4. As described in Section 2.1, stereo-
types can be hierarchically composed to describe specific attributes only
once for a set of stereotypes. On top, the ML stereotype defined in the
Common package is depicted, indicating that all inheriting stereotypes
are related to machine learning. Formalizing a machine learning task is
intended to be iteratively, which is why some stereotypes are abstract,
illustrated by italic letters. If a stereotype is abstract, it means that the
stereotype requires further detailization or that a child stereotype with
additional information is required, e.g., DataTransformation cannot be
used without further details as it can be arbitrary transformation of data.
The purpose of abstraction is to support the early definition of tasks in
the product development without details already being known, e.g., the
final file-format used to store the data. From top to bottom in Figure 4,
the level of detail increases and the task is more fine-grained chosen. Con-
sequently, leaves are the most fine-grain representation. The inheritance
additionally allows to group functions of a specific kind, e.g., functions
regarding outlier detection etc. Due to the grouping of functions, the
composition of stereotypes strongly depends on the preferences of the
implementing expert and the purpose of the composition in terms of
inheritance of attributes. Note that attributes defined in a parent stereo-
type are also available in a child or grandchild stereotype, respectively.
Therefore, each level should only represent mandatory attributes. This
especially applies for algorithms with a lot of hyper-parameters, e.g. logis-
tic regression with more than 20 parameter and attributes6. In case a
parameter is not defined in the stereotype, it sill can be add during the
modeling and application of the stereotypes. A sample can be found in
Section 4. Additionally, it is possible to add a set of values using Enu-
merations for a single attribute, e.g. MissingValueFunction highlighted

6https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
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«Stereotype»
PreProcessing

«Stereotype»
BlackBox_Outliers

«Stereotype»
MissingValues

«Stereotype»
DataTransformation

«Stereotype»
DataframeOptions

«Stereotype»
Aggregation

 + Func: String [1]
 + axis: Integer [1]

«Stereotype»
Normalization

+ Method: Scaler_Method [1]

«Enumeration»
Scaler_Method
MinMaxScaler
MaxAbsScaler

«Stereotype»
DataFrame_Merge

 + MergeOn: ML_Attribute_Input [2..*]
 + How: String [1]

«Enumeration»
MissingValueFunction
DropNa
FillNa
Interpolate

«Stereotype»
DateConversion

 + Output_Format: String [1]

«Stereotype»
Encoding

+ ToEncode: ML_Attribute_Input [1]

Fig. 4 The metamodels for data pre-processing/preparation.

in green. In this respect, modeling is more precise and guided by a fixed
set of valid options. Similarly, specific stereotypes can be used as an
attribute, which means that only blocks or attributes that apply the spe-
cific stereotype can be assigned, e.g. Method Attribute Input indicating
that only properties with a stereotype defined in the package Attributes
can be applied because each attribute stereotype inherit from that stereo-
type. Finally, the application of the keyword BlackBox can be used if a
function shall be hidden due to security reasons or the implementation is
unknown, e.g. BlackBox Outliers on the right side of Figure 4.

3.2 Package structure guiding the implementation.

CRISP-DM as described in Section 2.2 consists of six steps, each describ-
ing a specific aspect required for the development of a machine learning
project. Figure 5 illustrates the package structure aligned with the
CRISP-DM methodology. Business Understanding consists of block defi-
nition diagrams describing the system under study with the composition
from a system configuration point of view. In this respect, the VAMOS
method (Variant Modeling with SysML, [39]) is integrated to describe
a specific system configuration. The integration of the VAMOS method
focuses on the data interfaces and attributes of a particular configuration
of a system, as different configurations of a system might lead to other
data output. In this method, the VAMOS method is used to focus on
data interfaces. Therefore, other systems engineering knowledge is pre-
sented in other diagrams, which is out of the scope of this work. Still,
the knowledge modeled in other diagrams is connected to the instance
of a block used in the VAMOS method and therefore, multiple disci-
plines are enabled to work on the same model. The second step, Data
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1. Business Understanding 2. Data Understanding 3. Pre-Processing

4. Modeling 5. Evaluation 6. Workflow

Fig. 5 The implementation structure aligned with CRISP-DM.

Understanding, details the Business Understanding with the definition of
delivered data on an attribute and data format level. Particularly, the
data type and the name of the delivered data attribute are described
using block definition diagrams. Additionally, attribute stereotypes are
used to describe the data in detail as described in Section 3.1.1. With
the application of stereotypes on a block level, the type of data interface
is defined, e.g. CSV files or SQL servers. As a result of the formalization
of the interfaces in this package: The information exchange between the
systems engineering and the data engineering can be considered as com-
pleted. Based on the Data Understanding, the Pre-Processing is applied
to transform and prepare the data in a final dataset that can be used
in the Modeling. In the Pre-Processing, the most effort is required due
to the possible number of required data transformations to create a
dataset usable for machine learning. The result of the Pre-Processing is a
final dataset, considered to be ready for the machine learning algorithm.
Within the Modeling, algorithms are applied to the final dataset. Addi-
tionally, train-test-splitting and other required functions on the machine
learning algorithm are applied. In the Evaluation package, various met-
rics are used to asses and prove the validity of the algorithm result of
the Modeling package. Finally, the Workflow package, which describes
the execution order of the formalization in the previous packages using
state diagrams. For each state, a custom stereotype is applied allowing
to connect a block that is connected to a stereotype inherited from ML.
The method to assign blocks to states allows to overcome the necessity
to define activities, making the method less heavy for the application and
reduces time for the formalization of the machine learning. Typically in
CRISP-DM, the very last step is the deployment. However, the deploy-
ment is considered out of scope in this work and therefore the method
ends with the workflow.

3.3 Syntax and Semantics

For the purpose of implementing ML functionalities, the utilization of
functional programming paradigm is intuitive [40]. It utilizes higher order
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functions, invoked on (data-)objects which are returning objects. This
allows for step-by-step decomposition, filtering and transformation of
data, without side-effects (changes to variables), in comparison to the
imperative programming paradigm.

This sequence of function invocation aligns well with how UML and
other modeling languages implement abstraction-levels to reflect a rel-
evant selection of properties to focus on the aspects of interest [16].
Functions are blackboxes with processing capability that are associated
with (data-)artifacts upon which they can be called, and are associated
with data-artifacts they produce as output. The abstraction is realized
by describing functions or a set of functions with a single stereotype and
instances with blocks.

A class in UML is defined among others by attributes, stereotypes,
operations (methods), constraints and relationships to other classes. In
SysML, a block describes a system or subsystem with a similar defi-
nition as a class in UML. A machine learning task and the respective
subtasks can be seen as a system with subsystems. Therefore, each sub-
task is modeled using blocks, aligned with the syntax described in section
2.1. Particularly, only input values represented as attributes of a block
and the relation to other blocks are modeled. The operations (methods)
are defined as stereotypes with abstracted implementations. Attributes
defined on the stereotype are mandatory input values for the definition of
a machine learning subtask. The attributes defined on a block itself are
optional for documentation or to extend the stereotype with fine-grained
details, e.g. utc attribute in the Format Date2 block in Figure 6. The
output of a subtask (block) is implicitly defined in the implementation
of the code snippet related to a stereotype and not explicitly depicted in
the model. The output of a block can be used as input for other blocks,
e.g. CSV 1 block as input for the Format Date block.
Figure 6 depicts a few samples of the aforementioned syntax and seman-
tics. On top right, a date conversion subtask is modeled as Format Date.
The date conversion stereotype has a mandatory attribute to define the
format of the output of the conversion. The input for the date conversion
is the block CSV 1, connected using a part association. In this sample,
the date attribute is the only input value matching due to the stereo-
type Datetime. However, if the input is ambiguous because the datetime
is stored for instance as integer or multiple attributes of the connected
block are in the correct input format, it is necessary to add additional
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«Block, CSV»
CSV_1

Delimiter=, 
SkipNrOfLines=0
GenerateTimestamp=false 
Encoding=utf-8 
Path=\path\to\CSV_1.csv 
Online_Accessable=false

attributes
«Datetime» + date: String
«Float» + wind: Real
«Float» + temp_min: Real
«Float» + temp_max: Real
«Float» + precipitation: Real

«Block, CSV»
CSV_2

Delimiter=;
SkipNrOfLines=0 
GenerateTimestamp=false 
Encoding=windows-1252 
Path=\path\to\CSV_2.csv
Online_Accessable=false 

attributes
«String»  + weather: String
«Datetime»  + date_date: String

«Block, DataFrame_Merge»
Merge_DF

MergeOn=[date, date_date] 
How=inner 

attributes

«Block, DateConversion»
Format_Date

Output_Format=%Y-%m-%d 

attributes

«Block, DateConversion»
Format_Date2

Output_Format=%d %B %Y 

attributes
+ utc: Boolean = true

Fig. 6 Machine learning data pre-processing based on a sample in Section 4.

attributes to the date conversion to select the particular input, e.g. with
a new attribute which value is the particular input attribute from the
connected block. The block Format Date2 inherits from Format Date.
Therefore, the input and the attributes are the same except of manual
overwritten values, e.g. changes on the output datetime format or the
added additional attribute utc.
Another sample in Figure 6 shows the integration of multiple inputs. The
Merge DF block consists of two input blocks and the attributes on which
the merging function shall be applied are defined using an attribute that
consists of two values (MergeOn). The MergeOn attribute is mandatory
and therefore defined on the stereotype.
Although the implicit execution order of the subtasks is defined by the
associations and the necessity to compute first inputs, the execution order
might be ambiguous, e.g. execute first the Format Date or the Merge DF.
As described in section 2.1, structural diagram elements, such as blocks,
requires the integration in behavioral diagrams to allow the definition of
an execution order [16].
To enable the connection of a block with a state in a state diagram, cus-
tom stereotypes are applied. The stereotypes for the states consist of a
single mandatory attribute. The mandatory attribute references a block
with a stereotype that inheritate from the root parent stereotype ML.
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Precipation
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Anemometer
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Temperature
Sensor

Weather 
ForecastMachine Learning

Fig. 7 Illustration of the weather system use case.

4 Case Studies

This section presents two case studies, i.e., a weather system that predicts
weather forecasts based on sensor data, and an image similarity check
that makes it possible to assess whether the actual print of a 3D model
with a 3D printer corresponds to the desired output. As a result, the
printing process can be stopped prematurely, saving filament and time.

4.1 UC1 - Weather Forecast based on Sensor Data

Figure 7 illustrates the composition of the weather system that is split
in two parts. On the left side, a local station is equipped with various
sensors, delivering a CSV file with measuring and on the right side, a
weather forecast additionally delivers a CSV file with weather forecasts
over the internet.

From a systems engineering perspective, the weather system is a cyber-
physical system and can be configured with various sensors. Figure 8
depicts the SysML model of the weather system with a specific config-
uration aligned with Figure 7. Particularly, Figure 8 depicts an method
aligned with [39] that allows to formalize variations. Additionally, the
modeling of the system from an business perspective is the first step of
the method. Focus is put on the values of interest, which are the output
values of the subsystems, to keep the business understanding as concise as
possible. In the middle of the figure, the core weather system configura-
tion is depicted. The surrounding subsystems are sensors or subsystems,
e.g., an API (right side). The attributes of the sensors are output values
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«Block, VariationConfig»
Weather_System_01

attributes

«Block»
Weather_System

«Block, Variation»
Wetter_Online_API

attributes
 + Date: String
 + Weather: String

«Block, Variation»
Temperature_Sensor_Celsius

attributes
 + Temperature: Real

«Block, Variation»
Wind_Sensor
attributes

 + Windspeed: Real

«Block, Variation»
Temperature_AVG_Sensor

attributes
 + Max_Temperature: Real
 + Min_Temperature: Real
 + Interval: Integer

«Block, Variation»
Precipation_Sensor

attributes
 + Precipation_mm: Real 1

 1

 1

 1

 1 1

 1

 1 1
 1

Fig. 8 Business Understanding of the weather system.

of each subsystems to align with the CRISP-DM business understand-
ing that aims to get a general idea of the system and from where data
originates.

To transform the business understanding in valuable data understand-
ing, connections between the system in the business understanding and
output data formats are established. Particularly, a realization connection
between the CPS and blocks describing the data format using stereo-
types inheriting from ML are modeled. In the blocks, each attribute has
a type representing the actual data type in the data source and a stereo-
type with a ML attribute describing the representation in the machine
learning method, e.g., CSV 2 attribute date date is of type String and
is mapped to the stereotype Datetime that considers aspects such as the
datetime format. Additionally, stereotype attributes are defined such as
the Encoding or the Delimiter to describe the composition of the CSV
file.

Figure 6 depicts a set of subtasks applied to the data sources defined
in Figure 9. For and explanation of Figure 6, please refer to Section 3.

Figure 10 illustrates the application of a train-test-split and the inte-
gration of the split data into two different regression algorithms, which are
specified in a mandatory attribute. As of the definition of the stereotypes,
no further parameters are mandatory. For the RandomForestRegressor,
the optional hyper-parameter max depth is defined.

Figure 11 depicts the prediction and the application of metrics such as
mean absolute error (MAE). The mandatory parameter text is a place-
holder allowing to add text that shall be implemented with the evaluation
result.
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«Block, VariationConfig»
Weather_System_01

«Block, CSV»
CSV_1

Delimiter=,
SkipNrOfLines=0 
GenerateTimestamp=false 
Encoding=utf-8 
Path=\path\to\CSV_1.csv
Online_Accessable=false

attributes
«Datetime»  + date: String
«Float»  + wind: Real
«Float»  + temp_min: Real
«Float»  + temp_max: Real
«Float»  + precipitation: Real

«Block, CSV»
CSV_2

Delimiter=;
SkipNrOfLines=0 
GenerateTimestamp=false 
Encoding=windows-1252 
Path=\path\to\CSV_2.csv
Online_Accessable=false 

attributes
«String»  + weather: String
«Datetime»  + date_date: String

Fig. 9 Data Understanding of the weather system.

«Block, DataFrame_Merge»
Merge_DF

«Block, Regression»
ML_1

Algorithm=RandomForestRegressor

attributes
+ max_depth: Integer = 4

«Block, Regression»
ML_2

Algorithm=DecisionTreeRegressor 

«Block, Train_Test_Split»
TrainSplit

Fig. 10 Modeling of machine learning algorithms.

«Block, Regression»
ML_2

Algorithm=DecisionTreeRegressor 

«Block, Regression»
ML_1

Algorithm=RandomForestRegressor

attributes
+ max_depth: Integer = 4

«Block, MeanAbsoluteError»
MAE1

Text=Mean absolute error: «Block, Predict»
Predict_ML1

«Block, Predict»
Predict_ML2

«Block, MeanAbsoluteError»
MAE2

Text=The result of the
prediction resulted in a
mean absolute error of:

Fig. 11 Evaluation of the weather forecast prediction.

The method’s final step is integrating the blocks into an execution
workflow. Figure 12 illustrates the execution order of the algorithm steps.
As can be seen, the Format Date2 block modeled in Figure 6 is not
depicted in the workflow, meaning that it is not taken into concern during
the implementation and is left out as an artifact from the formalization
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Learning Workflow

«ML_Block_Connection»
Load_CSV1

«ML_Block_Connection»
Load_CSV2

«ML_Block_Connection»
Convert_Date

«ML_Block_Connection»
Merge_DFs

«ML_Block_Connection»
SplitInTrainTest

«ML_Block_Connection»
ML_Model_DecisionTreeRegressor

«ML_Block_Connection»
Predict_DecisionTree

«ML_Block_Connection»
MAE

«ML_Block_Connection»
Encode

«ML_Block_Connection»
MAE_2

 Start

Done

 

 

    

 

 

Fig. 12 Sample integration of the workflow.

time. The state’s name is to readily understand the workflow and the
blocks connected with the ML Block Connection stereotype.

As the scope of this work is to formalize the machine learning and
not to improve the executable code or to derive the code automatically,
the result of the machine learning and the implementation itself are not
depicted and left to future work.

4.2 UC2 - 3D Printer Success Evaluation during Printing

The purpose of the application is to detect faulty 3D prints during the
printing process by comparing the actual status of the printed model with
the intended model. This use case illustrates the method’s applicability to
other data sources, such as image data, and the integration of the method
into an executable workflow engine. Additionally, the integration of pre-
trained models is depicted by integrating TensorFlow Hub. The idea of
image similarity is based on an image similarity tutorial7.

The use case process is described below and illustrated in Figure 13.
We adopt the CPEE process engine [41, 42] to orchestrate the applica-
tion process, as the CPEE provides a lightweight and straightforward user
interface to orchestrate any application that allows interaction via REST
web services. Figure 13 shows the workflow of the application, consisting
of image generation and printing. The first three process steps define the
slicing of a STL file and the generation of the reference images. Particu-
larly, a Python script is called that generates the slices based on a given
STL file and stores the generated reference images for later comparison
and similarity check. The second part of the process consists of a loop
that prints a slice, takes a photo with a camera from the top center of
the working area, and calls a similarity script to compare the intended
and actual printed model. The image similarity algorithm is defined using
the machine learning formalization method, proposed here. The defined

7https://towardsdatascience.com/image-similarity-with-deep-learning-c17d83068f59
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Fig. 13 Workflow Integrating the formalized machine learning method to early abort 3D printing.

«Block, Image_File»
Image_Printer

Height=1080 
Width=1920 
Imagetype=png
Path=/printer 
Online_Accessable=false 

«Block, Image_File»
Image_STL_Slice

Height=2000 
Width=2000 
Imagetype=png
Path=/sliced 
Online_Accessable=false 

«Block»
ML_Properties

Fig. 14 Image definition used for the similarity prediction.

algorithm provides a similarity index compared to a threshold value. If
the threshold is exceeded, the printing process is aborted, otherwise, it is
repeated.

The machine learning model integrated into the printing process is
formalized below. Figure 14 shows input data consisting of two images:
the image sliced from the STL file and the photo from the 3D printer
camera. In contrast to the first use case, the data attributes are not
further detailed with stereotypes because the input data do not show any
variations, i.e. the format and resolution of the images do not change.

Figure 15 depicts the scaling of the images such that they have
the same dimension. The conversion parameter L allows comparing the
images on a black-and-white basis. Normalization of the pixels and colors
between 0 and 1 is also applied. The normalization in the block Con-
vert PixelsAndNormalize should be defined as a new stereotype. In this
case, we show the application of the CustomCode stereotype, allowing
for the injection of program code, which allows rapid prototyping. How-
ever, flaws, such as vulnerability or hijacking of the method might lead
to reduced understanding and reproducibility. Additionally, it is not the
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«Block, Image_File»
Image_Printer

Height=1080 
Width=1920
Imagetype=png 
Path=/printer 
Online_Accessable=false 

«Block, Image_File»
Image_STL_Slice

Height=2000 
Width=2000
Imagetype=png 
Path=/sliced 
Online_Accessable=false 

«Block, Resize»
Image_Scaling

Convert=L
Height=1000 
Width=1000 

«Block, CustomCode»
Convert_PixelsAndNormalize

Code=file = np.stack(($input,)*3, axis=-
1)\r\n$output=np.array(file)/255.0  

1

2

1..*

1

1

1

Fig. 15 Image scaling and normalization used for data preprocessing.

«Block, CustomCode»
Convert_PixelsAndNormalize

Code=file = np.stack(($input,)*3, axis=-1)\r\n$output=np.array(file)/255.0  

«Block, Stack»
Converting the image into a color representation for each pixel

Axis=-1
Arrays=($input,)*3 

«Block, Normalization»
NormalizeValues

Method=MinMaxScaler 

attributes
 + data_max: Integer = 255

Fig. 16 On top the wrong application of the method and below correct use.

purpose of the method to insert programmed code. For further discussion,
see Section 6.3.

With respect to potentially wrong use of the method, Figure 16 depicts
the wrong used stereotype CustomCode on top and below the correct use
of stereotypes for the same result with a slightly changed code sequence.

Further, the two images are fed to the classification algorithm, as
illustrated in Figure 17. The input value Model describes a TensorFlow
Hub input, a pre-trained model to classify images. Finally, the result is
measured using cosine distance metrics. The threshold for canceling the
printing is implemented in the workflow and can be adjusted by the user.

Finally, Figure 18 depicts the execution sequence of the algorithm.
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«Block, Sequential_HUB»
Model

layers=[] 
Name 
Hub_URL=https://tfhub.dev/
tensorflow/efficientnet/lite0/feature-
vector/2 
input_shape=[1000, 1001, 3] 

«Block, CustomCode»
Convert_PixelsAndNormalize

Code=file = np.stack(($input,)*3,
axis=-1)\r\n$output=np.array(file)/
255.0  

«Block, Distance»
SpatialDistance

metric=cosine
Text=The image similarity index
between 0 and 1 is: 

«Block, Predict, CustomCode»
predict

Code=embedding_np =
np.array($output_predict)
\r\n$output=embedding_np.flatten() 

 1

 2

1

1

 1

 2

Fig. 17 Integration of pre-trained model and prediction with cosine distance to express the similarity
of the images.

Similarity_Check_Images_Tensorflow

«ML_Block_Connection»
Load_Actual_STL_Slice_Image

«ML_Block_Connection»
Load_Actual_Printer_Image

«ML_Block_Connection»
Scaling_of_the_Images

«ML_Block_Connection»
Convert_Images_to_Normalized_Array

«ML_Block_Connection»
Load_Pre-Trained_Model

«ML_Block_Connection»
Predict_and_Stack

«ML_Block_Connection»
Calculate_Similarity

Start

 Stop

 

  

 

 

 

 

   

Fig. 18 The execution workflow of the TensorFlow-based prediction algorithm.

5 User Study

Typical user of the presented method are computer scientists and
engineers from various disciplines, depending on the application area.
Therefore, this study aims to assess and compare computer scientists’ and
mechanical engineers’ subjective workload and user experience regarding
understanding, modifying, and creating machine learning functions in a
model-based method. Further, the time required for applying changes or
creating constructs in SysML is assessed to allow a comparison of the
participants based on previous experiences, e.g., programming or model-
ing prior knowledge. Since the study and the modeling is conducted using
the SysML modeling tool Papyrus8, it is impossible to eliminate distor-
tions due to the usability of the underlying tool, e.g., “How to model a

8https://www.eclipse.org/papyrus/
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block”. Therefore, the study director will provide verbal assistance if a
participant requires support due to the tool’s usability.

Large sample sizes are necessary to enable quantitative evaluation,
which is not applicable due to resource constraints. Therefore, the prin-
ciples of discount usability are applied to test only a small group of
customers and to identify the main usability problems by applying small
qualitative user studies with three to five users, a detailed scenario, and
a think-aloud method [43]. According to [43], a 70% chance to find 80%
of the usability issues is given with five users. However, in literature,
there are reports that the increase of five participants to ten significantly
changes the amount of found issues [44]. In this respect, a total num-
ber of 12 users were tested, equally distributed among the two groups,
Computer Scientists (CS) and Mechanical Engineers (ME).

In the following, the experimental setting is illustrated. Next, an intro-
duction to the evaluation procedure is given, followed by an introduction
of the test cases in Section 5.3. Finally, the results of the user studies are
depicted in Section 5.4. A discussion on the implications from the user
study is given in Section 6.4.

5.1 Experimental Setting

The user study was conducted with 12 participants. Each participant
has a university degree (B.Sc., M.Sc., or Ph.D.) and received a basic
introduction to programming at university. Half of the participants are
CSs, and half MEs. Other engineers can serve as potential users and
equally valid test users, as well. However, to obtain a more homogeneous
group, engineers are limited to MEs.

Due to the participants’ different knowledge in modeling, program-
ming, and data science, a self-assessment of their experience was made
at the beginning of the user test. Table 1 summarizes the knowledge lev-
els of the participants based on their highest university degree, years of
experience, position at the current job, and self-assessment on the three
relevant dimensions.

5.2 Evaluation Procedure

The study started with a basic introduction to SysML and an overview
of the method introduced in this work, taking approximately 10 minutes
and involving the presentation of two predefined block definition diagrams
as samples with a focus on the modeling and understanding of a block
definition diagram and the application of the introduced stereotypes.
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Table 1 Participants of the user study aligned with self-assessment of experience.

User
Univ.
Degree

Years of
Experience

Position
Programming
Skills

Data Science
Skills

UML/
SysML
Skills

CS-1 B.Sc. 5
Software
Engineer

7 3 6

CS-2 M.Sc. 3
Software
Engineer

8 6 7

CS-3 M.Sc. 1
Ph.D.
Student

7 6 3

CS-4 M.Sc. 2
Ph.D.
Student

6 7 6

CS-5 M.Sc. 1
Ph.D.
Student

6 7 8

CS-6 B.Sc. 1
Application
Manager

7 4 4

ME-1 M.Sc. 6
Project
Manager

4 1 2

ME-2 B.Sc. 11
Project
Manager

2 3 1

ME-3 Ph.D. 10
Digital
Engineering
Manager

6 4 8

ME-4 B.Sc. 2
Simulation
Engineer

2 2 1

ME-5 M.Sc. 3
Expert
Powertrain

2 1 3

ME-6 M.Sc. 1
Manufacturing
Engineer

1 2 1

Following this, the users had to perform three tasks, i.e., (1) showing
that they understand the purpose of the modeling and the basic idea of
the method by describing the modeled methods in Figure 6, (2) replacing
a CSV stereotype with Text-file stereotype and redefining the attribute
properties of the text file, and (3) adding a new function by connecting
a new block with a particular stereotype to an existing block.

Each of the tasks (1) – (3) is subdivided into sub-activities to allow
fine-grained evaluation of the tasks and the performance achieved by the
participants. The sub-activities are presented with their tasks in Table 2.

For each participant, the time taken to perform the tasks is recorded.
After each of the three tasks, NASA Task Load Index (NASA-TLX,
[45, 46]) and the Systems Usability Scale (SUS, [47]) questionnaire are
filled out by the users to assess the participants’ subjective workload and
usability. Before filling out the questionnaire, the users were explicitly
told to evaluate the method’s usability, not Papyrus’s.
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Table 2 The three main tasks to be performed by the participants, with subtasks that can be
used to assess whether the task has been completed.

Main Task Subtask
Task 1 Understanding Identification of input files

Description of values stored in CSV 2 input file
Description of attributes of the data stereotype of CSV 2 values
Identification of stereotype properties, e.g. path of CSV 2 file

Task 2 Changes Stereotype identified
Stereotype removed
Stereotype added
Stereotype attribute identified
Stereotype attribute value set

Task 3 Modeling Block added to view
Block associated with input
Stereotype added
Stereotype attribute value set

5.3 Test Cases

Table 2 depicts the subtasks to accomplish the tasks of the user study.
Therefore, each subtask is assessed by the study leader to determine
whether they are completed correctly or not. If a user could not find a
specific button due to the usability of Papyrus, but could justify why it
is being searched for, e.g., “I need to remove a stereotype and add a new
one so that a new function is defined”, the task is evaluated as correct.

To achieve reproducibility, the tasks were set exactly with the following
wordings:
Task 1 Understanding: Please describe what can be seen in the currently

displayed diagram and what function it fulfills. Additionally, please
answer the following questions:
(a) What are the two input files, and in which format?
(b) What values are stored within CSV 2?
(c) What is the type of date date, and how is it represented in the

ML model?
(d) What are the path and encoding of the two input files?
(e) What are the properties of DataFrame Merge Stereotype?

Task 2 Function Exchange: Behind the here presented TextFile function,
a CSV stereotype is defined. However, the type is incorrect. Please
change the file type to Text-File . Additionally, set the encoding to
UTF-8 and the path to C:/file.txt .

Task 3 Adding a Function: In the following view, you can see two input
files connected to a merge block. Additionally, a normalization of the
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Fig. 19 The time required by the participants per task and training direction.

merge block is required. Please add the function for Normalization
and set the value of the normalization method to MaxAbsScalar .

5.4 Survey Results

Figure 19 shows boxplots of the required times for the individual tasks
grouped per task and training of the participants in CS or ME.

For Task1, the time required is higher than for Task2 and Task3,
whereas Task2 and Task3 shows a comparable average and distribution.
One reason for the higher time for Task1 is that the users had to describe
a model and this task is therefore more time-consuming. It was also
observed that repetitive tasks made the users faster, which also came as
feedback from the participants. Further, the dispersion of Task1 for ME
is higher compared to CS. This scatter might be explained because of the
varying experience levels of the participants with respect to modeling and
data science. However, there was no correlation between the time spent
and the correctness of the execution of the sub-activities. Regarding the
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Fig. 20 The degree of correct performance of the tasks.

dispersion of CS, interestingly, Tasks 2 and 3 vary more than Task1. This
can mainly be explained by the familiarity with the Papyrus modeling
environment. Thus, participants with more Papyrus experience had com-
pleted the tasks much faster than those who used Papyrus for the first
time.

Figure 20 shows the result of the individual tasks in terms of correct-
ness in relation to the subtasks of Table 2. CS perform better for T1 and
T2, which can be explained by the extended prior experience regarding
UML of CS obtained during university education. In T3, however, ME
perform better. This can be explained by an outlier value for CS that
performs significantly below the average. The overall accuracy of ME
increased with the evolving tasks although the average of T2 is lower than
for T1.

The results of the applied NASA-TLX test to indicate the perceived
workload of the participants for the specific tasks are presented in Figure
21. The lower the value of a dimension of the NASA-TLX, the lower the
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Fig. 21 Result of the NASA-TLX questionnaire.

perceived workload. Consequently, a low scale value is seen as positive.
The Effort dimension shows, for example, that with increasing experience
or task, the perceived effort decreases. Further, the frustration increases
and the performance decreases compared to T1. For T3, the standard
error is larger than for T1 and T2. Both might be justified due to the
increasing complexity of the tasks. However, it is a contrast compared to
the achieved accuracy in Figure 20.

The raw overall scores of the tasks are depicted in Table 22. According
to [48, 49], the workload is categorized as ‘medium’, which is the second
best score and ranging from 10 to 29 points. The cumulative results of CS
and ME shows a decreasing workload among the evolving tasks. For CS,
the workload appears to be higher than for ME, especially for T3. As of
the user feedback, no justification can be given on the difference between
CS and ME.

The results of the SUS test with different rating scales are shown in
Table 3 based on [50].
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Fig. 22 NASA-TLX overall score.
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Table 3 SUS analysis results.

Variable
SUS
Score
(mean)

Percentile SD Min Max 1. Quartile Median 3. Quartile
Adjective
Scale

Quartile
Scale

Acceptability
Scale

T1 - CS 75.0 72.77 10.7 60.0 92.5 67.5 71.25 86.875 Good 3rd Acceptable
T1 - ME 71.25 60.08 7.03 62.5 82.5 64.375 70.0 78.75 Good 3rd Marginal
T2 - CS 72.5 64.38 18.65 37.5 92.5 56.25 76.25 90.625 Good 3rd Marginal
T2 - ME 71.25 60.08 16.12 50.0 97.5 55.625 68.75 88.125 Good 3rd Marginal
T3 - CS 72.08 62.95 13.8 47.5 92.5 60.625 73.75 83.125 Good 3rd Marginal
T3 - ME 77.08 79.24 13.1 62.5 97.5 62.5 75.0 91.875 Good 3rd Acceptable
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Fig. 23 Boxplot of the SUS score.

Figure 23 presents the SUS score as a boxplot, prepared with an online
tool for analyzing SUS questionnaire results [50].

The adjective scale score in the boxplot is aligned with [51], which is
based on [52]. The figure highlights that each task achieves the rating
good for both CS and ME. The standard error of CS is slightly higher than
for ME, which can also be seen in Table 3. The values of quartile scale
shown in Table 3 are according to [53] and acceptability scale according
to [52]. ME increased the score in T3, T1 and T2 are equal. CS decreased
the score among the tasks. However, the changes in the scores are little
and therefore not justifiable.

Figure 24 depicts the percentile scale based on [54]. Since the percentile
score is not uniform or normally distributed, a percentile score was created
based on 5000 SUS studies. In this respect, the comparison shows that
the tests achieved a percentile between 60 and 79. T3 ME over performed
with 79. For CS and ME the average percentile is 66. T1 and T2 for ME
have exactly the same value, which is why they are shown as one colour
in the Figure.

6 Discussion

This section discusses advantages and potential flaws of the newly intro-
duced method to formalize machine learning tasks. The structure of the
section is as follows: First, the metamodel’s extension and the stereotypes’
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Fig. 24 Percentile curve of the SUS questionnaire.

proposed structure are discussed. Next, the benefits and shortcomings of
the modeling semantic are assessed with a particular focus on the appli-
cability and potential ambiguous interpretation. Next, potential risks of
model-driven machine learning and future work are presented. Finally,
the implications of the user study are presented and discussed.

6.1 Stereotypes and Structure of the Custom Metamodel

The integration of custom stereotypes has been proven beneficial in the
literature [17]. In this method, the use of stereotypes to encapsulate and
abstract knowledge about machine learning tasks is beneficial as imple-
mentation details are hidden, thus supporting communication between
different engineers not necessarily experienced in machine learning or pro-
gramming. With structuring the stereotypes using packages, a stereotype
organization aligned to the CRISP-DM methodology is given, supporting
refinements and extension in a fine-grained, hierarchical manner. Par-
ticularly, the definition of blackbox and abstract stereotypes allows the
description of various functions without the necessity to specify each
machine learning function in detail. In the custom metamodel, custom
Enumerations are defined to limit the number of attribute values, which
reduces the model’s wrong specifications. Another opportunity to reduce
the scope of possible selections is to reduce the number of allowed stereo-
types, e.g., only inheritance of the abstract stereotype PreProcessing can
be assigned as a value for a specific attribute. However, the filtering of
stereotypes requires specific rules that have not yet been integrated or
elaborated. Although various methods are defined using stereotypes, the
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level of detail might be too little for practical application. DateConver-
sion, for example, can be applied to manifold input values and various
outputs, e.g., output representation as a string or Coordinated Univer-
sal Time (UTC). Adding multiple DateConversion stereotypes for each
case is possible. Still, with a growing number of stereotypes, the com-
plexity of selecting the correct, unambiguous stereotype increases while
the maintainability decreases. Similarly, if too many stereotype attributes
have to be set, the complexity and the effort for the application increases.
With respect to these uncertainties at the level of detail required for fine-
grained definition of machine learning tasks, industrial case studies have
to be conducted to elaborate and validate sufficient degree of detail and
additionally define future work.

6.2 Complexity of Unambiguous Modeling

The definition of an implementation structure aligned with the CRISP-
DM methodology starting from the business understanding and ending
with the definition of evaluation and workflows, is promising to be use-
ful due to the integration of a comprehensive and mature methodology
in a MBSE method. Additionally, more experienced computer scientists
aware of CRISP-DM can rely on experiences and the benefits of CRISP-
DM. Furthermore, in practice, one third of data scientists lack business
understanding and communication skills[38], which can be supported by
the model-based method of CRISP-DM.
Each block implementing a ML stereotype within the implementation
structure can be seen as an encapsulated subtask. Each subtask provides
an output that can be used as input for another block. However, the given
method does not explicitly specify the output of a block. Therefore, the
output is defined by the implementing computer scientist, which may lead
to different results due to the range of experience of the decisions and the
laziness of the semantics, which allows to create arbitrary associations
that may not be implementable. In this respect, future work requires the
integration of model checking to reduce orphan associations, infeasible
implementations and unwanted side effects on changing associations.

Despite the ambitiousness of the modeling and the potential errors of
the associations, the method supports the elaboration and definition of
machine learning tasks from early development, which is beneficial. The
authors believe that the flaws in the beginning of the method are getting
less with the application due to the possibility of reusing certain parts
of the formalization. The reuse additionally allows to preserve knowledge
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and contribute to standardization in the modeling and implementation,
which further leads to a reduction of cost and risk in the design [37] and
the maintenance of machine learning applications.

6.3 Potential of Model-Driven Machine Learning

The given proposal to describe machine learning tasks using a model-
based method has some benefits but also disadvantages. A core disadvan-
tage is the initial effort to introduce stereotypes and formalize the model.
In this respect, traditional programming might be less time consuming
and therefore, users might use the CustomCode stereotype to inject code.
However, it is not the purpose of the method to insert code injection due
to vulnerability risks and the reduced documentation and understanding
by others. Consequently, future work is required to investigate an exten-
sion of the method that allows to generate code from the model but with
limitations so that code injections like described in the use case are not
possible. Another disadvantage of the stereotypes is the potential effort
for maintenance if interfaces are proprietary or rapidly changing, e.g. due
to configuration changes or replacement of machines. Closely related, for
huge projects, the complexity of the resulting models might be very high,
including potential errors in the model or ambiguous associations, which
might be very hard to find and thus lead to additional communication
effort. Nevertheless, the shortcoming of a complex ramp-up might also be
a benefit in the end due to the possibility of introducing model libraries
containing well-defined models, leading to standardized parts that can be
reused. Further, the method allows to use the formalization as documen-
tation of the implemented technologies that improve the maintainability
and extendability for various engineers. Additionally, with further investi-
gations regarding model validation and model debugging features, errors
in the semantics can be found and repaired without actually implement-
ing the machine learning application. However, to use this efficiently, the
integration into advanced model lifecycle management [55] might be nec-
essary to allow collaborative working.
Due to the non-programming description of machine learning, the method
is promising to increase the communication among various disciplines. In
particular, with the integration of the general-purpose language SysML
and the intersection of CRISP-DM and MBSE, the heterogeneous commu-
nities are broadly supported, which favors the implementation of machine
learning in industrial practice and supports to shift knowledge in enter-
prises regarding machine learning. Further, the method can be integrated
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into early product development due to the abstract definition that allows
to foresee various data interfaces which might have been forgotten dur-
ing the development. This potentially leads to increased accuracy of the
machine learning applications and might reduce failing machine learn-
ing projects, which is a well-known problem in industries [3]. In this
section, the advantages and potential shortcomings of the method have
been shown. However, the key advantages of formalized knowledge was
not detailed yet. The machine-readable artifacts (models) are usable with
model transformations so to generate executable code, such as a Python
script. Particularly, each ML stereotype consists of knowledge to describe
a specific subtask, which is a function in a programming language, e.g.
a date conversion. The function parameters are defined in the stereotype
(mandatory parameters) or on the block (optional parameters). Since
stereotypes have to be uniquely named, each can be mapped to a generic
code template in a dedicated programming language, e.g. Python. The
templates consist of fixed code and generic parts with placeholders, which
are filled based on the model’s attributes. The state diagram defines the
execution order; all blocks are a well-encapsulated functionality; hence,
each block can generate a single code block in an Jupyter Notebook9.
With the automatic derivation of executable machine learning code, the
effort for the documentation and implementation is reduced and poten-
tially lead to less errors in the interpretation. In this respect, future work
consists of implementing a proof of concept showing that a derivation and
decomposition of formalized machine learning knowledge is beneficial.

6.4 Implications from the User Study

The user study was conducted with two groups that are representative
for using the method presented in this work in practice. The results show
that the majority of the tasks were successfully accomplished. From a
study perspective, the users could perform each task without additional
guidance on the modeling method. Still, problems occurred with the user-
interface of Papyrus, e.g., expanding a group of elements to select a block
element for modeling. However, learning effects could be observed among
the tasks on both CS and ME.

The assessment of the NASA-TLX showed that the mental demand
for each task is comparable. A similar observation can be made for the
level of frustration, which is slightly lower for the first task. Contrary to
expectations, the participants perceived the effort as decreasing. With

9https://ipython.org/notebook.html

36

https://ipython.org/notebook.html


regard to the task, the effort for modeling should have been higher than
for understanding a model. Nevertheless, it can be implied that both CS
and ME can use the method in terms of task load without being more
strained.

From an usability perspective, the method achieved good results. Users
rated especially the consistency of the method as very high. Comparing
the method with others using the percentile curve, it achieved a rank over
66.

However, the first positive results could be due to some shortcomings
in the study design. In particular, the demand for rating Papyrus might
have a larger impact on the study design than expected. The usability
feeling of the users is more dedicated to the experience with Papyrus than
to the method, although it was said before to focus on the method. In
this respect, a paper prototype where users had to move paper snippets
on the table might have been more valuable. Furthermore, most of the
participants reported their data science knowledge as low and yet were
able to explain what happens in a given model or create a model building
block themselves. However, modeling their own data science application
might not be possible, as the general understanding of data science is too
low.

Nevertheless, it can be seen as a result of the study that the modeled
knowledge can be used as a communication medium. Therefore, it should
also be possible for non-data scientists to perform a plausibility analysis,
as they can gain an understanding of the process without understanding
programming code.

However, this would need to be evaluated in a further study. Similarly,
an evaluation of the results with the help of a larger study should be
sought.

7 Conclusions

In this work machine learning task definition using means of SysML is
depicted. Particularly, the metamodel of SysML is extended with stereo-
types to reflect functions from the machine learning domain. Additionally,
the CRISP-DM methodology is used as basis for the structure of the mod-
els to organize the development with specific viewpoints. The method is
evaluated in a case study showing the integration of machine learning
task definition in a cyber-physical system as well as in a case study where
a workflow engine is integrated for the interruption of a 3D printer task
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if the aimed result cannot be achieved. Additionally, a user study is per-
formed to collect an overview of the perceived workload using NASA-TLX
questionnaire and to check usability of the system using the SUS question-
naire. The findings of the evaluation showed that the entire workflow of a
machine learning solution can be reflected using SysML. Additionally, the
connection between the domain of (mechanical/electrical) engineers and
machine learning experts is shown. With the MBSE integration and the
involvement of various stakeholders from different disciplines, an improve-
ment in communication is expected as shown in a user study. The user
study implies that non-experts in data science can use the method as
medium of communication. Future work consists of the extension of the
method to automatically derive executable machine learning code act-
ing as a basis for the implementation. In addition, a case study must be
conducted to develop a minimum level of detail required to sufficiently
define a machine learning model that can be used for communication,
and thus guide the implementation of the executable code through the
formalization of the machine learning model.
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in Models 2012 (2012). URL https://hal.inria.fr/hal-00714558

[31] E. Kusmenko, S. Pavlitskaya, B. Rumpe, S. Stuber, in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering Workshop (ASEW)
(IEEE, San Diego, CA, USA, 2019), pp. 126–133. https://doi.org/10.1109/
ASEW.2019.00042

[32] E. Kusmenko, S. Nickels, S. Pavlitskaya, B. Rumpe, T. Timmermanns, in 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS) (2019), pp. 283–293. https://doi.org/10.1109/
MODELS.2019.00012

[33] B. Rumpe, K. Hölldobler, R. Aachen (eds.), MontiCore 5 Language Workbench,
edition 2017 edn. No. Band 32 in Aachener Informatik-Berichte, Software-
Engineering (Shaker Verlag, Aachen, 2017)

[34] A. Bhattacharjee, Y. Barve, S. Khare, S. Bao, Z. Kang, A. Gokhale, T. Damiano,
in 2019 IEEE International Conference on Big Data (Big Data) (2019), pp. 1607–
1612. https://doi.org/10.1109/BigData47090.2019.9006518

[35] A. Moin, M. Challenger, A. Badii, S. Günnemann, A Model-Driven approach
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