arXiv:2505.05453v1 [cs.Al] 8 May 2025

Conversational Process Model Redesign

Nataliia Klievtsova!, Timotheus Kampik?, Juergen Mangler!, and
Stefanie Rinderle-Ma!

!Technical University of Munich,, TUM School of Computation,
Information and Technology, Boltzmannstrafse 3 85748 Garching
b. Miinchen, Germany, {firstname.lastname@tum.de}
2SAP Signavio,, George-Stephenson-Strafie 7-13, 10557 Berlin,
Germany, timotheus.kampik@sap.com

Abstract

With the recent success of large language models (LLMs), the idea of
Al-augmented Business Process Management systems is becoming more
feasible. One of their essential characteristics is the ability to be conversa-
tionally actionable, allowing humans to interact with the LLM effectively
to perform crucial process life cycle tasks such as process model design
and redesign. However, most current research focuses on single-prompt
execution and evaluation of results, rather than on continuous interac-
tion between the user and the LLM. In this work, we aim to explore the
feasibility of using LLMs to empower domain experts in the creation and
redesign of process models in an iterative and effective way. The proposed
conversational process model redesign (CPD) approach receives as input
a process model and a redesign request by the user in natural language.
Instead of just letting the LLM make changes, the LLM is employed to (a)
identify process change patterns from literature, (b) re-phrase the change
request to be aligned with an expected wording for the identified pattern
(i.e., the meaning), and then to (c) apply the meaning of the change to the
process model. This multi-step approach allows for explainable and repro-
ducible changes. In order to ensure the feasibility of the CPD approach,
and to find out how well the patterns from literature can be handled by
the LLM, we performed an extensive evaluation. The results show that
some patterns are hard to understand by LLMs and by users. Within the
scope of the study, we demonstrated that users need support to describe
the changes clearly. Overall the evaluation shows that the LLMs can han-
dle most changes well according to a set of completeness and correctness
criteria.

Keywords: Process Discovery, Process Models, Large Language Models, Pro-
cess Redesign, Conversations

https://arxiv.org/abs/2505.05453v1

1 Introduction

Business process modelling is an approach to describe how businesses execute
their operations [I] by using graphical constructs to specify business logic. The
utilization of a standardized notation such as Business Process Model and No-
tation (BPMN Q.qﬂ) typically improves operational efficiency, significantly min-
imizes errors, and enhances communication and collaboration. One of the pri-
mary challenges is the extensive training and skill development required for
best-practice utilization of BPMN by various stakeholders within an organiza-
tion, such as domain experts and process designers/modellers. The successful
creation of best-practice models [2] can be facilitated either by extensive col-
laboration between domain experts and modellers, or by investing in training
programs for domain experts, so that they can handle modelling tasks them-
selves.

While collaborations help to avoid the implementation of special training
programs and ensure that BPMN models are well designed [2], they can also lead
to a “dilemma between process modeller and domain expert” as there is no or
only limited knowledge overlap between them, i.e., there exists a communication
gap. The process modeller lacks specific domain knowledge, while the domain
expert may have only limited knowledge of process modelling notations [3].
The constant need to transfer the domain knowledge to process modellers is
especially burdensome for organizations continuously undergoing adaptations
caused by internal or external changes, i.e., when business processes need to be
designed or redesigned to improve their day-to-day execution performance [4].
Hence, it is crucial to find a simple and effective way to generate, manipulate,
and evaluate process models, minimizing the communication effort of domain
experts.

Conversational process modelling (CPM) [5], 6] aims to maximize the in-
volvement of domain experts in the creation of process models and hence to
minimize the communication effort between domain experts and process mod-
ellers [7]. Specifically, CPM refers to the iterative process as depicted in Fig.
of creating process models based on process descriptions and conversations be-
tween users and chatbots, until the created models reach a certain quality level
and become sufficiently mature to fulfil their purpose. This possibly includes
several process redesign cycles in which the current process model is changed
according to user redesign requests (see tasks with bold lines in Fig. [1)) by the
LLM. We refer to this as conversational process redesign (CPD).

To the best of our knowledge, no CPD approach has been proposed so far.
Hence, this work aims at i) providing a CPD approach and ii) evaluating the
quality of the redesigned models created through this approach. The basic idea
of the presented CPD approach is to pass a user redesign request in natural
language (text) to the LLM and to equip the corresponding prompts with well-
established change patterns from the literature [§]. The assumption is that the
redesign requests stated by the users involve adaptions of the process model, e.g.,

Ywww.omg.org/spec/BPMN /2.0

www.omg.org/spec/BPMN/2.0

B —
el create initial X adapt
© model / model
<
O

E v

U provide interpret ,| validate request
5 description model "l model redesign
wv)
-]

Figure 1: Conversational process modeling including conversational process
model redesign

inserting a new task or deleting an existing one, that can be represented based
on change patterns. The first study presented in [9] showed that user requests
actually involve change patterns. However, the initial assumption of [9], i.e.,
that the requests mainly refer to basic change patterns such as insert or delete,
did not hold. In fact, user requests might also involve more complex change
patterns such as embedding tasks into loops. Hence, this work extends the
previous work presented in [9] with a systematic and comprehensive evaluation
(i) of all 14 change patterns presented in [10], and (ii) of additional patterns that
are not part of the original set but emerged as relevant extension to support more
complex or diverse process redesign needs. To this end, the change patterns are
analysed for usage and representation in a conversational context. Moreover,
the CPD approach is formalized and evaluation concepts are provided. The
evaluation concepts include the creation of several redesigned process models,
i.e., one created by the LLM based on change patterns and user input, and one
created manually using change patterns for comparison reasons.

The paper is structured as follows: Section [2| describes the CPD approach
and the evaluation concepts. Section [3] puts existing change patterns into a con-
versational context. Section [d] presents the results of a user study to assess the
quality of the LLM-redesigned models regarding user satisfaction, model com-
pleteness and correctness, layouting, and the quality of the selected graphical
representation. Section [5] discusses related work before Section [f] concludes the

paper.

2 Conversational Model Redesign

This section provides the conceptual framework for conversational process model
redesign. Section provides the overview of the approach, Sect. the
prompts utilized for redesign, and Sect. the concepts for the evaluation of
conversational process redesign.

2.1 Conversational Process Redesign: Approach

The conversational redesign problem can be formulated as follows: Given a
process model, a user specifies a redesign request in natural language and the
model is adapted based on the request by an LLM. The conversational redesign
approach tackling this problem is depicted in Fig. [2| Its basic idea is to structure
the processing of the user request by the LLM, exploiting existing and well-
established process change patterns as described in [§].

Change patterns have a formal semantics as defined in [IT]. Assume that a
process model pm is transformed into process model pm* by applying change
pattern cp. Then the formal semantics of pm guarantees that if pm was sound
regarding structure and behaviouIEL then pm* is sound.

/ Wording (w): Process Model (pm Expected User Output (EUO) ‘

N }

User

5 i Change Patterns (CP) '
é ._ —»{::} | Actual Agent Output (AAO):
= 0
g-. @ identify & o derlve ® 33 apply E
(. |]
! l

' Expected Agent Output (FAO):

--------------- - O -0

1manua\/wnh a\gonthm)

Meanm? (m): addition of a new
process ragment taskC dlrectly
after anoth erFrocess ragmen
‘task B' with all the corresponding
dependencies

process fragment between
two directly succeeding
elements

o
2
b
3

Question 1: Question 2: Question 3:
Could a pattern be |dent|f|ed Is the derived meaning a parametrized Do the outputs match?
from the wording? version of the identified pattern?

Legend: @ @ @ LLM Operations

~—— LLMInput
Manual / algorithmic application (State of the Art)
---» Input

Figure 2: Overview on LLM-based Process Model Redesign.

[10] features 14 patterns, i.e., Insert Process Fragment (cp;), Delete Process
Fragment (cp2), Move Process Fragment (cps), Replace Process Fragment (cpy),
Swap Process Fragments (cps), Extract Subprocess (cpg), Inline Subprocess
(cp7), Embed Process Fragment in Loop (cps), Parallelize Process Fragments
(cpg), Embed Process Fragment in Conditional Branch (cp1g), Add Control De-
pendency (cp11), Remove Control Dependency (cpi2), Update Condition (cpi3),
and Copy Process Fragment (cpi4).

Since most of the patterns can be realized through the Insert and Delete
patterns, the question arises which of the 14 change patterns are relevant in
the context of conversational process redesign and how they are supported in a
user-LLM interaction.

We conducted a preliminary survey with 10 users in [9] which tested the
support of change patterns cpy, cp2, cpg, and cp1g. We opted for these patterns
as we assumed them as fundamental for process redesign. We found that none
of the 10 users referred to the Insert and Delete patterns (cp; and cps), but

2Soundness of process models typically requires certain structural properties such as connected-
ness and behavioural soundness requires reachability of an end state, etc. For details see [12].

frequently referred to patterns cpg (Add Loop), cpg, and cpi3 (Change Condi-
tion). Furthermore, users referred to splitting of existing activities into several
new activities, which could either be considered a special case of the Replace
pattern (cpy) or treated as a stand-alone Split Process Fragment pattern.

Based on these results and due to the fact that LLM struggles to identify
more complex constructs related to the elements and relationships between these
elements, in the following, we will systematically test the 14 change patterns
and assess

(a) which user requests in textual form (part of the prompt) can be matched to
change patterns and if they cannot be matched, possible interpretations.

(b) different user requests (i.e., do they convey the same meaning, and thus
refer to the same change pattern).

(c) operational stability, i.e., if a meaning derived from the user request is
applied by an LLM to a certain input model, is the output always struc-
turally and semantically identical?

For tackling (a), we analyse how the change patterns as presented in [10]
can be utilized in a conversational setting, i.e., with textual input instead of
the original “drag & drop” manner. The results of this analysis are presented in
Sect. 3} In order to describe the LLM-based tasks in semiformal way, assume
the following definitions. Let W be the set of all wordings where a wording
describes a redesign request by a user in natural language. Let PM be the set
of all process models. Note that in the following, we assume an imperatively
modelled process model in Business Process Modelling and Notation (BPMN) as
the de-facto standard. We plan the investigation of declarative process models
in future work. Let further CP be the set of all change patterns as described in
[8]. Finally, let M be the set of meanings, i.e., parametrized change patterns.
We will describe the change patterns in more details subsequently.

The user provides a redesign request using wording w, e.g., Add task C
after task B. Wording w is then passed to the LLM which checks whether a
corresponding change pattern in the set of change patterns CP exists. This is
realized by function @ identify, formally:

identify : W x 2¢F s CP U {false} (1)

If the LLM identifies a change pattern c¢p from CP, it returns cp. In the
example, c¢p; for inserting new process fragments between directly succeeding
process elements. If no change pattern can be identified, identify returns false.

If a predicted change pattern can be identified, i.e., identify(w,CP) #
false, the LLM @ derives a meaning m based on wording w and change pattern
cp, formally:

derive : CP x W — M U {false} (2)

Meaning m can be understood as change pattern cp parametrized with the user
request wording w.

The LLM (3a) applies the parametrized change pattern m to the process
model pm to be redesigned, i.e., pm is transformed into pm* which can be
assumed to be sound, formally:

apply : M x PM — PM (3)

2.2 Prompt Engineering for Conversationally Actionable
Model Redesign

To enable the agent to perform the functions identify, derive, and apply, we
rely on prompt engineering (i.e., instructions that guide the behaviour of the
LLM), where each function is implemented as a distinct prompt template. Each
prompt consists of two parts: system instructions on one side and user input on
the other.

The system instructions define the LLM’s role, set boundaries for its be-
haviour, and establish parameters for its operation. These instructions provide
a clear framework for the task and ensure that the LLM’s responses align with
the required level of expertise. User instructions contain the description of the
specific task and the parameters provided by the user.

While the system instructions remain consistent within a single prompt, the
user instructions vary across single prompts based on the user’s request.

Identify. This prompt is necessary for classifying the user request into one
of the predefined change patterns for business process model redesign. The list
of available change patterns, which is part of the system input, and the wording
provided by the user are components of the user input.

Identify

System Prompt: Consider following predefined change patterns
for business process model redesign: <List of Existing Change
Patterns>.

Classify the user input into one of the predefined change patterns, if a
matching pattern exists. If a match is found, return only the pattern ID.
Only one pattern can be matched. If no match is found, return NA. No
other information is allowed to be returned!!!

User Prompt: <Wording provided by a user>.

If the pattern is identified (i.e., the wording corresponds to one and only one
existing change pattern), the agent returns only the pattern ID (e.g., “cpl”).
If no match is found (e.g., multiple patterns match, the wording is unclear,
misleading, etc.), return “NA”.

Derive. The main task of this prompt is to derive the meaning by parametriz-
ing the change pattern with the user request and ensuring that it fits the BPMN
modelling rules. The list of available change patterns, which is part of the sys-
tem input, and the wording provided by the user are components of the user
input.

Derive

System Prompt: You are an expert in BPMN (Business Process Model
and Notation) modeling. Your task is to evaluate and interpret user-
provided modifications to a BPMN process model. Your responsibilities
include:

(a) Validating whether the provided modification contains sufficient and
unambiguous information to be applied.

(b) Mapping each modification to a predefined change pattern (see list
below).

(c) Deriving the actual meaning of the modification based on BPMN
semantics and the intent of the change pattern.

(d) Ensuring compliance with BPMN modelling rules and the structure
of the existing process.

Final output have to contain only the actual meaning of the user input
in natural language without ambiguity and without any additional in-
formation. If there is not enough information to perform changes, the
agent returns “NA”.

Use the following classification of change patterns to interpret user mod-
ifications: <List of Existing Change Patterns>.

User Prompt: <Wording provided by a user>.

\. J

If it is possible to derive the meaning, the agent returns the meaning in
the form of text expressed in natural language. If, for some reasons, it is not
possible to derive the meaning, the agent returns “NA”.

Apply. The aim of this prompt is to apply the changes to the input process
model pm based on the provided meaning m, while adhering to the syntax rules
of the desired output format. The syntax rules of the desired output format
are the part of the system input, and the input process model along with the
meaning are components of the user input.

System Prompt: You are an expert in BPMN modelling, specifically in
<Output Format> format. Your task is to validate and transform BPMN
models based on user-provided modifications, ensuring compliance with
BPMN rules and <Output Format> syntax. The <Output Format> syn-
tax for BPMN models is described as follows:

<Rules for the Process Model in Output Format >.

Return only mermaid.js as text without any additional information!
User Prompt: Consider following process model: <Input Process
Model>. Apply these changes to the model: <Meaning>.

2.3 Evaluation Concepts

The evaluation is two-staged. In the first phase, we evaluate the outcomes of
functions @ identify and @ derive as this provides valuable insights into user
behaviour and wording. It helps us understand where users fail to provide mean-
ingful wording, why patterns are sometimes identified but still fail to provide
meaning, which aspects of the user request might need clearer expression, and
whether the existing change patterns are sufficient to cover user behaviour. In
the second stage, we evaluate the output of the approach, i.e., the redesigned
process model. To this end, we create three versions of the redesigned process
model (cf. Fig. 7 i.e., the Expected User Output (EUO), the Actual Agent
Output (AAO), and the Expected Agent Output (EAO). EUO is the process
model the user intends to obtain, EAO is the new process model representing
correct agent behaviour when applying a change pattern (i.e., after executing
function manually or with the algorithm) to a given process model, and
AAOQO is the process model created by the agent, i.e., after executing function
apply.

Stage 1: At first, we assess the cases in which function @ yields false (i.e.,
no change pattern can be identified based on the user wording, and which cases a
change pattern is found) and function @ returns false (i.e., change pattern was
identified based on the user wording, but it is not possible to derive meaning
out of it). Doing so, we analyse whether the change patterns are properly
understood by the agent, potentially identify new patterns in user behaviour
that have not previously been defined or considered, and detect discrepancies
or errors. Table 23] summarizes the possible interpretations for false results in
functions identify and derive.

Identify Derive Interpretation

Pattern is not identified:

(a) No match is found. The system could not map the wording
to any existing rule. Potentially, a new change pattern can be
identified.

false - (b) User input is incomplete. The wording provided by the
user lacks sufficient information to determine the intended change.
The system should prompt the user for additional details.

(c) Multiple matches exist. The request matches multiple pat-
terns, leading to ambiguity. The system should prompt the user to
clarify the request.

true false User input is incomplete. The wording provided by the user
lacks sufficient information to determine the intended change (i.e.,
location, elements, labels, etc.). The system should prompt the
user for additional details.

Table 1: Stage 1: Assessment of Functions identify and derive

Stage 2 assumes that functions identify and derive do not result in false, but
yield a change pattern cp and a meaning m respectively, resulting in AAO after
executing function apply on process model pm. Comparing AAO to EUO
enables the assessment of how user expectations are met and comparing AAO
to EAO assesses the effectiveness of LLM-based redesign, i.e., the agent per-
formance and the effectiveness of the prompt design. It helps identify patterns
that may fail due to incorrect agent interpretation or limitations in the existing

pattern descriptions. This evaluation also highlights whether all existing pat-
terns are necessary and which patterns can be considered alternatives. Table[2:3]
summarizes interpretations of comparing the redesigned process models AAO,

EUO, and EAO.

AAO == EUO AAO == EAO

Interpretation

true

true

Correct behaviour. The expected user output matches the
actual system output, and the system behaved as expected.

true

false

Incorrect pattern implementation. The system did not
behave as expected even though the user’s request matched an
existing pattern and user’s expectations.

false

true

Incorrect pattern application or identification. The user
misunderstood how the pattern works and need guidance on
proper application or the system mapped wording to a wrong
pattern, leading to incorrect changes.

false

false

Critical inconsistency. The applied pattern produced re-
sults that neither match the user’s expectations nor align with
the expected system behaviour suggesting a fundamental issue

with pattern identification, execution or user input.

Table 2: Assessing LLM Performance and Effectiveness

3 Conversational Representation of Change Pat-
terns

In this section, we elaborate on how to utilise change patterns in a conversa-
tional setting. The reason is that the change patterns presented in [I0] were
designed with the assumption (or expectation) that the user interacts with the
modelling environment through a graphical user interface. In our case, users
interact with the LLM in the CPD approach using as text rather than relying
on the typical drag-and-drop behaviour. Communicating with the LLM agent
through a conversational user interface (CUI) might provide a more natural
and engaging user experience, and as a result, the users are less restricted in
their functionality [I3]. This can be seen as an advantage or a disadvantage,
as user requests can express the same patterns in multiple ways or even exceed
the system’s intended scope [I4]. Consequently, it is possible that the existing
low-level primitives and high-level patterns are insufficient or not required for
conversational interaction with the LLM and for navigating through the process
model.

Therefore, in this section, we introduce and summarize additional patterns,
that can serve as extensions to the existing change patterns proposed in [I0],
based on both existing literature (see Sect. [5) and personal experience gained
through interaction with an LLM-agent via the CUI.

As mentioned in Section [§] change patterns are a combination of simple
actions on individual model elements, leading to process model modifications.
These simple actions (i.e., often called low-level primitives) each refer only to
a single process model element at a time and have no structural assumptions
about the model [I0]. Typical low-level primitives are: add node, delete node,

add edge, remove edge, and move edge [I5]. The problem with these primitives
is that when performing more complex changes like, for instance, adding a new
task into a process, we are required to add not only a node (i.e., task), but
also all the corresponding edges that connect this new element with the existing
process model [§].

Since a simple operation like “add task” consists of at least three primitives,
like adding a node and adding two edges, operating with low-level primitives
quickly accelerates in complexity when applying more complicated changes, and
can lead to multiple potential errors even for users who have sufficient mod-
elling skills. Thus, to support users in model redesign, more complex high-level
patterns are used. Unlike primitives, high-level change patterns require an un-
derstanding of the model’s structure and its modelling rules.

Considering existing low-level primitives and assuming that the model is
generated by the agent, it may be necessary to change the label of an element
so that it better aligns with user needs. Therefore, we state that it is necessary
to introduce an additional low-level primitive—*rename node”. Renaming a
node is considered a simple low-level primitive because it does not manipulate
the structure or flow of the process model but directly modifies an individual
element at the semantic level. Additionally, this primitive cannot be replaced by
any other. While one might argue that renaming a node could be achieved by
combining the “remove node” and “add node” primitives, this approach results
in the substitution of one element with another. In contrast, applying “rename
node” ensures that the element remains the same, with no changes to any of its
other properties (if such exist), except for its label.

Analysing existing high-level patterns firstly we exclude patterns that
are not supported within a BPMN 2.0 standard. Both patterns cp;; and cpis
(Add and Delete Control Dependencies). Secondly, we propose splitting pattern
cps (Embed Process Fragment in Loop) into two separate patterns: cps. for
Pre-conditional Loop and cpg.» for Post-conditional Loop since their behaviour
have to be expressed in natural language in a different way. Although both
patterns express the same intent — to execute a particular process fragment
multiple times based on a condition — the timing of the condition check results
in different behaviour within the model. In cpsg.2, a task must be executed at
least once, whereas in cpg.1, a task can either be executed multiple times (similar
to cps.2) or not at all. This variation in behaviour within the same pattern leads
to different instructions in wording and meaning and, consequently, differences
in output Model. Therefore, the division into two distinct patterns is required.

In addition, we define 5 patterns that are considered to be required during
CPD: Split Process Fragment (cpys), Merge Process Fragment (cpig), Delete
Entire Branch (cp;7), Leave Single Branch (cp;s), and Replace Gateways (cpig).

cp15 (Split Process Fragment) allows splitting an existing process fragment
into multiple separate process fragments. It is an efficient way to separate
tasks, as it also adjusts the control flow between the split tasks. This pattern is
useful when multiple tasks that should be performed sequentially are currently
combined into a single task. However, these tasks do not have enough complexity
or structure to justify forming a separate subprocess.

10

This pattern affects the granularity of the process model. It differs from cp;
(Inline Subprocess), which expands an already structured subprocess, making
its tasks visible in the main process. In contrast, cp;s increases granularity but
does not necessarily create a subprocess.

For example, receiving a document and reviewing it for approval might be
combined into a single task, “Receive and Review Document”. However, since
these two activities are sequential and need to be tracked separately, cp1s would
split them into two distinct tasks: “Receive Document” and “Review Document”.

cpi1s (Merge Process Fragment) serves for merging multiple existing separate
process fragments into one process fragment. It is efficient for merging tasks in
a single task, as it also adjusts the control flow. This pattern is useful when
activities that are represented separately and considered to be independent are
actually a single activity or is a single activity from stakeholder perspective.

This pattern is fundamentally different from cpg, as cpi1g combines multiple
independent process fragments into a single process fragment within the process.
cpg, on the other hand, takes a set of related process fragments and moves them
into a separate subprocess, creating a structured, reusable component.

For example, “Generate Invoice”, “Verify Invoice Details” and “Send Invoice”
from the perspective of an I'T system are three separated tasks, but for managers,
simple users, etc. generating, verifying, and sending an invoice happens in one
task (i.e., the invoice is created, verified and sent immediately without any
manual intervention). In this case, cpig would be used to merge these three
activities into “Process Invoice” to better reflect the real-world process.

cp17 (Delete Entire Branch) removes an entire branch inside gateways with
all associated tasks, control edges, and dependencies. The pattern adjusts con-
ditions and flattens the hierarchy by removing gateways if only one branch
remains. This pattern improves process refinement and clean-up by reducing
errors that might occur if multiple elements had to be deleted one by one. It is
particularly useful in GUIs where users cannot easily select multiple elements
simultaneously using drag and drop.

cp1s (Leave Single Branch) removes multiple branches inside gateways with
all associated tasks, control edges, and dependencies, leaving only a single
branch. The pattern adjusts conditions and flattens the hierarchy by removing
gateways as only one branch remains. This pattern improves process refinement
and clean-up by reducing errors that might occur if multiple branches had to be
deleted one by one. It is particularly useful in GUIs where users cannot easily
select multiple elements simultaneously using drag and drop.

cp1y (Replace Gateways) replaces both splitting and merging components of
a gateway simultaneously. This pattern is useful when the control flow behaviour
changes (e.g., tasks that were previously executed in parallel are now executed
sequentially). Since gateways typically consist of both splitting and merging
components, this pattern allows for both parts to be changed at once, rather
than modifying them separately to avoid potential inconsistencies.

The list of all existing and potentially required patterns that will be consid-
ered further in the paper can be found in Table|3] These patterns are primarily
based on existing literature, practical experience, and assumptions, serving as

11

a solid starting point for understanding user needs in chatbot-related scenar-
ios. Next, we systematically test and evaluate these patterns with real users to
assess their effectiveness and relevance in practice.

Table 3: Overview of the CAPMoRe Change Patterns CP (where green - existing
Primitives and Patterns, yellow - proposed extension, blue - not considered)

1D | Name || ID | Name
Low-level Primitives
LP1 Insert Node LP2 Delete Node
LP3 Insert Edge LP4 Delete Edge
LP5 Move Edge LP6 Rename Node
High-level Change Patterns

cp1 Insert Process Fragment cp2 Delete Process Fragment
cps Move Process Fragment Cp14 Copy Process Fragment
Ccpa Replace Process Fragment cps Swap Process Fragments
Ccps.1 Embed Process Fragment in Pre- Cps.2 Embed Process Fragment in Post-Cond.

Cond. Loop Loop
Ccpg Parallelize Process Fragments cp10 Embed Process Fragment in Cond. Branch
CP1s Split Process Fragment CP16 Merge Process Fragment
Cp11 Add Control Dependency Cp12 Remove Control Dependency
Ccp13 Update Condition Cp19 Replace Gateways
Cpé6 Extract Sub Process cpy Inline Sub Process
cpi7 Delete Entire Branch cpis Leave Single Branch

4 Evaluation

The evaluation concepts are presented in Sect. 2.3 and the conversational rep-
resentation of change patterns in Sect. [3] Based on this, we develop the the
evaluation procedure in Sect. [£.1]and present the evaluation results in Sect.

4.1 Evaluation Procedure

User preferences, expectations, and actual usage behaviour may differ signif-
icantly from the assumptions that formed the basis of the proposed patterns
(see Table [3). Therefore, it is essential to conduct comprehensive user studies
and gather feedback to validate whether these patterns align with user needs
and improve the overall user experience. A closer look at how users interact
with the system will provide insights into refining these patterns and intro-
ducing new ones if necessary. This approach not only helps improve the user
experience by enhancing human-computer interaction, but also contributes to
formulating a better rule base, making the chatbot more flexible and improving
its performance.

To analyse user behaviour, we conducted a user survey with 64 partici-
pantsELEl Users were first asked to answer some general questions about their

3https://docs.google.com/forms/d/e/1FAIpQLSerHMjzTRAI3ZXJIN
vWAZ53KWylblKLr-fv3Wd0 BvUxUyHWA /viewform

4Survey Overview: |https://github.com/com-pot-93/cpd/blob/main/survey/survey-overview.
pdf

12

https://docs.google.com/forms/d/e/1FAIpQLSerHMjzTR4ll3XJN_vWAZ53KWy1blKLr-fv3Wd0_BvUxUyHWA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSerHMjzTR4ll3XJN_vWAZ53KWy1blKLr-fv3Wd0_BvUxUyHWA/viewform
https://github.com/com-pot-93/cpd/blob/main/survey/survey-overview.pdf
https://github.com/com-pot-93/cpd/blob/main/survey/survey-overview.pdf

modelling skills, after which they were presented with models pairs (pm, pm*).
Their task was to imagine that, using a chatbot, they have to make changes to
pm to derive pm*, i.e., using natural language to achieve a transformation (see
Fig. |3).

Input process models were presented as simple BPMN models with up to
five tasks, parallel and exclusive gateways, and subprocesses for certain patterns.
The process models were created with dummy tasks to avoid any potential do-
main biases, especially since some of the participants had no or limited modelling
experience. The output models were derived by applying a list of existing and
proposed change patterns (see Tab. . The list of all input and output process
models, as long as the survey results, can be found irEI, EI, m

pm Expected pattern pm*

EP: cp
OitemHm O = O ad-O

| Please, insert your prompt ... I

n
Wordings collected from Users: V
Wording 1: Please remove task B from the model.
Wording 2: | would like to delete the second task.
Wording n: New model must have only two tasks: A and C.

Figure 3: User survey. Example

Thus the setting of the survey is as follows:

e The user is presented with an Input Process Model (pm).

e The user is presented with an Output Process Model (pm*).

The user is intended to provide a Wording that describes how to transform
pm into pm*.

e The user had to provide a Wording for 18 patterns.

For each of the 18 transformations an Expected Pattern (EP) was assigned.

The EPs were not communicated to the user. Each user was intended to
provide whatever wording he/she deems necessary. The survey itself covered
all patterns, so for each pattern 64 different wordings were collected. After
collecting the wordings the following steps are then performed:

e For each wording identify a pattern cp, if possible.
e Compare the pattern cp, with the expected pattern cp,,.
e Check if m can be derived successfully from cp,.

e When m is applied to pm, check if the resulting pm’ is identical with pm*

SInput Process Models: |https://github.com/com-pot-93/cpd/tree/main /input
SOutput Process Models: https://github.com/com-pot-93/cpd/tree/main/EAO
“Survey Data: |https://github.com/com-pot-93/cpd/tree/main/survey

13

https://github.com/com-pot-93/cpd/tree/main/input
https://github.com/com-pot-93/cpd/tree/main/EAO
https://github.com/com-pot-93/cpd/tree/main/survey

The goal is to find out which patterns are useful, which patterns can be
replaced, reduced or combined, and if some additional patterns have to be added.
For this purpose we follow the procedure, described in Section 2.3} For each of

the steps @a), @b), @), yields True or False, and map obtained results with
the Tables 2.3 and

Input: pm, pm*, Wording w, Expected Pattern cpy

@ identify cp, from w j @derive m from cp,
.) Yes Yes
[@ identify successful?] [@ derive successful?] — @apply m to pm yielding pm’
1 Yes Yes

[@ compare cp, with cpy) [@ compare pm' with pm*)

Figure 4: Evaluation Procedure

Figure [presents the CAPMoRe-agent stages and illustrates how we inter-
pret the output of these stages in order to establish how efficiently the selected
LLMs can map the provided wording to the list of existing patterns, whether the
mapped patterns are consistent with expectations, whether the provided word-
ing is sufficient for deriving meaning, and whether a new pattern is required.

The status of the identified pattern cp, is set to True if it is matched to
one of the patterns in CP. If the wording can not not matched to any pattern
in the CP, if it matches multiple patterns, or if the agent provides an output
different from the expected one, the status is set to False.

If cp, could be identified, we check whether cp, equals the expected
pattern. If they are identical, the status is set to True; otherwise, the status is
set to False.

@ If cp, could be identified, we also proceed to the next step and derive
the meaning from the wording provided by user. If the meaning is successfully
derived (i.e., there is enough information in the wording to perform a change),
the status is set to True; otherwise, the status is set to False, and no further
steps are performed.

If the meaning is successfully derived, we apply it to pm* and generate
the AAO as pm’, which is then compared to the pm* from the survey (which
we define to be the EAO).

To compare two process models, we use element-based semantic similarity,
first introduced in [I6]. Each element of the process model is considered, and for
each element, semantically similar elements in the second model are identified
using the dice score. The overall score is then weighted by the harmonic mean
of the lengths of the elements. The similarity value ranges from 0 to 1.

Since the models in the survey are very simple, and even small differences
result in different models, we set the threshold to 1. Thus, if the similarity
between the AAO and the EAO is equal to 1, the status is set to True; otherwise,
the status is set to False.

Such a strict threshold ensures that the models are not only structurally
identical but also equivalent in terms of completeness (i.e., all elements in one

14

process model are included in the other) and correctness (i.e., the tasks not
only have matching labels but also appear in the same sequence). In doing so,
it also serves as an indicator of user satisfaction with the outcome, as only fully
accurate and complete models are considered equivalent.

In the end, we have six possible combinations introduced in Table 2.3 and 23]
to evaluate how sufficient the selected change patterns are and, at the same time,
how efficient the LLMs are in process model redesign.

4.2 Evaluation Results

For the evaluation, we use three different large language models (LLMs): gpt-4o,
gemini-1.5-pro, and mistral-large-latest (hereinafter referred to as gpt,
gemini and mistral, respectively).

Based on the results obtained from [9], we adopt the strategy of address-
ing the tasks by their labels, performing only one change at a time, and passing
prompt-related information to the LLM (input process model, change to be per-
formed, and rules for the output format). We also use a zero-shot strategy and
provide no examples of process descriptions, input, or output process models.
The prompts used during the evaluation along with all generated artifacts and
non-average data are available inff]

Correct Behaviour. As a starting point, we consider the cases where both
the user and the agent perform well, and the changes provided by the user were
successfully implemented. We define a pattern as successfully implemented if
that reaches at least 30%.

As can be seen in Table[d] only 8 out of 18 patterns were successfully realized
in more than 30% of all cases. For the already well-established change patterns
(cp1—cpi4, excluding pattern cpg), only patterns cpy, cp4, cps, and cpiz reach
the 30% threshold. For the proposed patterns (cpi5—cpig, ¢ps.1, and cps.2), four
patterns (i.e., cpis—cp17 and cpig) succeeded.

Table 4: Correct Behaviour across Change Patterns

Method | ep1 | cp2 | cps | eps | eps | cps | cpr | cps.i | cps.2
gemini 0.72 0.03 0.08 0.64 0.84 0.09 0.08 0.19 0.02
gpt 0.64 0.45 0.45 0.66 0.84 0.11 0.03 0.03 0.11
mistral 0.52 0.03 0.05 0.48 0.31 0.02 0 0 0

average 0.63 0.17 0.19 0.59 0.67 0.07 0.04 0.07 0.04

Method | cpo | cpio | epi3 | cpia | cpis | cpis | cepir | cpis | cpig
gemini 0.13 0.03 0.91 0.11 0.39 0.61 0.58 0.02 0.53
gpt 0.06 0.03 0.86 0.08 0.53 0.59 0.61 0.08 0.56
mistral 0.05 0 0.31 0.03 0.16 0.06 0.03 0 0.31

average 0.08 0.02 0.69 0.07 0.36 0.42 0.41 0.03 0.47

To understand why so many patterns fall below this threshold, we examine
more closely the cases where either identification was not possible, or it was not
possible to derive a meaning from the provided wording (Stage 1, see Sect. [2.3)),

8Prompts: https://github.com/com-pot-93/cpd/tree/main/prompts
9Generated Data: https://github.com/com-pot-93/cpd/tree/main

15

https://github.com/com-pot-93/cpd/tree/main/prompts
https://github.com/com-pot-93/cpd/tree/main

or where the wording and the meaning were considered sufficient by the agent
but the user applied the wrong pattern, or where the agent implemented the
pattern incorrectly (Stage 2, see Sect. .

Pattern is not identified. First, we analysed all cases where the iden-
tification received a False status (i.e., the pattern was not identified or the
identified pattern did not match any existing pattern in CP). According to Ta-
ble there are three possible reasons for such behaviour, and only in one of
these cases a new pattern can be required.

In Table [5] we can see that, generally, for each of the patterns in CP, be-
tween 2% and 20% of the cases had wording that was not matched to existing
patterns. In detail, we will consider only the patterns that reach at least 10%
of unidentified cases, e.g., patterns cp4, Cpss CP7s CP9s CP10s CP14—CP16, and
Cpis-

Table 5: Unidentified Change Patterns

Method | cpi | cp2 | cp3 | eps | cps | cps | cp7r | cps.i | cps.2
gemini 0.05 0.03 0.02 0.25 0.09 0.16 0.11 0.06 0.09
gpt 0.02 0.02 0.02 0.19 0.03 0.06 0.05 0.06 0.05

mistral 0.02 0.02 0.14 0.14 0.05 0.11 0.14 0.06 0.06
average 0.03 0.02 0.06 0.19 0.06 0.11 0.1 0.06 0.07

Method l CP9 [CP1o [CP13 [CP14 [CP15 [CP1i6 [CP1i7 [CP1s [CP19
gemini 0.13 0.14 0.05 0.17 0.2 0.13 0.05 0.2 0.09
gpt 0.05 0.08 0.05 0.08 0.06 0.08 0.05 0.08 0.09
mistral 0.13 0.08 0.05 0.08 0.11 0.2 0.05 0.14 0.09
average 0.1 0.1 0.05 0.11 0.13 | 0.14 0.05 0.14 0.09

In most of these cases, the user input (i.e., wording) did not align with any
existing pattern, because the user was unable to describe the transformation
from the input process model pm to the output process model pm* (e.g.“I
don’t know”, empty wording, or irrelevant content).

In the case of patterns cpg, cp7, cpg, and cpig, the user was not referring to
the patterns themselves, but to multiple patterns, such as insert, delete, etc., to
realize these patterns. As a result, the agent was not able to match the patterns

properly.
For pattern cpy, users often referred to an operation that is not defined as
a pattern but as a proposed low-level primitive — “Rename node” (e.g., in the

provided example: renaming a label or task name). Its utilization and frequency
of occurrence suggest that extending the existing set of low-level primitives to
include this action is appropriate.

Regarding pattern cpis, users frequently described it not just as splitting a
task, but as transforming a single task into a sequence of multiple tasks (e.g.,
“Make task B and E sequential, with task B followed by task E.”). Since this
is exactly what cpis represents, it highlights the need to revise the definition of
cp1s to better align with how LLMs interpret this pattern.

A similar issue exists for pattern cpig. In multiple cases, instead of using
common terms like merge, combine, or join, users chose to describe the transfor-
mation using the term “summarise” (e.g., “Summarize task B and task E into a

16

single task B&E.”). While this can be interpreted as cpig, it is not immediately
clear, since the initial meaning of summarizing is “to express the most important
facts or ideas about something or someone in a short and clear form’m

Meaning is not derived. Next, we examine the cases in which the pattern
was identified but the meaning was not derived. On average, up to 12% of all
cases in all patterns failed to derive a meaning (detailed information can be
found in [ADD git]). In most cases, the failure was due to incorrect wording,
which was insufficient to capture the proper meaning of the user’s request.

Incorrect Pattern Application or Identification. In this case, the user
selects a pattern different from the expected one but still got the same result
as expected. In this situation, we can talk either about pattern alternatives,
i.e., where one pattern can be used to realize another, either consistently or in
some particular scenario, or about agent pattern misidentification, i.e., when the
user’s wording is correct, but for some reason, the agent matches the wording
to the wrong pattern.

To do so, we further examine which other pattern appears most frequently
in those misidentification cases, i.e., we look for the predominant alternative
pattern. This helps us develop an intuition about how users interpret and
understand patterns, and identify which patterns tend to co-occur, serve as
alternatives, or are conceptually related to the expected ones.

Table 6: Incorrect Pattern Application or Identification across Change Patterns

Method | ep1 | ep2 | cps | cps | cps | cps | cp7 | cps.i | cps.2
gemini 0.09 0.23 0.08 0.09 0.03 0.16 0.22 0.02 0.02
gpt 0.19 0.28 0.05 0.08 0.02 0.2 0.2 0.06 0.05
mistral 0.08 0.05 0 0.02 0.08 0 0.03 0.02 0
average 0.12 0.19 0.04 0.06 0.04 0.12 0.15 0.03 0.02
predominant cp4,

pattern ¢P10 P17 : B) vz CpP10 B)
Method | cpo | cpio | cpiz | cpia | cpis | cpis | cpir | cpis | cpio
gemini 0.09 0 0.05 0.61 0.06 0.11 0.06 0.27 0.19
gpt 0.03 0 0.05 0.77 0.16 0.03 0.05 0.23 0.13
mistral 0.02 0 0.05 0.58 0.05 0.02 0.02 0.05 0.11
average 0.05 0 0.05 0.65 0.09 0.05 0.04 0.18 0.14
predominant cpo,

pattern - : - cP1 - - - P17 cp13

In Table [6] we present a summary of the results for the cases where the
wording was mismapped to the wrong pattern, as well as the pattern to which
it was mismapped (i.e., see the predominant pattern in Table @ in cases where,
in more than 10% of instances, all three LLMs consistently predict one or two
alternate patterns that differ from the expected one. In other cases, further ex-
amination is not conducted, as we consider such pattern variation to be random
and not significant.

For each of these predominant patterns, we assess whether the issue arises
from user wording (i.e., misunderstanding of the pattern) or incorrect reasoning
by the LLM (see Tab.[7).

YOhttps://dictionary.cambridge.org/dictionary /english /summarizing

17

https://dictionary.cambridge.org/dictionary/english/summarizing

Wrong user wording (User) means that, in this case, the application of the
provided wording cannot result in the expected output process model or violates
BPMN 2.0 rules. Wrong LLM reasoning (LLM) means that the user’s wording
was correct; however, the LLM’s understanding of it is inconsistent with the
true pattern definition and thus needs to be adjusted.

In all cases, we provide an example of user wording in Tables [7] and [§] Ad-
ditionally, when the likely cause of the mismatch is an LLM error or pattern
ambiguity, we offer suggestions for why the LLM might fail to match the ex-
pected pattern or where clarifying the pattern definitions may help guide both
LLM reasoning and user interpretation more effectively.

Incorrect Pattern Implementation. Here, we examine how often the
agent fails to perform the changes correctly, even though the wording was com-
plete, the correct pattern was identified, and the meaning was extracted.

As can be seen, there are many patterns that exceeded the 10% threshold,
reaching failure rates as high as 62%. This indicates that our agent, first,
can’t easily handle more complicated patterns; second, suffers from issues with
meaning extraction from the wording; and third, that the high threshold we
set for model comparison may be too severe for some cases, which should be
examined in more detail.

A detailed examination of these cases can help to determine whether adjust-
ments to the threshold, the prompt itself, or the logic and sequence of the steps
(e.g., the analysis of user input, the extraction of meaning from that input, and
its application to adjust the initial process model) are necessary.

Critical Inconsistency. Here, we examine how often the agent fails to
perform the changes correctly, even though the wording was complete and the
meaning was derived. However, in comparison with the Incorrect Pattern
Implementation, we cannot be sure who or what is responsible for the failure:
the user or the LLM.

Looking at Table we can see that many patterns failed, reaching up to
70% failure. The analysis of patterns cpa, ¢pg, cp7, Cpis, and cpig can be
found in Incorrect Pattern Application or Identification (see Tab. .

For the patterns cps, cps.1, CPs.2s CP9s CP10s CP16, and cpi7 we perform
another round of evaluation (see Tabs. [11| and .

Summary: As can be seen above, there are multiple reasons why conver-
sational model redesign failed. The reasons for that are not only related to
the agent and its pattern understanding, but also to the users themselves, their
understanding of the patterns, and their application in various scenarios.

Despite the fact that in most cases, either the user or the LLM is fault when
a pattern fails, in some cases it is not straightforward to define whose fault
it is. In such cases, we are dealing with ambiguity in the pattern itself, and
clarification of the pattern is necessary.

Pattern ambiguity means that the wording can be interpreted as multiple
patterns, as the definition of the pattern provided to the LLM is not completely
clear and can be interpreted in multiple ways. As a result, the identified pat-
tern may differ from the expected one but cannot be considered a truly wrong
classification, since this information was not provided to the LLM from the be-

18

Table 7: Incorrect Pattern Application or Identification: Detailed Analysis — 1

Pattern

Misclass-
ified As

Interchange- Cause

able?

Example and Explanation

CP1

CP1o

No

LLM

“Add the task E after task C on
the false branch.”

The misclassification seems to
appear by the user specifying a
particular location within a con-
ditional structure, such as refer-
encing a branch with a condi-
tion. This reference introduces
contextual information that may
lead the model to overemphasize
the structural aspect of the con-
dition, even though the user’s in-
tent is simply to insert a task.

Cp2

CP17

No

LLM

“Remove task C such that no task
is executed in the false-branch.”
This result is highly dependent
with the selected example, where
the user’s intent is to delete a
specific task, which would result
in the false branch being empty.

CPe

CP4g

LLM
User

“After ’task A’ and before the
’end place’, replace all elements
with a transition ’subprocess F’.”
The distinction between "ex-
tracting a subprocess" and "re-
placing elements with one" is
subtle and often blurred. This
suggests that clearer definitions
and separation between cps and
Ccpg are necessary to avoid such
ambiguity in both user under-
standing and model classifica-
tion.

19

Table 8: Incorrect Pattern Application or Identification: Detailed Analysis — 2
Interchang¢- Cause

Pattern

Misclass-
ified As

able?

Example and Explanation

Cpr

CP1o

No

LLM

“Fxpand subprocess F and exe-

cute B, if task A returns true, or
C if it returns false. After both
cases, execute D.”
The misclassification is caused
by the LLM overemphasising the
conditional logic in the prompt,
incorrectly interpreting a clear
subprocess inlining as a condi-
tional insertion.

CP14

CP1

Yes

User

“Insert task A’ before task D.”

CP1s

Cp17

Yes

User

“Delete the branches with condi-
tion b and with condition c.”

CP19

CPg

Partially

LLM,
User

“Replace OR with AND'", "In-
stead of XOR condition, make
the tasks be performed in paral-
lel (AND condition).”

The misclassification results as
changing an XOR to an AND
gateway can be interpreted as ei-
ther modifying decision logic or
enabling parallel execution.

CP19

CP13

No

User

20

“Make no more conditions for
the task B and C.”

Table 9: Incorrect Pattern Implementation across Change Patterns

Method | cpi | ep2 | eps | cpa | cps | eps | cpr | cps.i | cps.2
gemini 0.08 0.39 0.63 0.02 0 0.44 0.36 0 0.52
gpt 0.02 0 0.23 0.02 0.03 0.36 0.19 0.2 0.41
mistral 0.19 0.27 0.5 0 0.14 0.47 0.2 0.06 0.45

average 0.09 0.22 0.45 0.01 0.06 0.42 0.25 0.09 0.46

Method [cpo [cpio [cpis [Cp14 [CPpi1s l CPi16 l Cp17 ‘ CpPis ‘ CP19
gemini 0.25 0.64 0 0.02 0.23 0.06 0.13 0.16 0.11
gpt 0.38 0.66 0 0 0.17 0.05 0.03 0.11 0.08
mistral 0.3 0.56 0.36 0.08 0.39 0.25 0.31 0.05 0.22
average 0.31 0.62 0.12 0.03 0.27 0.12 0.16 0.1 0.14

Table 10: Critical Inconsistency across Change Patterns

Method | ep1 | cp2 | cps | cpa | cps | cps | cp7 | cpsa | cps.2
gemini 0.06 0.31 0.2 0 0.03 0.16 0.23 0.73 0.36
gpt 0.08 0.09 0.17 0.02 0.03 0.11 0.33 0.61 0.34
mistral 0.06 0.22 0.13 0 0.02 0.14 0.44 0.75 0.31
average 0.07 0.21 0.17 0.01 0.03 0.14 0.33 0.7 0.34
predominant CPp4, CPs8.2;
pattern B kad S B B 5 cpio cpio S
Method | cpo | cpio | cpi3 | cpisa | cpis | cpis | cpir | cpis | cpig
gemini 0.41 0.19 0 0.09 0.11 0.09 0.19 0.36 0.08
gpt 0.22 0.13 0.02 0.06 0.02 0.09 0.08 0.31 0.06
mistral 0.34 0.13 0.02 0.13 0.11 0.2 0.14 0.5 0.2
average 0.32 0.15 0.01 0.09 0.08 0.13 0.14 0.39 0.11
predominant cpi13, Cpo,
pattern o Ccpi9) . - CP9 Ccp10 Ccp17 cpis

ginning. In some cases, the change can be realized through multiple patterns,
but this is not a consistent setup; rather, it is a coincidence based on the current
example or settings.

To summarise the evaluation, we categorise all the cases discussed above
based on the most frequent reason for failure (i.e., No Failure (“Correct Be-
haviour”), User (“User input is incomplete” and “Incorrect pattern application
or identification”), LLM (“Incorrect pattern implementation”), or Pattern Am-
biguity (“Pattern is not identified’and “Critical Inconsistency”)).

As shown in the evaluation, only eight patterns performed correctly in most
cases (see Tab. . Since four of these patterns were proposed by us and did
not exist previously, we can conclude that these patterns are valid candidates
to be considered as change patterns for conversational model redesign.

The remaining patterns failed due to issues related to the user, the LLM, or
pattern ambiguity (see Tab. . However, we cannot immediately suggest the
exclusion of these patterns from the CP set based on some thresholds. Each
pattern requires further examination to determine whether it still appears to
be necessary and, depending on the reason for failure, may need to be clarified
either on the agent or the user side.

For instance, in the case of cpy4, the misclassification appears to be caused
by the user wording, which referred to cp; instead of cpi4. Since the suggested
alternative, cpy, leads to the same outcome as the expected pattern cpi4, cp1

21

Pattern

Table 11: Critical Inconsistency: Detailed Analysis — 1

Misclass-
ified As

Interchangg
able?

- Cause

Example and Explanation

Cps

CP1o

No

LLM

“Move task C to be done in both
cases if status after task a is true
or false, it should still be done be-
fore task D.”

The LLM associates "move"
with something more complex
like embedding in a conditional
branch due to the presence
of conditional references in the
wording.

CPs.1

CP1o

No

User

“The task D could only be con-
ducted if the last condition is
false.”

CPs.1

Cps.2

No

LLM

“Before Task D, add a condi-
tional Split. If true then end, if
false then Task D and loop back
to the conditional Split.”

In most cases the user intent
is to conditionally enter a loop
where particular task is exe-
cuted only if a specific condi-
tion is met (clearly describing
a pre-condition loop structure).
The misclassification likely re-
sults from the complexity of the
user request, where the looping
behaviour is described in mul-
tiple partial sentences, making
it difficult to accurately iden-
tify the position of the condition
evaluation.

CPs.2

CP1o

No

User

“Do task D only when condition
is true.”

CPg

CP1o

No

User

22

“Create task D and create a new
branch after task A, so that task
D can be executed instead of task
B and C.”

Pattern

Table 12: Critical Inconsistency: Detailed Analysis — 2

Misclass-
ified As

Interchang¢- Cause

able?

Example and Explanation

CP10

CP13

No

LLM
User

?

“If a = 1, the XOR fragment of
task B and C should be skipped.”
The user did not clearly express
the intent to insert a new con-
ditional branch. The LLM in-
terpreted the prompt as a con-
dition update rather than a new
conditional structure, due to the
absence of explicit wording and
lack of LLM’s familiarity with
the process context.

CP1o

CP19

No

LLM,
User

“Please add XOR in front and af-
ter the decision option of false
and true.”

The distinction between
"adding" and "modifying"
decision logic likely needs to be
better defined in the pattern
descriptions or clarified through
examples.

CP16

CPg

User

“In the new model, the system ex-
ecutes tasks B and E simultane-
ously.”

Cp1i7

CP1o

No

23

User

“Add condition ¢ to the zor with
task E followed by task F in the
branch”

Table 13: Average Distribution of Reasons for Change Pattern Failures

Reason [cp1 [Ccp2 [cp3 [Cp4 [Cps [CpPe6 l Cp7 l CPps.1 l Cps.2
Pattern 01 | 023 | 023 | 02 | 009 | 025 | 0.43 | 0.76 | 0.41

Ambiguity

User 010 [038 | 013 | 02 | 019 | 026 | 028 | 0.08 | 0.00

LM 009 | 022 | 0.45 | 001 | 0.06 | 0.42 | 0.25 | 0.00 | 0.46

No Failure | 0.63 0.17 0.19 0.59 0.67 0.07 0.04 0.07 0.04

Reason | cpo | cpio | cpis | cpia | cp1s | cpis | cpir | cpis | cpio
Apat.ter.“ 042 | 025 | 006 | 02 | 021 | 027 | 019 | 0.53 | 0.2
mbiguity

User 0.2 0.11 0.13 0.69 0.17 0.19 0.25 0.33 0.19
LLM 031 | 0.62 | 0.12 | 0.03 | 0.27 | 0.12 | 0.16 0.1 0.14

No Failure 0.08 0.02 0.69 0.07 0.36 | 0.42 0.41 0.03 0.47

can be considered a valid substitute. A similar situation applies to cpis, which
was effectively realized through cpi7.

In the case of cpig, the same result can be indeed achieved by applying
cp17; thus, these patterns are completely interchangeable. However, in the case
of pattern cpi4, there is a significant difference between copying and inserting
a new process fragment, even though at first glance these patterns may ap-
pear to produce the same result. When copying, the process fragment remains
unchanged, preserving all of its original properties. In contrast, inserting cre-
ates a new process fragment from scratch, without inheriting any properties or
characteristics from the original.

Comparing performance across LLMs, we achieve better results using gem-
ini and gpt, and observe more cases where the agent demonstrates correct be-
haviour. Additionally, gemini and gpt adhere more closely to the instructions
and return output that is consistent with the provided guidelines. Mistral,
on the other hand, tends to return output (e.g., multiple identified patterns,
comments, and explanations) that was not requested, making evaluation more
difficult.

However, despite the fact that in some cases mistral performs worse com-
pared to gemini and gpt, the average case distribution in the evaluation remains
similar across all three LLMs. This means that, by applying the selected pro-
cedure and prompts, we are still able to obtain consistent results, the compre-
hension capabilities of the LLMs are similar, and our findings can be considered
valid.

4.3 Discussion

A high percentage of patterns that failed due to incorrect or incomplete user
wording highlights the necessity of a recommender system implemented by the
agent to support the user in clarification wording and achieve better results.

A high number of patterns that failed due to the LLM suggests that we need
to improve the utilised prompts, clarify or even formalise the pattern descrip-
tions, or modify the architecture of the current pipeline. This could involve
combining LLM capabilities with traditional deterministic approaches to im-

24

prove model redesign performance. For instance, the LLM could be used to
identify the pattern and extract relevant parameters from the wording, while
the pattern application itself could be carried out using deterministic methods.

The presence of pattern ambiguity in some cases indicates that pattern clar-
ification is required not only for the agent but also for the user, in order to
minimise misunderstandings and incorrect pattern application.

Interestingly, when considering user wording in general regardless of the spe-
cific pattern, there are two common user tendencies that occurred. First, when
the changes required for the models were too complex or lengthy to describe,
users tended to create a new model from scratch (e.g., “Delete everything and
create a new process with task A, then task B”). Second, in some cases, users
employed the concept of reverting changes, referring back to a previous model
state (e.g., “Reverse the action from the previous question/step”). These two
behaviours could also be considered as patterns, not in terms of change patterns
for model refinement, but rather as patterns in user behaviour that have to be
supported by the agent implementation.

4.4 Threats to validity

This study presents several limitations that may affect the generalizability and
validity of the findings.

The process models used in the evaluation are small and simple, consisting of
generic task labels lacking domain-specific semantics (e.g., Task A, Task B, etc.).
While this design choice ensures clarity and consistency across all participants
and LLMs, it limits the applicability of the results to more complex scenarios
as our examples may not fully represent the challenges users face when working
with larger or more complex process models.

Participants were not engaged in an interactive setting with the conversa-
tional agent. Instead, they were asked to provide wording based on a static
input-output model pair. Consequently, user behaviour in this study may differ
from that observed in real deployment contexts.

Users were required to express their intent using a single prompt per model
transformation. This constraint does not reflect natural user-agent interaction
patterns, where clarification and follow-up are common.

In addition, the output models used in the evaluation were constructed based
on a predefined set of change patterns. While this approach allowed for better
evaluation and comparison, it may not fully reflect the variety of real-world user
requests. In real-world scenarios, users may express additional or more complex
transformation goals that were not anticipated or covered by the selected pat-
terns.

LLM behaviour can vary based on version, update timing, and underlying
training data. Future replications may observe different results due to changes
in LLM behaviour.

25

5 Related Work

Business process modelling requires the accurate representation of intricate
workflows, decision points, and interactions between multiple stakeholders within
an organization. This complexity is further compounded by the need for effective
communication between domain experts, who possess the contextual knowledge,
and process modellers, who translate that knowledge into formal models, as well
as the need to update and redesign the model in the future.

Several studies address the communication gap between domain experts and
process modellers, e.g., [17, 18] [19] [3, 20]. With recent advancements in Nat-
ural Language Processing (NLP) and Generative AI, which are transforming
transforming classical BPM systems into Al-augmented Business Process Man-
agement systems [21], the use of natural language and chatbots can be a realistic
scenario to overcome the communication gap.

These systems become conversationally actionable, meaning they can proac-
tively communicate with human agents about process-related actions, goals,
and intentions using natural language [22]. This interaction can be enhanced
via the integration of intelligent chatbot functions for improved communication
within the BPM framework, promoting collaboration [21I]. The systems can lead
conversations in a multi-turn nature, considering context and incorporating ut-
terances from previous turns to achieve a higher degree of user engagement [23].
Currently, as mentioned in [24] [25] 26] 27, 28], there is an increasing interest in
the potential benefits for the entire BPM domain arising from employing LLMs,
particularly in process model generation. However, most existing approaches
focus solely on single-time interactions, where the user is able to receive a fi-
nal artifact from the system, but is not able to adjust and redesign it. So
far, the multi-turn conversational capabilities of LLMs for process modelling
have received little attention and have not yet been thoroughly explored in the
Business Process Management domain.

A process model can be redesigned by rearranging various elements to satisfy
predefined business rules and constraints. The primary goal of process redesign
is process improvement, which can be categorized into two levels: (a) Functional
goals, such as ensuring desired or acceptable process behavior, and (b) Non-
functional goals, including cost reduction, time optimization, quality of service
enhancement, and increased flexibility [29].

To facilitate process redesign, researchers have introduced process improve-
ment /redesign patterns (PIPs)—generic concepts aimed at enhancing specific
aspects of business processes [30]. Since the early 2000s, numerous studies have
focused on process redesign strategies, process redesign patterns and frame-
works. A comprehensive overview of these patterns can be found in [3T]. These
works demonstrate that redesign patterns cover multiple aspects of process mod-
els, ranging from structural changes and data transformations to quality, com-
pliance, and risk-related modifications.

However, identifying the most suitable redesign pattern for a given scenario
remains challenging, as most researchers focus on only a subset of available
patterns, driven by specific requirements and constraints. Given that the scope

26

of our paper is to explore structural changes in process models using process
redesign patterns, we refer specifically to change patterns. Several studies have
examined change patterns in the context of structural modifications and model
variability [32], 33] 31 [34].

In our work, we adopt change patterns as a foundation, specifically referring
to the adaptation patterns introduced by Weber et al., apms these patterns
are widely recognized and well-established in the literature [35]. Change pat-
terns support users in performing structural modifications on process models by
encapsulating multiple low-level actions on individual model element (e.g., add
node, delete node, add edge, remove edge, move edge) into a single, semantically
meaningful transformation, simplifying process modifications for users. These
high-level change operations provide a higher level of abstraction, enabling com-
plex transformations that maintain process integrity [10].

Currently, despite recent interest in Al-augmented BPM systems and the
conversational capabilities of LLMs, the potential of generative Al to support
multi-turn, user-guided process model redesign using change patterns remains
under-explored.

6 Conclusions

In this work, we explore whether an LLM-based agent can effectively support
domain experts during the redesign of process models in continuous interaction
via a conversational user interface, aiming to overcome the communication gap
between domain experts and process modelers. The continuous interaction is
based on redesign tasks of the models. To this end, we propose a conversa-
tional process model redesign approach that incorporates and adapts existing
change patterns for business process models into a conversational context. The
approach is systematically evaluated against process models that are redesigned
by the user and manually using the change patterns.

I dont know how much the submission will take We not only evaluate existing
change patterns, but we also propose the potential extension of already existing
ones, which are necessary due to the conversational nature of the user interface
of the LLM-based agent. In addition, we introduce the multifaceted evaluation
concept, which allows us to grasp not only the fact of the failure of the model
redesign, but also the reason why the failure happened, and show, in practice,
how to utilize this methodology through an example with three different LLMs.

Model redesign evaluation is a complex task that depends on multiple factors:
the user, the LLM, and the nature of the pattern. These include aspects such as
how the redesign task is described, whether the description is complete, whether
the user applies the correct pattern for the intended change, whether the LLM
explicitly understands the provided patterns, which patterns appear similar even
if they are not, and the complexity of the change itself.

On average, 9% of cases failed at the stage of identification and 12% at
the stage of meaning derivation due to poor wording, highlighting the need for
mechanisms that support users in minimizing ambiguity, improving clarity, and

27

selecting the appropriate pattern for their request.

On the other hand, the high level of failures due to the agent during pat-
tern application, especially in more complex cases, indicated the necessity of
improved methods of pattern application (i.e., hybrid approaches leveraging the
strengths of both LLMs and traditional approaches).

Future research will focus on three directions. The first will explore more
complex datasets to address the increasing complexity of real-world scenarios.
The second direction will focus on the implementation of change patterns uti-
lizing formalization, i.e., deriving meaning not in a free natural language form
but rather in a formal way, to perform its implementation via traditional ap-
proaches. This will minimize deviations between expected and actual agent
output, helping to focus on conversational and human-agent interaction aspects.
The third direction will emphasize evaluating and integrating knowledge about
user behaviour to improve the quality of human-chatbot communication, better
meeting the needs of domain experts. Additionally, observing this communica-
tion as a learning process for domain experts may help develop their modelling
skills and foster process thinking through active engagement in process model
creation.

References

[1] C. M. DaSilva and P. Trkman, Business model: What it is and what it is
not, Long Range Planning 47(6) (2014) 379-389.

[2] A. Mursyada, The role of business process modeling notation in process
improvement: A critical review, Advanced Qualitative Research (2024).

[3] D. Ley, Approximating process knowledge and process thinking: Acquiring
workflow data by domain experts, 2011 IEEE International Conference on
Systems, Man, and Cybernetics (2011) 3274-3279.

[4] D. Beverungen, Exploring the interplay of the design and emergence of
business processes as organizational routines, Bus. Inf. Syst. Eng. 6(4)
(2014) 191-202.

[5] N. Klievtsova, J. Benzin, T. Kampik, J. Mangler and S. Rinderle-Ma, Con-
versational process modelling: State of the art, applications, and implica-
tions in practice (2023).

[6] N.Klievtsova, J. Mangler, T. iik, J.-V. Benzin and S. Rinderle-Ma, How can
generative ai empower domain experts in creating process models? (2024),
(accepted).

[7] H. Leopold, J. Mendling and A. Polyvyanyy, Supporting process model
validation through natural language generation, IEEFE Trans. Software Eng.
40(8) (2014) 818-840.

28

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

B. Weber, M. Reichert and S. Rinderle-Ma, Change patterns and change
support features - enhancing flexibility in process-aware information sys-
tems, Data Knowl. Eng. 66(3) (2008) 438-466.

N. Klievtsova, T. Kampik, J. Mangler and S. Rinderle-Ma, Conversation-
ally actionable process model creation, in Cooperative Information Systems,

(Springer, 2024), pp. 39-55.

B. Weber, S. Rinderle and M. Reichert, Change patterns and change sup-
port features in process-aware information systems, in Advanced Infor-
mation Systems Engineering, eds. J. Krogstie, A. Opdahl and G. Sindre
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2007), pp. 574-588.

S. Rinderle-Ma, M. Reichert and B. Weber, On the formal semantics of
change patterns in process-aware information systems, in ER, (Springer,
2008), pp. 279-293.

M. Weske, Business Process Management - Concepts, Languages, Architec-
tures, Third Edition (Springer, 2019).

X. Liu, T. Rietz and A. Maedche, Conversational versus graphical user in-
terfaces: the influence of rational decision style when individuals perform
decision-making tasks repeatedly, Universal Access in the Information So-
ciety (06 2024) 1-16.

L. A. Flohr, S. Kalinke, A. Kriiger and D. P. Wallach, Chat or tap? -
comparing chatbots with ‘classic’ graphical user interfaces for mobile in-
teraction with autonomous mobility-on-demand systems, in Proceedings of
the 23rd International Conference on Mobile Human-Computer Interac-
tion, MobileHCI ’21, (Association for Computing Machinery, New York,
NY, USA, 2021).

M. A. Xydis, Comparing change primitives versus change patterns support
using think aloud.

M. Voelter, R. Hadian, T. Kampik, M. Breitmayer and M. Reichert, Lever-
aging generative ai for extracting process models from multimodal docu-
ments (2024).

J. Mendling, H. Reijers and J. Recker, Activity labeling in process model-
ing: Empirical insights and recommendations, Information Systems 35(4)
(2010) 467-482.

J. Mendling, H. Reijers and W. Aalst, Seven process modeling guidelines
(7Tpmg), Information and Software Technology 52 (02 2010) 127-136.

A. Doren, A. Markina-Khusid, M. Cotter and C. Dominguez, A practi-
tioner’s guide to optimizing the interactions between modelers and domain
experts (2019).

29

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

E. Mickeviciute, R. Butleris, S. Gudas and E. Karciauskas, Transforming
bpmn 2.0 business process model into sbvr business vocabulary and rules,
Inf. Technol. Control. 46 (2017) 360-371.

D. Hildebrand, S. Résl, T. Auer and C. Schieder, Next-generation business
process management (bpm): A systematic literature review of cognitive
computing and improvements in bpm (05 2024).

M. Dumas and et al., Al-augmented business process management systems:
A research manifesto, ACM Transactions on Management Inf. Syst. 14
(2022) 1 - 19.

A. Casciani, M. L. Bernardi, M. Cimitile and A. Marrella, Conversational
systems for ai-augmented business process management (2024).

T. Kampik, C. Warmuth, A. Rebmann, R. Agam, L. N. P. Egger, A. Ger-
ber, J. Hoffart, J. Kolk, P. Herzig, G. Decker, H. van der Aa, A. Polyvyanyy,
S. Rinderle-Ma, I. Weber and M. Weidlich, Large process models: Business
process management in the age of generative AI, CoRR (2023).

K. Busch, A. Rochlitzer, D. Sola and H. Leopold, Just tell me: Prompt
engineering in business process management (2023).

A. Beheshti, J. Yang, Q. Z. Sheng, B. Benatallah, F. Casati, S. Dustdar,
H. R. Motahari-Nezhad, X. Zhang and S. Xue, Processgpt: Transforming
business process management with GenAI (2023).

M. Vidgof, S. Bachhofner and J. Mendling, LLMs for business process
management: Opportunities and challenges (2023).

U. Jessen, M. Sroka and D. Fahland, Chit-chat or deep talk: Prompt engi-
neering for process mining, CoRR abs/2307.09909 (2023).

A. Kumar and R. Liu, Business workflow optimization through process
model redesign, IEEE Transactions on Engineering Management 69(6)
(2022) 3068-3084.

M. Lohrmann and M. Reichert, Effective application of process improve-
ment patterns to business processes, Software and Systems Modeling 15
(01 2015).

G. Zellner, Towards a framework for identifying business process redesign
patterns, Business Process Management Journal 19 (07 2013).

A. Yousfi and R. Saidi, Variability patterns for business processes in bpmn,
Information Systems and e-Business Management 14 (08 2015).

D. Kim, M. Kim and H. Kim, Dynamic business process management based
on process change patterns (2007).

30

[34] A. Kumar and P. Indradat, Optimizing process model redesign, in Service-
Oriented Computing, (Springer International Publishing, Cham, 2016), pp.
39-54.

[35] M. Fellmann, A. Koschmider, R. Laue, A. Schoknecht and A. Vetter, Busi-
ness process model patterns: State-of-the-art, research classification and
taxonomy, Business Process Management Journal 25 (08 2018).

31

	Introduction
	Conversational Model Redesign
	Conversational Process Redesign: Approach
	Prompt Engineering for Conversationally Actionable Model Redesign
	Evaluation Concepts

	 Conversational Representation of Change Patterns
	Evaluation
	Evaluation Procedure
	Evaluation Results
	Discussion
	Threats to validity

	Related Work
	Conclusions

