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4.1 Heuristics for rich vehicle routing problems

The heuristics is an approach to solve a given problem that does not guaran-
tee obtaining the optimal solution. However, they allow us to elaborate high-
quality feasible solutions that meet the problem objectives. The main families
of heuristics are classical heuristics developed mostly between 1960 and 1990
and metaheuristics with rapid development lasting until now [103].

The classical heuristics can be grouped into two main groups, construction
and improvement techniques. Both methods perform a limited exploration of
the solution space and usually produce good quality solutions within reasonable
time. Most of them can be relatively easily extended for various constraints en-
countered in real life, and for this reason, they are still used in many commercial
applications [103].

The main reason to develop and use heuristic approaches is finding good-
quality solutions of various problems in short time. Other reasons are the nonex-
istence of an exact method to solve the problem and flexibility of a heuristic
algorithm to handle additional side constraints. Summing up, a heuristics is
considered “good” when a solution can be computed with reasonable compu-
tational effort, the resulting solution is near-optimal, and the low probability of
obtaining solution that is far from optimal [111].

4.1.1 Construction heuristics

Construction heuristics build feasible solutions while trying to minimize its cost
but often do not consider any improvement phases. Route construction heuris-
tics usually start from an empty solution and build iteratively subsequent routes
by inserting customers one by one until all customers are served. They are con-
sidered the simplest and also fastest methods to solve the problem; however,
resulting solutions are usually far from optimal solutions. Due to that fact, they
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are commonly used only as the baseline to find an initial solution to the prob-
lem, which is later improved in the next phases of the algorithm [103]. The main
methods used in construction heuristics for the routing problems are nearest-
neighbor, insertion, and savings techniques.

In the nearest-neighbor method, the solution is constructed by a greedy al-
gorithm of selecting the closest unserved customer each time. This method was
proposed in 1956 by Flood [52] and is considered the simplest way of creat-
ing initial solutions. Although the method was proposed many years ago, it still
attracts interest. Kizilateş and Nuriyeva [94] provided in 2013 a modification
of the nearest-neighbor algorithm for the traveling salesman problem. In 2015,
Joshi and Kaur proposed the nearest-neighbor insertion algorithm for solving
Capacitated Vehicle Routing Problem (CVRP), where they investigated a prac-
tical scenario in which different college buses take students from different bus
stops.

Insertion heuristics generate feasible solutions by repeatedly inserting un-
served customers into partial feasible routes. Various variants of the insertion
heuristics were created due to two key decisions made at every iteration: selec-
tion of customer to be inserted and choosing a place of insertion [31]. Insertion
heuristics proved to be very fast and able to produce relatively good initial so-
lutions. On the other hand, they are usually easy to be implemented and can
be easily extended to handle more complex constraints. Most of the insertion
methods were created several decades ago for the family of the vehicle routing
problems by Solomon [172], Vigo [192], Liu and Shen [106], and Salhi and
Nagy [164]. In 2006, Joubert and Classen [87] proposed a new sequential in-
sertion heuristic for the initial solution to a constrained VRP introducing a new
concept of time window compatibility. More recently, in 2015, Pinto et al. [147]
proposed an insertion heuristics for the CVRP with loading constraints and
mixed linehauls and backhauls. Their approach was based on standard insertion
heuristics extended to tackle the explicit consideration of loading constraints.

The savings algorithm was originally developed for the VRP with one central
repository and variable number of vehicles by Clarke and Wright [35] in 1964.
Its main idea is to compute savings for combining two customers into the same
route. The main advantage of that algorithm is that it can be applied for both
directed and undirected problems. The savings method was proposed more than
fifty years ago, but it still attracts some interest. Gajpal and Abad [56] proposed
in 2010 saving-based algorithms for the vehicle routing problem with simul-
taneous pickup and delivery introducing cumulative net-pickup approach for
checking the feasibility when two existing routes are merged. In 2012, Pichpibul
and Kawtummachai [146] proposed a new enhancement for Clarke–Wright sav-
ings algorithm to optimize the CVRP. They suggested two-phase probabilistic
mechanism and the route postimprovement, which gave good results for bench-
marks involving from 16 to 135 customers.
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FIGURE 4.1 2-Opt local search move.

4.1.2 Improvement heuristics

The improvement heuristics are usually used for already generated solutions by
other heuristics or exact algorithms. Local search methods are typically applied
for simple local modifications such as customer or arc exchanges to generate
neighboring solutions of possibly better quality. In case better solution is found,
it replaces the current one, and the process is continued until local minimum
has been found [103]. The main idea driving local search is that by repeatedly
improving the quality of solution by making small changes (called moves) it
is often possible to find very good solutions. Different heuristics are mostly
characterized by different types of local search moves and by obtained neigh-
borhoods. Considering created neighborhoods, there are usually two strategies
considered, first-accept (FA) and best-accept (BA). In the FA strategy the first
neighbor satisfying acceptance criteria is selected, whereas in the BA strategy,
all neighbors have to be examined, and the best one is chosen [27].

The most famous local search moves are 2-Opt and 3-Opt related to edge-
exchange neighborhoods for a single route. The 2-Opt method was proposed
by Flood [52] in 1956 and Croes [39] in 1958 and is based on deleting two
edges from the same route followed by reconnecting the subtours in the other
way. A sample 2-Opt local search move is shown in Fig. 4.1. The 3-Opt neigh-
borhood was proposed by Bock [20] in 1958 and is similar to 2-Opt except
that three edges are deleted and rejoined with three new links. A sample 3-Opt
local search move is shown in Fig. 4.2. In turn, k-Opt neighborhood is a gen-
eralization of the 2-Opt and 3-Opt neighborhoods to k-edge exchanges in one
local search move. It is important to note that checking k-Opt neighborhoods
requires O(nk) computational time. The first works for application of k-Opt im-
provement heuristics for the vehicle routing problems were conducted by Russel
[161] in 1977. They were further improved mostly in the area of checking the
infeasible neighboring solutions by Savelsbergh [165], Solomon and Desrosiers
[173], and Baker and Schaffer [10].
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FIGURE 4.2 3-Opt local search move.

The OR-Opt technique proposed in 1976 by Or [134] is a modification of
the 3-Opt by taking into account only such 3-Opt exchanges that result in one,
two, or three adjacent customers inserted between two other customers. Sample
OR-Opt local search move is shown in Fig. 4.4. Replacing up to three edges in
the original tour by three new edges does not modify the orientation of the route,
which is very crucial in many vehicle routing problems. The cross-exchange
neighborhood is constructed by exchanging two subroutes of length at most k,
and thus it may be considered as a specific subset of the k-Opt neighborhood
[178].

In 1992, Savelsbergh [165] proposed interroute operators for relocation and
exchange. The relocate operator is used to move one customer from one route
to another, whereas the exchange operator swaps two customers in two different
routes. The 2-Opt* neighborhood is a specific variant of 2-Opt, which is a set of
solutions obtained by removing two edges from two different routes, followed
by adding two different edges to reconnect broken subroutes [153]. A sample
2-Opt* local search move is shown in Fig. 4.5.

This type of neighborhood was introduced in 1995 by Potvin and Rousseau
[153], who were doing extensive studies on 2-Opt, 3-Opt, and OR-Opt tech-
niques. The key point in 2-Opt* moves is that the order of customers in sub-
routes is maintained. Potvin and Rousseau proposed also a hybrid approach
comprising both OR-Opt and 2-Opt* methods together, which proved to be com-
petitive to these methods applied separately. In this hybrid approach the operator
(OR-Opt, 2-Opt*) changes each time local minimum is reached.

The more specialized neighborhoods are GENI-exchange by Gendreau et
al. [62], λ-interchange by Osman [140], CROSS-exchange by Taillard et al.
[178], and ejection chains by Glover [66]. The GENI operator is an extension
of the standard relocate operator by Savelsbergh with such a difference that an
out-relocated customer may be inserted between two customers in the desti-
nation route even violating the order of the customers in that route. A sample
GENI exchange is shown in Fig. 4.3. The λ-interchange defines the neighbor-
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FIGURE 4.3 GENI local search move.

FIGURE 4.4 OR-Opt local search move.

FIGURE 4.5 2-Opt* local search move.
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FIGURE 4.6 CROSS-exchange local search move.

hood with λ customers shifted from one route to another or exchanged between
two routes with a specific order on each pair of routes. The basic idea of the
CROSS-exchange is to exchange two consecutive customers from one route
with two consecutive customers from the second route preserving the original
order. A sample CROSS-exchange is shown in Fig. 4.6. In turn, ejection chains
are based on a sequence of removal and insertion moves repeated until an un-
routed customer can be inserted into the destination route without the need to
eject any customer.

4.2 Metaheuristics for rich vehicle routing problems

Metaheuristics is an enhancement of classical heuristics with emphasis on deep
exploration of the solution space. They usually combine sophisticated neigh-
borhood search rules and recombination of solutions [103]. The quality of the
solutions produced by metaheuristics is typically much higher than that obtained
by classical heuristics techniques but with a price of increased computing time.
The metaheuristic techniques are context dependent and usually require finely
tuned parameters, which unfortunately make their extensions to other problems
difficult. Many various metaheuristics have been proposed for the vehicle rout-
ing problems, and they can be widely divided into local search, population
search, and learning mechanism groups; however, best metaheuristics merge
ideas from different approaches [38]. These different approaches will be de-
scribed in the following subsections.



Heuristics, metaheuristics, and hyperheuristics Chapter | 4 107

FIGURE 4.7 Simulated Annealing procedure (blue (mid gray in print version) dot – initial solution,
orange (light gray in print version) dot – local minimum, green (mid gray in print version) dot –
global minimum, red (dark gray in print version) arrow – hill climbing (move accepted with certain
probability)).

4.2.1 Simulated Annealing

Simulated Annealing (SA) is a probabilistic technique proposed in 1983 by
Kirkpatrick et al. [93] and in 1985 by Černý [213]. Its main idea is to find a
global minimum of a specific objective function attempting to escape local min-
ima in the search process. Due to low complexity, it can be used in many various
optimization problems, not only related to the VRPs. This method takes its name
from the annealing in metallurgy, involving heating a solid material to a certain
temperature at which it becomes liquid, followed by slow and controlled cooling
down until the solid state is reached again and the metal particles are rearranged
in a minimal energy molecular structure. An example of simulated annealing
procedure is shown in Fig. 4.7.

The SA is a stochastic algorithm involving asymptotic convergence and al-
lowing random movements in the searched neighborhood in order to escape
local minima [1]. Although proposed more than 40 years ago, it still attracts
some attention and is broadly used in many existing solutions for different vari-
ants of the vehicle routing problems.

Woch and Łebkowski [212] presented in 2009 a standard sequential simu-
lated annealing algorithm applied to the VRPTW, which gave two new world’s
best solutions to Solomon benchmark set. In 2013, Afifi et al. [4] developed a
simulated annealing algorithm for the VRPTW with synchronization constraints
incorporating several local search techniques to deal with this problem. By im-
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plementing it the researchers were able to produce high-quality solutions in very
short computational time detecting some new world’s best solutions too.

Yu et al. [207] suggested in 2016 a simulated annealing heuristic for the
hybrid vehicle routing problem (HVRP), an extension of the Green Vehicle
Routing Problem. They focused on vehicles that use a hybrid power source,
and the model considered the utilization of electric and fuel power depending
on the availability of either electric charging or fuel stations. By developing SA
with restart strategy combined with Boltzmann and Cauchy functions for deter-
mining the acceptance probability of a worse solution, the researchers were able
to effectively solve the HVRP test instances.

In 2017, Wei et al. [198] proposed a simulated annealing algorithm for
the CVRP with two-dimensional loading constraints combining mechanism of
repeatedly cooling and rising the temperature with a new open space-based
packing method. The computational results proved that such combination of
approaches allows for reaching or improving best-known solutions for most in-
stances.

Just recently in 2018, Linan-Garcia et al. [50] proposed another multi-phases
metaheuristic algorithm based on Simulated Annealing to solve the CVRP with
stochastic demands. Their algorithm comprises very custom phases of annealing
including Fast Quenching Phase, the Annealing Boltzmann Phase, the Bose–
Einstein Annealing Phase, and the Dynamical Equilibrium Phase applied in
different ranges of temperature in the Simulated Annealing.

The SA was also used to solve pickup and delivery problems. The SA algo-
rithm developed by Wang et al. [194] in 2013 for the VRPTW with simultaneous
pickup-delivery, which also proved to be an effective metaheuristic due to re-
sults of computational tests on Wang and Chen benchmark set. There exists also
a combination of the SA with the other heuristics such as Two-Stage Hybrid
Local Search algorithm for the VRPTW proposed in 2001 by Bent and Henten-
ryck [15]. Their algorithm used the simulated annealing method to minimize the
number of vehicles in the first phase of the VRPTW, whereas the large neigh-
borhood search (LNS, see Section 4.2.5 for more details) was used to minimize
total travel cost.

4.2.2 Tabu Search

Tabu Search (TS) was introduced and formalized by Glover [65] in 1959 as a
metaheuristic search technique comprising local search methods and memory
structures called tabu-list. Its main idea is to avoid cycling by inserting recently
checked solution on the tabu-list, so during the search process, the solutions
marked with tabu label are not taken into consideration. Such approach helps in
getting out from the local minima and increases chances to find global, optimal
solution. An example of tabu search method is shown in Fig. 4.8.

The initial implementations of the tabu search method to the routing prob-
lems were conducted in 1990s by Taillard [179] and Gendreau et al. [63] for the
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FIGURE 4.8 Tabu Search method (blue (mid gray in print version) dot – initial solution, orange
(light gray in print version) dot – current solution, orange (light gray in print version) dot – local
minimum, green (dark gray in print version) dot – global minimum, red (dark gray in print version)
curve – tabu solutions).

CVRP and by Semet and Taillard [169] and Potvin et al. [152] for the VRPTW.
The TS algorithm by Taillard [179] for the CVRP is still considered one of
the best methods to solve it, and its main ideas comprise random tabu durations
combined with continuous diversification mechanism penalizing frequently per-
formed moves, making broader exploration of the search space. In turn, the tabu
search algorithm by Gendreau et al. [63] is based on moving in each iteration
a customer from one route to another where at least one neighbor is present.
The consecutive insertions are carried out simultaneously with a local route
improvement based on the GENI-exchanges (see Section 4.1.2 for more de-
tails). Similarly to Taillard’s algorithm, infeasible solutions are also penalized,
and random tabu durations are combined with continuous diversification mech-
anism.

Based on the initial tabu search algorithms, many other researchers con-
ducted extensive studies and enhancements producing many different versions
of the TS method applied to probably all variants of the vehicle routing prob-
lems. A good review on various tabu search heuristics for the VRPTW was
given by Bräysy and Gendreau [26] in 2002. In 2004, Ho and Haugland pro-
posed tabu search heuristics for the VRPTW with Split Deliveries, a variant
where customer demands exceed vehicle capacity. Cordeau and Laporte [37]
gave in 2005 a very good review on the most important heuristics for the whole
family of the VRPs focusing on short/long memory structures, neighborhood
structures, intensification, and comparison of computational results of various
algorithms. A combination of the Tabu Search with guided local search prin-
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ciples were proposed in 2009 by Zachariadis et al. [208] for the VRP with
two-dimensional loading constraints, and its implementation led to several new
best known solutions. Moccia et al. [117] described in 2010 the incremental
tabu search algorithm for the Generalized VRPTW introducing an incremen-
tal procedure to compute successive neighborhoods and demonstrating through
extensive computational experiments that such general algorithm is competi-
tive with other specialized heuristics for the VRPTWs. Brandao [23] reported in
2011 four new world’s best solutions for the heterogeneous fixed fleet VRP by
implementing a tabu search algorithm for this variant of the VRP.

More recently in 2012, Tarantilis et al. [184] proposed a tabu search solution
framework for the Consistent VRP adopting a two-level master–slave decom-
position scheme. The tabu search heuristic approach was employed on a dual
mode basis to modify both the template routes and current daily schedules prov-
ing the competitiveness of such an approach by computational experiments on
benchmark datasets. In 2013, Nguyen et al. [129] described a novel tabu search
heuristic for the Time-dependent Multizone Multitrip VRPTW, where two types
of neighborhoods related to the two sets of decisions of the problem together
with an approach controlling the selection of the neighborhood type for par-
ticular phases of the search are able to combine exploration and exploitation
capabilities for the search. Moreover, to drive the search to potentially unex-
plored good regions, the diversification strategy, guided by an elite solution set,
is used. Another, very competitive iterated tabu search heuristic for the multi-
compartment VRP was introduced in 2017 by Silvestrin and Ritt [171], which
dominated all existing approaches in nearly all cases for this variant of the VRP.

An attempt to combine tabu search heuristics with simulated annealing was
suggested by Wang et al. [196] in 2017 for a vehicle routing problem with cross
docks and split deliveries by introducing a constructive heuristics with two lay-
ers. The first layer was used to optimize the allocation of trucks to cross docks,
whereas the second layer was used to optimize the visitation order to suppli-
ers and retailers for trucks assigned to each cross dock. Another interesting
combination of tabu search with ejection chains for the multidepot Open VRP
was proposed also in 2017 by Soto et al. [174]. They hybridized this approach
also with multiple neighborhood search being able to generate neighborhoods
from path moves and ejection chains, and by numerical and statistical tests they
proved that such a combination outperforms state-of-the-art methods.

4.2.3 Adaptive Memory Procedures

The Adaptive Memory Procedure (AMP) was introduced in 1995 by Rochat and
Taillard [159] and is based on the idea of the so-called adaptive memory being
pool of good-quality solutions. The solutions in adaptive memory are always
replaced with the new better-quality solutions coming from recombination of
existing ones. The AMP by Rochat and Taillard was initially developed for the
VRP. In this context, they proposed the process of extracting nonoverlapping
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FIGURE 4.9 Adaptive Memory Procedure (blue (mid gray in print version) dot - initial solution,
orange (light gray in print version) dots - good quality solutions, orange (light gray in print version)
dot - new solution combining components of good-quality solutions from Adaptive Memory, green
(dark gray in print version) dot - global minimum).

routes from the solutions followed by insertions of unrouted customers to cre-
ate new feasible offsprings. Each time new offspring solution has a better quality
than the worst one in the adaptive memory, and then such a better offspring solu-
tion replaces the worst solution in the adaptive memory. The AMP is illustrated
in Fig. 4.9.

Bozkaya et al. [22] developed in 2003 an interesting combination of the
adaptive memory procedure with tabu search algorithm for political districting
optimization problem, in which the objective is to partition a territory into elec-
toral constituencies subject to contiguity, population equality, and compactness
side constraints. The authors performed the computational experiments on the
real example of Edmonton city.

Tarantilis and Kiranoudis [183] modified in 2002 the original AMP by
changing initial solution generation with the Clarke–Wright savings method
combined with 2-Opt local moves, customer swaps between routes, and reinser-
tions of customers. Instead of extracting full routes from the adaptive memory
as in original AMP technique by Rochat and Taillard, they suggested extracting
particular route segments (so-called bone-routes) to generate new offspring so-
lutions. The bone-routes proved to be very efficient by executing computational
experiments over benchmark sets of the Capacitated VRP. This method was fur-
ther improved in 2005 by Tarantilis [182] by introducing Solutions Elite Parts
Search (SEPAS), an iterative method generating initial solutions by a systematic
diversification technique and storing them in the adaptive memory. Generation
of the new solutions was carried out using the tabu search heuristics, and such
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combination allowed the author to find several new best known solutions for the
CVRP. The AMP was also applied to the other variants of the VRP such as VRP
with multiple trips by Olivera and Viera [132] in 2007 or for the heterogeneous
fixed fleet VRP by Li et al. [105] in 2010. In the latter one, Li et al. proposed a
multistart adaptive memory programming (MAMP) and path relinking to solve
this variant of the VRP. At each iteration, the MAMP was used to construct mul-
tiple temporary solutions, further improved by modified tabu search heuristics
integrated with path relinking methods.

For the Fleet Size and Mix VRPTW variant, Repoussis and Tarantilis [157]
proposed in 2010 an interesting AMP solution utilizing the basic concept of
AMP framework combined with probabilistic semiparallel construction heuris-
tic, a novel solution reconstruction mechanism, an innovative Iterated Tabu
Search algorithm tuned for intensification local search and frequency-based
long-term memory structures. The authors proved to improve the best reported
cumulative and mean results for almost all problem instances in reasonable com-
putational time.

More recently, in 2016, Gounaris et al. [72] presented the AMP method to
solve the Robust CVRP under demand uncertainty. By focusing on verifying the
robust feasibility of candidate routes and uncertainty sets, the authors were able
to obtain new best known solution to 123 benchmark instances.

4.2.4 Variable Neighborhood Search

The Variable Neighborhood Search (VNS) was proposed in 1997 by Mladenovic
and Hansen [115], which can be described as a framework for building heuristics
exploiting the neighborhoods for both finding local optima and getting out of
them by perturbation moves. Contrary to classical local search methods, VNS is
not based on following the trajectory but rather on exploring increasingly distant
neighborhoods of a given solution and moving to the new one only in case of
improvement. Such a method usually leads to maintaining best characteristics of
current solution and helps obtain neighboring solutions of better quality. After
VNS was proposed, a lot of other researchers used this idea to combine VNS
with other techniques, usually to create hybrids of VNS with tabu search and
other improvement heuristics.

In 2003, Braysy [24] presented a novel Reactive VNS method for the
VRPTW based on the modification of the original procedure combined with
a new four-phase approach. In the first phase an initial solution is created us-
ing specialized route-construction heuristic, and a route-elimination method is
applied in the second phase to further decrease the number of routes. The total
traveled distance is minimized in the third phase by four new local-search proce-
dures, and finally in the fourth phase the best solution is enhanced by modifying
the objective function to escape from a local minimum.

The first attempt to solve the Multi-Depot VRPTW by a Variable Neighbor-
hood Search method was undertaken by Polacek et al. [148] in 2004, and it was
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proven to be more effective than the baseline Tabu Search algorithm for this
variant of the VRPTW.

Paraskevopoulos et al. [144] described in 2008 a very interesting solution
methodology for the heterogeneous fleet VRPTW. Their approach was based on
the idea of two-phase solution framework built upon a hybridized Tabu Search
within a new Reactive Variable Neighborhood Search metaheuristic algorithm.
Computational experiments proved the effectiveness of the approach and its ap-
plicability to realistic routing problems.

The VNS method was also applied to very large-scale vehicle routing prob-
lems, in particular, by Kytojoki et al. [101] in 2007, who applied it to the CVRP.
The VNS procedure was used to guide standard improvement heuristics, and
a strategy reminiscent of the guided local search metaheuristic was applied
to help escape local minima. The authors proved that such a method is very
robust, and by performing computational experiments they were able to find
high-quality solutions for the problem instances with up to twenty thousands
customers, which is considered very large scale in the CVRP.

More recently, in 2015, Wei et al. [199] presented a VNS for the CVRP
with two-dimensional loading constraints, in which customer demand is a set
of two-dimensional rectangular weighted items. Apart from the VNS to address
the routing aspect, they used also a skyline heuristic to examine the loading
constraints. Moreover, they utilized Trie data structure to speed up the search
process to record the loading feasibility information of routes and to control the
computational effort of the skyline spending on the same route. Based on the
results of the extensive computational experiments, the authors proved that the
proposed method outperformed all existing methods at that time for this variant
of the CVRP.

4.2.5 Large Neighborhood Search

The Large Neighborhood Search (LNS) was introduced in 1998 by Shaw [170],
initially for the VRPTW, and can be described as an iterative way of destroying
and repairing the solution in the neighborhood. Destroying methods have some
randomness such that different parts of the solution are destroyed and broader
parts of the search tree are visited, and thus the searched neighborhood is larger
than in classical local search methods. The removed customers from routes are
usually reinserted back using Constraint Programming; however, other meth-
ods can be used too. The Constraint Programming strategies are used to check
feasibility of the moves, to handle side constraints, and to allow iterative im-
provements in the search procedures.

Ergun et al. [49] have extended this concept further by proposing Very Large
Neighborhood Search (VLNS) for the VRP by introducing operation on multi-
ple routes simultaneously, which allowed even broader search. This advantage
comes however with much higher effort required to perform extensive repairing
moves in each iteration.
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In 2006, Ropke and Pisinger [160] extended the idea of the LNS to the Adap-
tive Large Neighborhood Search (ALNS) for the Pickup and Delivery Problem
with Time Windows. In their concept, multiple destroy and repair methods were
allowed within the same search iteration. Another adaptive LNS heuristic but for
Two-Echelon VRP (2E-VRP) was proposed in 2012 by Hemmelmayr et al. [75],
who proposed new neighborhood search operators by exploiting the structure of
the problem, and these operators were used in a hierarchical scheme reflect-
ing the multilevel nature of the problem. Ribeiro and Laporte [158] in 2012
also developed an adaptive LNS for the Cumulative Capacitated VRP, which is
a variation of the classical CVRP where the objective is to minimize the sum
of arrival times at customers, instead of the total routing cost. The VRP with
multiple routes was solved by an adaptive LNS by Azi et al. [8] in 2014, who
developed various destruction and reconstruction operators working either at the
customer, route, or workday level.

More recently, in 2016, Grangier et al. [73] developed an adaptive LNS
for the Two-Echelon Multi-Trip VRP with satellite synchronization, addressing
constraints arising in city logistics such as time window constraints, synchro-
nization constraints, and multiple trips. They suggested adaptive LNS combined
with custom destruction and repair heuristics and efficient feasibility checks for
moves.

4.2.6 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) was introduced
by Feo and Resende [51] in 1995 and is based on iterative two-phase search
algorithm comprising construction and local search phases applied to vari-
ous combinatorial optimization problems. In each iteration in the construction
phase, a feasible solution is constructed by a randomized greedy function. The
solution is then iteratively improved in the second phase by local search move-
ments. An illustration of the GRASP is shown in Fig. 4.10.

The GRASP method was applied to the VRPTW by Kontoravdis and Bart
[95] in 1995, and by developing additionally three lower bounding heuristics,
they found optimum solutions for almost all test instances up to 100 customers.
GRASP is also very often combined with evolutionary local search (ELS) meth-
ods such as VRP heuristic by Prins [154] from 2009, who proposed solutions
encoded as giant tours and a robust local search based on a sequential decompo-
sition of moves. Based on the experimental studies, their approach outperformed
all previous methods at that time except Active Guided Evolution Strategy
(AGES) algorithm by Mester and Bräysy (see Section 4.2.16 for more details).
In 2010, Duhamel et al. [47] addressed the GRASP-ELS approach to the Ca-
pacitated Location Routing Problem (CLRP), which is defined by a set of depot
locations with opening costs and limited capacities, a homogeneous fleet of ve-
hicles, and a set of customers with known demands. The objective of the CLRP
is to assign customers to opened depots and to design vehicle routes in order
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FIGURE 4.10 Illustration of the Greedy Randomized Adaptive Search Procedure (GRASP).

to minimize both the cost of open depots and the total cost of the routes. Their
method comprises GRASP with ELS combined with searching within solutions
identified by giant tours without trip delimiters. Giant tours were evaluated by a
splitting procedure minimizing the total cost due to vehicle capacity, fleet size,
and depot capacities.

The combination of GRASP with Variable Neighborhood Search (VNS) (see
Section 4.2.4 for more details) and path relinking methods was proposed by
Villegas et al. [193] in 2011 to solve the Truck and Trailer Routing Problem
(TTRP). The TTRP comprises a heterogeneous fleet composed of trucks and
trailers serving a set of customers, some only accessible by truck and others
accessible with a truck pulling a trailer.

In 2012, Marinakis [109] developed a modified version of GRASP, called
Multiple Phase Neighborhood Search-GRASP (MPNS-GRASP) for solving the
Capacitated VRP. He utilized a stopping criterion based on Lagrangean Relax-
ation and Subgradient Optimization in addition to the Circle Restricted Local
Search Moves strategy being a novel way for expanding the neighborhood
search.

4.2.7 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) introduced in 1995 by Kennedy and
Eberhart [92] aimed at producing computational intelligence by exploiting ana-
logues of social interaction rather than individual cognitive abilities [149]. It is
an optimization method based on the idea of iterative improvements of a so-
lution with regard to certain quality measures. PSO is using a population of
particles representing solutions to move them around in the search space due
to some mathematical rules over particles velocity and position. All particles
movements are guided toward best known positions in the search space, thus
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moving the whole swarm toward the global minimum [149]. Similarly to flock
of birds collectively searching for food, the swarm is likely to move close to an
optimum of the fitness function. An illustration of the Particle Swarm Optimiza-
tion is shown in Fig. 4.11.

FIGURE 4.11 Illustration of the Particle Swarm Optimization.

The PSO was originally designed for solving continuous optimization prob-
lems, but there was created also a mechanism to tackle discrete optimization
problems, the so-called discrete PSO [200]. This discrete PSO method was taken
into account by many researchers for different variants of the vehicle routing
problems. In each PSO algorithm for the VRP variants, most important ques-
tions are how to represent a solution by a particle and how to build an efficient
decoding method to decode particle back into a solution.

The discrete PSO was used initially in 2004 by Yang et al. [200] to solve the
CVRP where particles were represented as an array of dimensions and positions
related to customers served by particular vehicles.

Ai and Kachitvichyanukul [5] developed in 2009 a PSO algorithm with mul-
tiple social structures to solve the VRP with simultaneous pickup and delivery.
They proposed a random key-based representation of solution and correspond-
ing decoding method. The decoding method was used to transfer the particle
to a priority list of customers and to a priority matrix of vehicles to serve all
customers. The routes were then constructed based on the customer priority list
and vehicle priority matrix. The authors proved the competitiveness of such ap-
proach and were able to find some new best known solutions.

In 2010, Marinakis et al. [110] developed an interesting combination of the
PSO algorithm with the multiple phase neighborhood search-greedy random-
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ized adaptive search procedure (MPNS-GRASP), expanding the neighborhood
search strategy and path relinking to solve the classical VRP. It proved to be
suitable and effective for solving very large-scale problems within short com-
putational time and was ranked in the fifth place among the 39 most known
and effective algorithms in the literature and in the first place among all nature
inspired methods for the VRP.

In 2011, MirHassani and Abolghasemi [114] developed a PSO algorithm
for the Open VRP, where vehicles do not return to depot after serving last cus-
tomer in the route. They proposed a particular decoding method in which the
customer position vector is generated in descending order and all customers are
assigned to a route always taking into account feasibility constraints. The extra
one-point moves were also applied on constructed routes, which seems promis-
ing in achieving better solutions.

A combination of the PSO algorithm with a genetic algorithm to solve the
Capacitated VRP with fuzzy demands was developed in 2012 by Kuo et al.
[100]. This algorithm used the idea of a particle best solution and the best
global solution combined with crossover and mutation of Genetic Algorithm.
The modification of particle coding was also performed to ensure that particle
always generates a new feasible solution.

In 2013, Goksal et al. [68] developed a very interesting combination of the
PSO with Variable Neighborhood Search to solve the VRP with simultaneous
pickup and delivery. Moreover, they introduced a solution represented by a giant
tour without trip delimiters, and an annealing-like strategy was applied to pre-
serve the swarm diversity. Their algorithm was able to improve 104 best known
solutions for this variant of the VRP.

An interesting solution for particle coding and decoding in the PSO algo-
rithm was also proposed by Ho et al. [81] in their hybrid chaos-particle PSO
algorithm for the VRPTW. The chaos algorithm was employed to reinitialize the
particle swarm, and an insertion heuristic algorithm was incorporated to build
the feasible vehicle routes in the particle decoding process. Moreover, a particle
swarm premature convergence judgment mechanism was combined with Gaus-
sian mutation into the hybrid chaos algorithm and used when the particle swarm
falls into the local convergence.

More recently, in 2016, Yao et al. [205] proposed an improved PSO algo-
rithm for carton heterogeneous VRP with a collection depot utilizing a self-
adaptive inertia weight and a local search strategy. The computational results
showed that developed model is feasible with savings of about 28% in total
delivery cost.

4.2.8 Ant Colony Algorithms

The Ant Colony Algorithm (ACO) was first introduced in 1992 by Dorigo in his
PhD thesis [44] and was based on the behavior of ants seeking paths between
their colony and sources of food, laying some pheromone on trails. The fact that
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FIGURE 4.12 Illustration of the Ant Colony algorithm (ants seeking paths between their colony
(blue (dark gray in print version) dot) and sources of food (green (mid gray in print version) dots),
laying some pheromone on trails with information of quantity and quality of food; ants always
follow the same path, which is the shortest path).

ants always follow the same path, which is indeed the shortest path, was the main
motivation to take advantage of such real natural behavior of ants. The walking
ants mark trails by laying down pheromones with information of quantity and
quality of food. Such idea could be translated to the vehicle routing problems as
searching in the neighborhood for good-quality solutions. An illustration of the
Ant Colony Algorithm is shown in Fig. 4.12.

It was initially used to solve TSP problem instances by Colorni et al. [36]
and then designed for the VRP and CVRP in 1999 by Bullnheimer et al. [28].
The Ant Colony method was evolving and the so-called reinforcement learning
mechanism emerged there meaning automatic adjustments of heuristic com-
ponents as the search process evolves [188]. This idea incorporates learning
mechanism how to make proper decisions based on behavior and introducing
reinforcement methods to improve the quality of solutions.

In the next years, the Ant Colony algorithms became very popular methods
for the other variants of the VRP. In 1999, Gambardella et al. [58] proposed an
ant colony optimization algorithm for the VRPTW with an idea of association
the attractiveness measure with the arcs. They treated artificial ants as paral-
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lel processes, and their role was to create feasible solutions. Two ant colonies
were used, the first for minimizing the number of routes and the second for min-
imizing the total distance traveled. Similarly to natural behavior of ants, also
such artificial ants were cooperating by exchanging information about solutions
through pheromone updates. Each time a new solution with smaller number of
routes or smaller total distance was found, such an information was spread out
to other ants through pheromones. Baran and Schaerer [12] further improved
this algorithm in 2003 by developing only one colony to get a set of Pareto
optimal solutions considering three objectives at the same time, the number of
vehicles, the total traveling time, and the total delivery time. The computational
experiments proved that the new technique outperforms the original approach.
Modification to the original ACO was tackled also by Bell and McMullen [14]
in 2004, who focused on the size of the candidate lists used within the algorithm,
which appeared a significant factor in finding improved solutions.

In 2008, Donati et al. [43] developed multi-ant colony systems for the Time-
Dependent VRP by combining the original ACO approach with discretizing the
time space in a suitable number of subspaces. Moreover, they introduced new
time dependent local search procedures and conditions guaranteeing that feasi-
ble moves are checked in constant time. Such a model was also integrated with
a robust shortest path algorithm to compute time-dependent paths between each
customer pairs.

The ACO approaches were further investigated and enhanced by Fuellerer
et al. [55] in 2009 for the two-dimensional loading VRP, excellent behavior
of which was proven through extensive computational results. Their algorithm
was flexible enough in handling different loading constraints, including items
rotation and rear loading so that it allowed for qualitative conclusions of prac-
tical interest in transportation, such as evaluating the potential savings by more
flexible loading configurations. Moreover, it was one of the first ACO methods
successfully combining two totally different heuristic measures of loading and
routing within one pheromone matrix. Based on the computational results, their
algorithm was able to reach optimal solutions on small-size instances, and for
larger-size instances, it clearly outperformed all other heuristics at that time.

In 2009, Gajpal and Abad [57] took advantages of the ACO for solving VRP
with simultaneous pickup and delivery, getting very competitive results with the
other approaches. They used construction rules and two multiroute local search
schemes to solve this variant of the VRP. It is remarkable to note that their
version was able to solve also the other VRP with backhaul and mixed load.

More recently, in 2014, Reed et al. [156] developed the ACO algorithm
for the multicompartment VRP associated for example with a collection of
recycling waste from households, treated as nodes in a spatial network. They
introduced preprocessing by k-means clustering, greatly reducing the computa-
tion time and producing improved routings for networks where the nodes are
concentrated in separate clusters. The algorithm was also extended to model
the use of multicompartment vehicles with kerbside sorting of waste into sep-
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arate compartments for each category. Abdulkader et al. [2] also tackled the
multicompartment VRP in 2015 creating a hybridized version of the ant colony
algorithm. They combined the local search method with existing ACO algo-
rithm and proved by computational experiments that the new approach gives
better results.

Kalayci and Kaya [90] empowered in 2016 Variable Neighborhood Search
(see Section 4.2.4 for more details) method with the ACO resulting in a very
competitive algorithm to solve the VRP with simultaneous pickup and delivery.
The application of the VNS provided intensive local search, and its weakness of
lack of memory structure was minimized by utilizing long-term memory struc-
ture of Ant Colony System, and the overall performance of the algorithm was
boosted. It is remarkable to note that in the proposed algorithm, instead of ants,
the pheromones were released on edges. The ants provide a perturbation mech-
anism for the integrated algorithm using the pheromone information to explore
search space broader and jump out from local minima. Numerical experiments
proved that such a combination of the VNS with ACO is very robust and effi-
cient in terms of both quality and CPU time, and the authors reported some new
best known solutions too.

In 2018, Goel and Maini [67] developed a very interesting hybridization
of the Ant Colony System with firefly algorithms (HAFA) for solving the ve-
hicle routing problems. The ACS provided the basic framework to proposed
algorithm, and Firefly Algorithm (FA) was used to search for the unexplored
solution space. Moreover, a novel pheromone shaking technique was incorpo-
rated in ACS to escape local minima due to avoiding pheromone stagnation on
the exploited regions. The computational experiments proved that such combi-
nation outperforms other FA-based approaches in terms of convergence time.

4.2.9 Artificial Bee Colony Algorithms

The Artificial Bee Colony (ABC) algorithm was developed in 2005 by Karaboga
[91]. Similarly to other swarm optimization algorithms, it is also based on two
fundamental concepts, namely self-organization and division of labor, which
allow problem solving systems to self-organize and adapt to the environment.
The ABC model related to collective intelligence of honey bees comprises em-
ployed and unemployed bees and food sources [91]. It defines also recruitment
to a nectar source and abandonment of such source as two leading methods of
the honey bees behavior. The value of the food source for honey bees usually
depends on its richness, proximity to the nest, and the ease of forage extracting.
The employed bees are associated with a certain food source they are exploit-
ing, and they share the information about such source with other bees. In turn,
unemployed bees are constantly searching the neighborhood of the nest for new
sources of forage and finally establishing new directions by gathering all infor-
mation together shared by all the bees [91]. The information exchange among
bees is happening in the so-called dancing area, and dance is called a waggle
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FIGURE 4.13 Illustration of the Artificial Bee Colony algorithm (the value of the food source
(flowers) depends on its richness, proximity to the nest, and the ease of forage extracting and can be
associated with good solutions; the information exchange among bees is happening in the so-called
waggle dance (illustrated as two dancing bees in a circle).

dance. Based on that, the profitability of new food sources is judged and cho-
sen. An illustration of the Artificial Bee Colony algorithm is shown in Fig. 4.13.

The ABC algorithm by Karaboga simulates both behavior of honey bees and
foraging in order to solve potential optimization problems. A possible solution
is represented by a food source, whereas the amount of food in the source is
related to the solution quality. The search process is associated with selecting
various sources of food and abandoning them if the solution represented by the
food source is not improved for a certain number of trials [91].

In the field of swarm intelligence the ABC algorithms and Bee Colony Opti-
mization (BCO) methods have much less attention than the other methods such
as Ant Colony Optimization mostly because of more complex implementation;
however, the obtained results are still competitive and worth further investiga-
tions. In 2012, Bhagade et al. [18] developed the ABC algorithm for the classical
TSP enhancing it additionally by using the nearest-neighbor method. The effec-
tiveness of the bee paths was evaluated with tour length and bee travel time.
Based on the computational results, the authors proved that the ABC algorithm
can be efficiently used for solving the TSP and moreover is highly flexible and
can be extended to other optimization problems by considering relatively few
control parameters.

The ABC algorithm was also taken into account for solving the Capacitated
VRP by Szeto et al. [176] in 2011 and for solving the Periodic VRP by Yao et
al. [203] in 2013. To improve the performance of the ABC algorithm, Yao et al.
combined it with multidimensional heuristic information and a local optimiza-
tion based on a scanning strategy. By running numeric experiments they proved
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that the proposed modification of the ABC algorithm is a powerful method for
solving the PVRP.

Zhang et al. [209] developed in 2014 a hybrid artificial bee colony algorithm
with hybrid operators for the Environmental VRP. The performance of this ap-
proach was evaluated through computational tests on CVRP instances, and the
results showed that a hybrid approach outperforms the original ABC algorithm
by 5% on average. An interesting combination of the adaptive memory with the
ABC algorithm for the Green VRP with cross-docking was proposed in 2016
by Yin et al. [206]. Their hybrid metaheuristic was able to reach higher fuel
efficiency than the tabu search algorithm by managing the loading along the
route and yielding less total cost. Such a method proved to be robust against the
problem size, and convergence of the objective value was guaranteed with high
confidence.

The application of the ABC algorithm for the VRPTW was undertaken by
Alzaqebach et al. [6] in 2016, who proposed a modified version of the ABC
tackling the issue that high exploration ability of the ABC usually slows down
its convergence speed. In their approach a list of abandoned solutions is used by
the scout bees to memorize the abandoned solutions. The scout bees select then a
random solution from the list and replace by a new solution with random routes
chosen from the best solution. Yao et al. [204] also used in 2017 a modification
of the ABC algorithm to solve the VRPTW. They proposed the enhancements
of a local optimization based on a crossover operation and a scanning strategy.

Just recently, Sedighizadeh and Mazaheripour [168] developed in 2017 and
optimization technique of multiobjective VRP using a hybrid algorithm based
on Particle Swarm Optimization combined with ABC algorithm considering
precedence constraints. In particular, they proposed a solver algorithm in which
the idea is to consider different constraints of the problem, use penalty method,
and additional segmentation constraint methods to obtain the best vehicle routes.

Ng et al. [128] also developed (very recently in 2017) a multiple-colony
ABC algorithm for the CVRP and rerouting strategies under time-dependent
traffic congestion. They took into account a rerouting strategy to solve the prob-
lem of inefficient vehicle routing caused by traffic congestion and proposed a
flexible delivery rerouting strategy aiming at reducing the risk of late deliv-
ery. They introduced a novel scheme using a Multiple Colonies Artificial Bee
Colony algorithm to solve the problem of solutions trapped in local minima.
Such a design of the outstanding bee selection for colony communication proved
to be superior in exploitation.

4.2.10 Bat Algorithms

The Bat Algorithm (BA) is a relatively new bioinspired metaheuristic introduced
in 2010 by Xin-She Yang [202] and is based on echolocation behavior of mi-
crobats when searching for their prey in nature [177]. An illustration of the Bat
algorithm is shown in Fig. 4.14.
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FIGURE 4.14 Illustration of the Bat algorithm (microbats use echolocation when searching for
their prey (insects); good-quality solutions are associated with bigger quantity and quality of prey).

Taha et al. [177] developed in 2010 a hybrid algorithm executing a discrete
version of the bat algorithm combined with the LNS (see Section 4.2.5 for more
details) to solve the VRPTW. Their algorithm aimed at improving the perfor-
mance of the BA by the destroy and repair paradigm of the LNS, allowing bats
to explore a large part of the solution space.

Many more Bat Algorithms for various variants of the routing problems were
developed just in a few years. In 2016, Zhou et al. [211] proposed a hybrid BA
with Path Relinking for the Capacitated VRP, which is based on the framework
of the continuous bat algorithm, GRASP, and path relinking method built into
the BA. Additionally, the random subsequences and single-point local search
are operated with certain loudness to further improve the performance of the
developed algorithm. Osaba et al. [138] proposed in 2017 the BA with random
reinsertion operators to solve the VRPTW. This algorithm comprises both im-
proved movement strategy and diverse heuristic operators to deal with VRPTW.
They unified the search process and the minimization phases by using selective
node extractions and subsequent reinsertions. In 2018, Wang et al. [195] pre-
sented a self-adaptive BA algorithm applied for the first time for the truck and
trailer routing problem, a generalization of the VRP involving a group of geo-
graphically scattered customers served by the vehicle fleet including trucks and
trailers. They developed the BA combined with a local search procedure per-
formed by five different neighborhood structures. Additionally, a self-adaptive
tuning strategy was implemented to preserve the swarm diversity.

4.2.11 Cuckoo search

The Cuckoo Search is a metaheuristic optimization algorithm introduced by
Yang and Deb [7] in 2009 inspired by the cuckoo birds being the “brood para-
sites” birds. They never build they own nests and instead lay their eggs in nests
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FIGURE 4.15 Illustration of the Cuckoo Search (orange (light gray in print version) – nest eggs,
red/blue/green (dark/mid/light gray in print version) – cuckoo eggs; each egg represents a solution,
and each cuckoo egg represents a potentially better solution; the Cuckoo Search algorithm is based
on the idea of creating subsequent generations of nests containing best eggs and thus highest quality
solutions).

of other host bird nests [86]. Moreover, if the host bird identifies eggs that are
not theirs, then it throws them away from nest or leaves its nest and simply
builds a new nest somewhere else. In terms of optimization algorithms, each
egg represents a solution, and each cuckoo egg represents a new potentially
better solution. The Cuckoo Search algorithm is based on the idea of creating
subsequent generations of nests containing best eggs and thus highest quality
solutions. In each iteration, each cuckoo lays one egg at a time and leaves it in a
randomly selected nest, followed by selection of nests with highest quality eggs.
Moreover, the number of host nests is fixed, and the cuckoo eggs are identified
by host birds with a certain probability. In case cuckoo eggs are identified, the
host bird either throws such solutions away or leaves its nest and builds a new
nest. An illustration of the Cuckoo Search is shown in Fig. 4.15.

Initially, there were attempts to take advantage of the Cuckoo Search algo-
rithm to the Traveling Salesman Problem. In 2012, Jati et al. [82] developed a
discrete cuckoo search for TSP considering discrete step sizes and the cuckoo’s
updating scheme; however, the results showed that it was trapped into local
minima for some TSP instances. Ouyang et al. [142] proposed in 2013 a novel
discrete cuckoo search algorithm for Spherical TSP based on the Levy flight and
brood parasitic behavior. They applied study, A, 3-Opt, and search-new-nest op-
erators to speed up the convergence. An interesting combination of the Genetic
Algorithm with Cuckoo Search and 2-Opt movements was presented in 2013
by Abu-Srhan and Al Daoud [3] to avoid the local minima problem and take
advantage of the powerfulness of the GA, all applied to the TSP. More recently,



Heuristics, metaheuristics, and hyperheuristics Chapter | 4 125

in 2015 Ouaarab et al. [141] developed the random-key cuckoo search (RKCS)
algorithm for solving the TSP by introducing a simplified random-key encod-
ing scheme to pass from a continuous space (real numbers) to a combinatorial
space. They also applied displacement of a solution in both spaces using Levy
flights.

Zheng et al. [210] proposed an interesting combination of GRASP with
Cuckoo Search applied to the Vehicle Routing Problem. In their version, called
CS-GRASP (more information on GRASP can be found in Section 4.2.6), they
utilized path relinking, swap, and inversion strategy. In 2016, Chen and Wang
[33] developed a hybrid cuckoo search for the VRP based on the combination of
Particle Swarm Optimization (PSO), Optical Optimization, and Cuckoo Search
method. The Optical Optimization was used to initialize population with high-
quality solutions optimized further by PSO. Cuckoo Search was then iteratively
used to optimize the rest of the individual solutions. Teymourian et al. [185] de-
veloped in 2016 hybrid methods of Cuckoo Search combined with Local Search
and Improved Intelligent Water Drops algorithm to control the balance between
diversification and intensification of the search process.

4.2.12 Firefly Algorithms

The Firefly Algorithm (FA) was introduced in 2008 by Yang [201] inspired by
flashing behavior of fireflies. The main purpose why fireflies flash is to signal
and attract other flies. Yang introduced the FA assuming that all fireflies are
unisexual, attractiveness is proportional to brightness, and that fireflies move
randomly when there are no brighter fireflies in the neighborhood.

In 2011, Yati and Suyanto [83] developed an evolutionary discrete FA al-
gorithm to solve the TSP by examining discrete distance between two fireflies
and movement schemes. Their algorithm however without combination with the
other methods was trapped in local minima in case of some TSP test instances.
This idea was further explored by Kumbharana and Pandey [99] in 2013, who
proposed the FA for the TSP comprising constructing a suitable conversion of
the continuous functions of attractiveness, distance, and movement into new
discrete functions. In 2017, Jie et al. [84] presented an improved version of the
FA algorithm for the TSP by redefining the distance of FA by introducing a
swap operator and a swap sequence to avoid falling into local minima and to
accelerate convergence speed. They also adopted dynamic mechanism based on
neighborhood search algorithm, proving by experiments that such approach is
very competitive.

The initial research on the application of the FA for the routing problems was
started just a few years ago by Pan et al. [143] in 2013, who developed the FA for
the VRPTW. They introduced the coding and design of disturbance mechanism
of elicit fireflies in their FA. In 2016, Osaba et al. [139] developed the first
FA algorithm to solve the Rich VRP by introducing the Hamming Distance
function to measure the distance between two fireflies of the swarm. Osaba et al.
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[137] designed also an evolutionary discrete FA to the VRPTW by introducing
some novel route optimization operators. These route optimization operators
were used to incorporate minimizing the number of routes for a solution in the
search process and to analyze all routes of the solution. They allowed them to
increase the diversification capacity of the search process contrary to classical
node and arc exchange-based operators.

4.2.13 Golden Ball Algorithms

The Golden Ball (GB) is a multipopulation metaheuristic based on soccer con-
cept introduced very recently in 2014 by Osaba et al. [135]. In the initialization
phase of the GB, the whole population of players (indicated as solutions) is
created, followed by random division of players into fixed number of subpop-
ulations called teams. Each team has its own couch related to training method,
which is also randomly assigned to each time. The training method can be also
associated with the way how each player evolves individually in the team, and
in terms of the vehicle routing problems, it might be associated, for example,
with 2-Opt moves. Osaba et al. introduced also the so-called Custom Training,
which is a special training applied to the player trapped in local minimum and
is based on a training with cooperation with the best player in the team, usually
by Crossover operation. The second phase is called the competition phase and is
divided into seasons and weeks. In each week, all teams train independently, and
they face each other by creating a soccer league. Moreover, there are transfers
at the end of each seasons, where both coaches and players can switch teams.
An illustration of the Golden Ball Algorithm is shown in Fig. 4.16.

Initially, the GB was introduced for the TSP in 2014 by Osaba et al. [136],
and it was proved to be competitive with the Evolutionary Simulated Annealing
and Tabu Search approaches. This algorithm was later improved by Ruttana-
teerawichien et al. [163] to handle Capacitated VRP, and based on experiments,
it was able to find new best known solutions for three benchmark instances.
The random keys representation to encode solutions in the GB algorithm was
proposed in 2015 by Sayoti and Riffi [166], who applied this technique for the
TSP.

More recently, in 2016, Ruttanateerawichien et al. [162] introduced a new
technique, where a team represents the CVRP solution, and the players repre-
sent routes in the team, whereas in the previous work the CVRP solution was
modeled by a player. Additionally, the solution quality of players and teams was
improved by intraroute and interroute improvement algorithms. In 2018, Gue-
zouli et al. [74] designed efficient GB algorithm based on clustering to solve
the Multi-Depot VRP with Time Windows. They proposed a different solution
representation from the original one and embedding a clustering algorithm to
solve the problem more efficiently.
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FIGURE 4.16 Illustration of the Golden Ball algorithm (each soccer represents a solution; soccers
are divided into teams (populations); each team has its own captain (related to training method)
and each player evolves individually in the team and may become the best player in the team (best
solution in population).

4.2.14 Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) was introduced in 2009 by Rashedi
et al. [155] based on the gravity law and mass interactions. The GSA was in-
spired by gravitation being the tendency of masses to accelerate toward each
other, which is also one of the four fundamental interactions occurred in na-
ture next to the electromagnetic force and the weak and strong nuclear forces
[167]. Based on the fundamental Newton law of gravity, each particle attracts
other particles with a gravitational force, which is directly proportional to the
product of their masses and inversely proportional to the square of the distance
between them [155]. In the GSA, agents are considered as objects, and their
masses are related to their performance. All the agents attract each other by the
gravity force communicating each other through gravitational force. The heavy
objects—related to high-quality solutions—move slower than lighter objects,
and this guarantees the exploitation step of the GSA algorithm [155]. Moreover,
each agent can be characterized by position, inertial mass, and passive and active
gravitational mass. The position of the agent is related with a solution, whereas
the inertial and gravitational masses are determined by a fitness function so that
the algorithm is navigated by properly adjusting these masses. It is expected in
the GSA that during execution all the objects will be attracted by the heaviest
one corresponding to a global minimum in the search space. An illustration of
the Gravitational Search algorithm is shown in Fig. 4.17.

Chen et al. [32] proposed in 2011 a hybrid GSA algorithm for the TSP based
on random-key encoding scheme of the solutions combined with simulated an-
nealing. They incorporated into it also a multitype local improvement scheme
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FIGURE 4.17 Illustration of the Gravitational Search Algorithm (bigger dots represent heavier
masses, thus better solutions; solid arrows indicate forces between mases; dotted arrows indicate an
acceleration direction).

used as a local search operator. The simulated Annealing method was utilized
into proposed algorithm too, in order to manipulate the iteration progress al-
gorithmically. Hosseinabadi et al. [80] presented in 2012 the GSA for the TSP
using velocity and gravitational force in physics based on random search con-
cepts. In 2014, Dowlatshahi et al. [45] developed a Discrete GSA for the TSP
with path relinking strategy instead of original agent movements. Their algo-
rithm was ranked ninth compared with 54 different algorithms for the TSP.

The GSA approach was also used to solve the Open VRP by Hosseinabadi et
al. [79] in 2015. Their algorithm was based on random search concepts utilizing
speed and gravity parameters, and the researcher agents were connected each
other based on Newton’s gravity and motion laws.

4.2.15 Bacterial Foraging Optimization Algorithm

The Bacterial Foraging Optimization Algorithm (BFOA) was introduced in
2002 by Passino [145] to mimic biological principles shown in the foraging
behavior of E. coli bacteria for distributed optimization and control. E. coli bac-
teria live in intestines of most animals on the Earth, and they have a control
system directing its behaviors in food foraging. The foraging process of E. coli
bacteria comprises searching for food, deciding whether to enter possible food
region or not, careful searching if to enter into a new area, and deciding whether
to stay in actual region or move on to a new better area after consumption some
food in the current region [76]. In the BFOA a swarm of bacteria is used as
a searching agent for a solution to a specific optimization problem. A bacteria
position represents a solution of the problem by a simple sequence of customer
nodes. The bacteria direction vector is used to represent its ability to search for
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solution and is driving bacteria movement. In each step of the BFOA, all bac-
terium moves from one position to another are based on these directions, and by
moving various solutions of the problem are evaluated.

The solution of the TSP using BFOA was carried out by Verma et al. [189],
where the key step used in the algorithm was computation of chemotaxis, where
a bacterium takes steps over the foraging landscape to reach the areas with high-
nutrient food. The movement of a bacterium was led by computing direction and
distance matrices, and additionally in case the bacterium does not reach a city
within the minimum distance constraint in its first step, it searches for other
cities in the next steps.

Much more BFOA algorithms were proposed for variants of the VRP family.
In 2011, Hezer and Kara [76] applied for the first time the BFOA technique to
solve the VRP with Simultaneous Delivery and Pick-up. Niu et al. [130] devel-
oped in 2012 the BFOA with adaptive chemotaxis step to solve the VRPTW, in
which they applied additionally a nonlinearly decreasing exponential modula-
tion model to further improve the efficiency of the algorithm.

In 2014, Tan et al. [180] proposed another BFOA for the VRPTW com-
prising two versions with linear and nonlinear decreasing chemotaxis steps to
obtain the best solutions of a given VRPTW problem. Tan et al. [181] further
improved their solution by developing adaptive comprehensive learning BFOA
for the VRPTW to keep a good balance between the exploration and exploita-
tion. They proposed also the comprehensive learning mechanism maintaining
the diversity of the bacterial population and thus alleviating the premature con-
vergence.

The solution of the Heterogeneous Fixed Fleet VRP was proposed in 2015
by Gan et al. [59], who developed a new method based on structure-redesign-
based bacterial foraging optimization (SRBFO) combined with time decreasing
chemotaxis step size mechanism. Additionally, the position of bacteria was en-
coded by 2N dimensions, where the first N dimensional vectors indicated the
corresponding vehicle, and the next N dimensional vectors were related to the
execution order of the corresponding vehicle routing.

In 2017, Li et al. [104] proposed the BFOA for the VRP with Pickup and
Delivery. They established the mathematical model aiming at minimizing the
total travel time and the total, which was combined with dynamic variable step
factor and propagation threshold and death threshold to copy the best individuals
and eliminate the inferior individuals.

4.2.16 Genetic and Evolutionary Algorithms

The Genetic Algorithms (GAs) are optimization search methods based on the
evolution process in nature, and they imitate the biological process of natu-
ral selection where stronger populations among different species survive [69].
The main concepts of GAs were developed by Holland [78] in the 1960s and
1970s, and practicality of using GAs for solving complex problems was elab-
orated later in 1975 by De Jong [42] and in 1989 by Golberg [69]. The GAs
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FIGURE 4.18 Illustration of the PMX (Partially Mapped Crossover).

belong to the larger class of Evolutionary Algorithms (EAs), which are generic
population-based metaheuristic optimization algorithms. All EAs and thus also
GAs use biological evolution mechanisms such as representation, selection, re-
combination, and mutation. In terms of TSP and VRP the representation of the
solution comprises encoding most important features of the solution as genes in
a chromosome, which identifies the so-called individual in the population [25].
The recombination is carried out on two selected parent solutions by combining
genes of parent chromosomes to create offspring solutions with potentially bet-
ter quality. In turn, mutation is performed on the offspring solutions by random
modification of genes to further explore the solution space and ensure genetic
diversity. The GA is based on creating subsequent generations, and each new
generation is constructed by selection, recombination, and mutation of all the
solutions in the population. A properly designed GA should maintain a right
balance between solution quality and diversity within the population to support
efficient search. A common problem in the GAs for the routing problems is the
feasibility of the solution created after recombination and mutation phases. An
important issue is also the way how the offspring solutions are created, which
led to designs of different crossover operators. Due to high efficiency of the
GAs for solving various optimization problems, they are probably the most ex-
plored group of metaheuristics. Some of the most important crossover operators
designed for the rich vehicle routing problems are shown in Table 4.1 [150].
Various genetic and evolutionary strategies and methods are described in the re-
maining part of this section. An illustration of the PMX crossover is shown in
Fig. 4.18.

The edge assembly crossover operator (EAX) originally designed in 1997
for the TSP by Nagata and Kobayashi [125] was later extended to handle the
VRP in 2007 by Nagata [122]. This powerful operator is based on specific se-
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TABLE 4.1 Most important crossover opera-
tors.

Shortcut Crossover name
EAX edge assembly crossover

NX natural crossover

ER edge recombination crossover

MBX matrix-based crossover

OX1 order crossover

OX2 order-based crossover

SMX sorted match crossover

PMX partially mapped crossover

MPX maximal preservative crossover

MX1, MX2 merge crossover operators

CX cycle crossover

POS position-based crossover

AP alternating position crossover

RC route crossover

IB_X insertion-based crossover

CPX cluster preserving crossover

CEPX common edges preserving crossover

BCRC best cost route crossover

quence of steps combining edges from two parent solutions and in case of the
VRP is described in the following way. In the first stage a graph is constructed
containing edges from two parent solutions, followed by constructing cycles
generated by alternately selecting a new edge from the first and second parents.
Next, the subset of cycles is selected, and an intermediate solution is constructed
by taking one parent and removing all edges available in the subset of cycles and
by adding all edges in the subset of cycles from the second parent. Such an in-
termediate solution is then a combination of set of routes connected to the depot
and subtours not connected to the depot. Next, a complete solution is created
by repeatedly merging a subtour to a route with least cost strategy combined
with a greedy heuristic. In the last stage the constraint violations are eliminated
by applying penalty function, 2-Opt exchanges, and customer exchanges until
solution becomes feasible [122]. An illustration of the EAX crossover is shown
in Fig. 4.19.

The natural crossover was originally developed for the TSP in 2000 by Jung
and Moon [88] and further extended to the VRPTW in 2002 [89]. The main
idea of this crossover is to partition the set of customers from two parent so-
lutions into two classes by drawing curves or geometric figures on graphical
representation of the problem. As a result, the customers are located either on
one side or the other of a curve, or the customers are either outside or inside the
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FIGURE 4.19 Illustration of the EAX (Edge Assembly Crossover).

geometric figures, such as ellipses, circles, or squares. The initial offspring so-
lutions are created by transferring arcs from the first/second solution with both
endings in the first/second class. They are further repaired by iterative attempts
to connect disconnected segments from both parent solutions into the offsprings
using the least cost strategy. In case a feasible solution is obtained, it is fur-
ther improved by local optimization procedures based on 2-Opt, interroute, and
intraroute search moves.

The Edge Recombination Crossover (ER) was originally developed for the
TSP, and its main idea is to progressively extend tours by adding edges either
from the first or second parent. Initially, all the edges from both parents are kept
in a special edge table, in which all parental edges neighboring to a customer
are grouped together. The ER was extended to the VRP in 1995 by Krajcar et
al. [96] by using depot as a starting point of each route, by including the depot
in the edge table, by considering only edges linked to the closest customers, and
by considering capacity constraints to decide when to finish current route and
start a new one.

The matrix-based crossover was originally developed for the TSP in 1991
by Fox and McMahon [53] and further extended in 1999 for the VRPTW by
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Chin et al. [34]. In this crossover a matrix of size of customer numbers is used
to indicate larger values in case customers a and b are in the same routes in
two parent solutions and moreover they have the same precedence relationship.
The values in the matrix for a given customer pair are smaller in case customers
are not in the same route and intermediate when customers are in same routes
but do not have the same precedence relationship. In the matrix-based crossover
approach the offspring solutions are generated by iteratively inserting unserved
customers into the routes with least insertion cost modified by the values in the
matrix by checking all feasible insertion places.

The Order Crossover (OX1) was proposed in 1985 by Davis [40] and is
used to build offspring solutions by selecting a subsequence of route from one
parent and preserving the precedence order of customers from the other parent.
The OX1 is used to copy the subtour between the crossover points directly the
offspring solution, placing customers in same absolute position.

The Order-Based Crossover (OX2) was proposed in 1991 by Syswerda [175]
and works by randomly selecting several customer positions in one parent route,
and the corresponding order of customers is imposed on the second parent to
create offspring solutions.

The Sorted Match Crossover (SMX) developed in 1985 by Brady [107]
works by identifying subtours in both parent routes having same length, starting
and ending at same customers, and containing the same customers. In case such
subtours can be identified, the offspring solutions are created by replacing such
a subtour with one having lower cost.

The Partially Mapped Crossover (PMX) was introduced in 1985 by Goldberg
and Lingle [70] for the TSP, and it is based on selecting two random cut points
on two parent solutions followed by creating offspring solutions by exchanging
these subsequences between two parents. It is important to note that the order
of remaining customers is tried to be preserved in as many customer cases as
possible.

The Maximal Preservative Crossover (MPX) introduced in 1988 by Muhlen-
bein et al. [121] works similarly to the PMX by imposing additionally random
subtour length to contain at least ten customers and to be smaller than or equal
to the problem size divided by two. Having a subtour selected, all customers
from it are removed from the second parent, and the offspring is generated by
completing the random subtour with unserved customers in the same order as is
in the second parent solution.

The Merge Crossover operators MX1 and MX2 for the VRPTW were pro-
posed in 1993 by Blanton and Wainwright [19], and they were used to exploit
a global precedence relationship between customers. Their main advantage es-
pecially for the VRPTW or PDPTW is that they rely on the assumption that
is beneficiary for customer a to appear before customer b in a route in case
time window of customer a starts earlier than time window of customer b. In
MX1 and MX2 operators, two parent routes are checked position by position,
selecting at each position customer with earlier start time window, who is later
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FIGURE 4.20 Illustration of the CX (Cycle Crossover).

transferred to the constructed offspring solution. By such a technique the gen-
erated offspring solution is biased toward solution containing customers sorted
according to ascending order of their start time windows.

The Cycle Crossover (CX) was originally introduced in 1987 by Oliver et
al. [131] for the TSP, and it is based on identifying cycles between two parent
solutions using the connections between customer numbers and their positions
in the routes. The customers that are included in the cycles will remain, whereas
the other customers will be swapped to create offspring solutions. An illustration
of the Cycle crossover is shown in Fig. 4.20.

The Position Based Crossover (POS) was developed in 1991 by Syswerda
[175] and works similarly to the OX2 operator by randomly selecting customer
positions in parent routes, but it imposes the position of selected customers on
the corresponding customers in the second parent solution.

The Alternating Position Crossover (AP) was introduced in 1996 by Lar-
ranaga, and it creates offspring solutions by alternately selecting customers from
the first and select parents, omitting customers already available in constructed
offspring.

The Route Crossover (RC) was introduced in 1999 by Maeda et al. [108]
based on the idea of bit masks corresponding to the number of routes in the first
parent solution. The offspring solution is initially generated by selecting routes
from first parent depending on bit mask values. All unserved customers are in-
serted into a temporary list, which is further sorted according to their order in the
second part and then transferred one by one into generated offspring solution.

The Insertion-Based Crossover (IB_X) was proposed in 1998 by Berger et
al. [17] based on iterative building and ruining solution taking into account large
distances to successive customers and large waiting times. Initially, the first
route is randomly selected from the first parent solution preferring routes con-
taining customers with largest waiting times. Next, some customers are removed
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from such a route taking into account their large travel distance to successive
customers or large waiting times to be served. In the next step a subset of routes
from the second parent is selected that are close to this first route, and all such
customers are further considered to be inserted into best positions in the first
route of the first parent. Such a method is repeated for all routes from the first
parent, resulting in an offspring solution. The second offspring solution is cre-
ated by interchanging role of the parent from the first to the second one.

The Cluster-Preserving Crossover (CPX) and the Common Edges-Preserving
Crossover (CEPX) operators were proposed in 2004 by Kubiak [97]. The CPX
is used to preserve clusters or groups of customers that are common to both
parent solutions. The routes having the largest number of customers are inter-
secting next to form clusters in the offspring solutions. Such clusters are used
further to create offspring solutions by sequencing customers from clusters. The
CEPX works similarly to CPX, but instead of clusters, it is used to preserve the
common edges. Moreover, the longest subtours that are common to both parent
solutions are used to generate routes in the offspring solutions.

The Best Cost Route Crossover (BCRC) was developed in 2006 by Ombuki
et al. [133] for the VRP with Time Windows. In the first stage, two routes are
randomly chosen from two parent solutions, and the customers from first route
are removed from the second route, and in a similar way, customers from the
second route are removed from the first route. The removed customers are rein-
serted back to original routes using the least-cost insertion methods.

Most of the genetic algorithms use one or more crossover operators com-
bined with other methods such as guided local search, tabu search, simulated
annealing, and other metaheuristics to provide best results for a given problem.
The first genetic algorithms for the Vehicle Routing Problems were proposed in
the 1990s, and since then, we may observe rapid development of the GAs until
nowadays.

In 1991, Thangiah et al. [186] developed a genetic algorithm heuristic to
solve the VRPTW, called GIDEON. This algorithm is a cluster-first route-
second technique assigning customers to vehicles by the so-called Genetic Sec-
toring improved further by local optimization methods. The crossover used in
GIDEON divides chromosomes at random points and exchanges subtours with
other divided chromosomes.

Thangiah et al. [187] extended further this approach in 1994 by developing a
hybrid genetic algorithm for the VRPTW. The initial solutions were created by
Genetic Sectoring techniques and improved further by simulated annealing and
tabu search methods.

In 1996, Potvin et al. [151] developed a new search technique for the
VRPTW called the GENEtic ROUting System (GENEROUS) based on the
paradigm of natural evolution. In this approach a population of solutions was
evolving from one generation to another by merging two solutions into a single
one, which is likely to be feasible with respect to the time window and capacity
constraints.
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Berger et al. [17] proposed in 1998 a new hybrid genetic algorithm for the
VRPTW taking into account impact of explicit domain knowledge about and
a priori characteristics of expected solutions used during the recombination
and mutation phases of this algorithm. Their conceptually simple and easy-
to-implement algorithm was designed to support time-constrained tasks and
allowing for fast computation of near-optimal solutions, and thus it was used
further in many other hybrid algorithms as the base model.

In 1999, Jih and Hsu [85] proposed a novel approach to solve single-vehicle
Pickup and Delivery Problem with Time Windows by hybrid genetic algorithm.
They incorporated usage of four crossover operators in the recombination phase
of the GA: order crossover (OX1), order-based crossover (OX2), and merge
crossover operators MX1 and MX2. Additionally, they included probability of
mutation of a solution by three mutation schemes. The first mutation was based
on randomly selecting two customers followed by interchanging their positions.
The idea of second mutation was to randomly choose two cut customers and
inverting the order of selected subroute. The third mutation was in turn based
on checking if a vehicle arriving at the customer violated any of the constraints
and then the order of customers in this subroute was randomly disturbed.

In 2003, Berger et al. [16] proposed a genetic algorithm for the VRPTW
based on concurrently evolving two distinct populations of solutions, where the
first population aimed the total travel distance, and the objective of the second
population was to minimize the violations of the time window constraints. In the
same year, Baker and Ayechew [9] compared a pure GA for the VRP with a hy-
brid GA combined with neighborhood search methods, proving that the hybrid
method outperforms pure GA as well as tabu search and simulated annealing
techniques.

Ho et al. [77] developed in 2008 two hybrid genetic algorithms for the Multi-
Depot VRP, including in the first HGA random generating initial solutions,
whereas the Clarke–Wright saving methods and the nearest neighbor heuristics
were incorporated into the second HGA for the initialization phase. The results
proved that simple generating random solutions in the first HGA was superior
to the second considered technique.

In 2010, Ghoseiri and Ghannadpour [64] proposed a new solution for the
Multi-Objective VRP with Time Windows by an interesting combination of goal
programming and genetic algorithm in which the decision maker specifies op-
timistic aspiration levels to the objectives and deviations. In their GA, various
heuristics incorporated local exploitation in the evolutionary search and the con-
cept of Pareto optimality.

More recently, in 2015, Wang et al. [197] proposed a fitness-scaling adaptive
GA with local search in which the fitness-scaling technique converts the raw
fitness value to a new value suitable for further selection. Additionally, adap-
tive rates strategy was used to change the crossover and mutation probabilities
depending on the fitness value, and a local search mechanism was applied to
further exploit the problem space.
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In 2017, Belhaiza et al. [13] developed a novel hybrid genetic variable
neighborhood search algorithm for VRP with Multiple Time Windows. This
algorithm encompasses combination of genetic crossover operators applied on
list of best parent solutions with new implementations of local search operators.

Kumar and Panneerselvam [98] presented in 2017 a study of crossover oper-
ators for genetic algorithms to solve different variants of the VRP, and they also
introduced a new Sinusoidal Motion Crossover (SMC) operator. This operator
works analogously to sinusoidal motion of waves by alternately selecting con-
secutive customers from the first and second parents producing at the end two
offspring solutions.

Baniamerian et al. [11] just recently in 2018 developed a hybrid metaheuris-
tic combining the genetic algorithm hybridized with a modified variable neigh-
borhood search to solve the vehicle routing problems with cross-docking. They
suggested usage of some new four shaking and two neighborhood structures in
a modified version of the VNS to solve the problem more efficiently in their
combination with the GA.

4.2.17 Memetic Algorithms

The Memetic Algorithms (MAs) are population-based hybrid genetic algo-
rithms hybridized with local search refinement procedures. They were intro-
duced in 1989 by Moscato [118], and they are also commonly known as Ge-
netic Local Search or Hybrid Evolutionary Algorithms because from optimiza-
tion point of view, the evolutionary algorithm is used to perform exploration,
whereas the local search methods are used to perform exploitation of the solu-
tion space. The MAs are inspired by models of adaptation in natural systems
combining evolutionary adaptation of populations of individuals with individ-
ual learning within a lifetime [123]. The word memetic has its origin in word
meme introduced in 1976 by Dawkins [41] to indicate the unit of imitation in
cultural transmission and thus encompassing other forms of population-based
techniques for optimization coming from a source different from genetic algo-
rithms [120]. An illustration of the Memetic Algorithm is shown in Fig. 4.21.

The MAs are relatively a new group of specialized metaheuristics to solve
various optimization problems, and initially they were considered to solve the
TSP and simplest variants of the Vehicle Routing Problems [119]. In 1992,
Moscato and Tinetti [120] developed a tree-structured memetic algorithm for
the TSP, in which the optimizing population is divided into subpopulations and
agents optimizing their current tours. Each agent is handling two tours, called
the pocket tour and current tour, indicating best tour found so far and other tour
being actually optimized by the heuristic assigned to the agent, respectively. All
agents optimize their current tours with periods of local search, followed by re-
combination with other tours in case local minima is reached. The propagation
of representative memes between subpopulations is taking place to spread out
information about low-cost tours among all the agents.
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FIGURE 4.21 Illustration of the Memetic Algorithm.

In 1997, Nagata [125] proposed the Edge Assembly Crossover (EAX) op-
erator for the TSP, which proved to be very powerful and was further extended
and successfully used to the variants of the VRPs. This operator uses the edges
from two parents to construct initial disjoint subtours, followed by connecting
subtours in a greedy fashion using a construction similar to a minimal spanning
tree to create offspring tours.

Merz and Freisleben [113] prepared in 2001 a good review on memetic al-
gorithms for the TSP comparing the Maximum Preservative Crossover (MPX)
by Gorges-Schleuter [71] and the Distance Preserving Crossover (DPX) by
Freisleben and Merz [54]. The MPX generates offspring tours by copying a
subtour between two randomly selected crossover points from the first parent
and extending such partial tour by copying edges from the second parent. The
DPX operator is very specific for the MAs as it is useful only if combined with
local search [113]. It tries to generate offsprings by copying all items from the
first parent and removing all edges not common between parents followed by
reconnecting broken tour by local search methods. In 2002, Merz [112] further
extended research on the MAs for the TSP by introducing the Generic Recom-
bination Operator (GX), always preserving all common edges in offsprings. GX
comprises four phases controlled by parameters reflecting the most important
properties of recombination operators, and it proved to be superior to both MPX
and DPX.

Labadi et al. [102] developed in 2008 a very efficient memetic algorithm
for the VRP with Time Windows, which was able to minimize the total dis-
tance traveled also during the first phase of route minimization and improved
20 world’s best-known solutions. The MA for the multicompartment VRP was
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proposed in 2008 by El Fallahi et al. [48], who combined memetic approach
with a postoptimization phase based on path relinking and tabu search methods.

In 2009, Nagata and Braysy [123] developed a very powerful edge-
assembly-based memetic algorithm for the Capacitated VRP. This algorithm
combined the EAX crossover with well-known local search methods and ad-
ditionally allowing for infeasible solutions due to capacity and route duration
constraints after crossover operations. Their algorithm was able to find 20 new
world’s best-known solutions out of 47 standard benchmarks within very rea-
sonable computational time. Nagata et al. [124] further extended the EAX
crossover to be applied for the VRP with Time Windows in their penalty-based
edge assembly memetic algorithm. They introduced adjustments of the EAX
operator to the VRPTW and a penalty function to eliminate violations of both
time window and capacity constraints from offspring solutions generated by the
EAX operator. Their algorithm proved to be extremely powerful by finding 184
world’s best-known solutions out of 356 benchmark instances.

Nalepa and Blocho [127] developed in 2016 an extension of the above
method by introducing the adaptive version of the memetic algorithm for the
VRPTW solving problem of automatic tuning of numerous hyperparameters. In
their version the parameters of the algorithm, including the selection scheme,
population size, and the number of child solutions, generated for each pair
of parents, were adjusted dynamically during the search. Moreover, they in-
troduced a new adaptive selection scheme to balance the exploration and ex-
ploitation of the solution space, which proved to be competitive and confirmed
efficacy and convergence capabilities of the proposed approach.

A different approach was proposed in 2012 by Vidal et al. [190], who de-
veloped a very competitive hybrid genetic algorithm for solving the Capacitated
VRP. They combined the exploration breadth of population-based evolutionary
search with aggressive-improvement capabilities of neighborhood-based meta-
heuristics and advanced population-diversity management schemes, which al-
lowed them to create competitive GA in terms of both computational efficiency
and solution quality. They further extended these technique by introducing in
2013 [191] the Hybrid Genetic Search with Advanced Diversity Control for the
VRPTW. This algorithm comprised new move evaluation techniques accounting
for penalized infeasible solutions with respect to time window and duration con-
straints and allowing evaluation of moves from classical neighborhoods based
on arc or node exchanges in amortized constant time. Moreover, they developed
also geometric and structural problem decompositions to address large problems
of the VRPTW efficiently.

The memetic algorithms were also taken into account while developing
methods for the Pickup and Delivery Problems. In 2010, Nagata and Kobayashi
[126] developed the MA for the PDP with Time Windows using Selective Route
Exchange Crossover (SREX). Their algorithm allowed them to improve 146
best known solutions out of 298 instances. More recently, in 2017, Blocho
and Nalepa [21] proposed a modification to the SREX based on the Longest
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Common Subsequence (LCS) method combined with a new technique for rep-
resentation of a solution to handle the crossover efficiently. Their approach was
applied to the memetic algorithm for the PDPTW, proving ability to obtain high-
quality feasible solutions.

4.3 Hyperheuristics for rich vehicle routing problems

The hyperheuristic is a new optimization paradigm, commonly described as
heuristic to choose heuristics. It comprises search methods, learning techniques
for generating or selecting heuristics to solve optimization problems [30]. The
main difference between metaheuristics and hyperheuristics is that metaheuris-
tics directly search a space of a problem, whereas hyperheuristics search a space
of heuristics [116]. Heuristic selection and heuristic generation are two main
classes of hyperheuristics approaches. The heuristic selection approach select-
ing and applying the most suitable heuristics from a set of problem-specific
low-level heuristics (LLHs) at each problem solving state. On the other hand,
heuristics generation techniques are used to automatically construct new heuris-
tics from components of already existing heuristics, adjusted for the specific
problem [29].

The heuristics selection techniques can be further divided into constructive
and local-search hyperheuristics depending on the type of used LLHs. Similarly
to construction heuristics (described in Section 4.1.1), the constructive hyper-
heuristics start with an empty solution building gradually a complete solution by
subsequently choosing a proper low-level construction heuristic (selected from
a set of LLHs) and by using it to enhance the quality of built solution. In turn,
local-search hyperheuristics, similarly to improvement heuristics (described in
Section 4.1.2), start from already generated solution and then try to gradually
improve the quality of the solution by applying local searches and proper neigh-
borhood structure.

The hyperheuristics usually can provide much better solutions than classical
heuristics or metaheuristics applied to the specific problem individually. This is
due that hyperheuristics can discover a good combination of best characteris-
tics of individual low-level heuristics [116]. The crucial idea in hyperheuristics
is solving optimization problems using various simple and flexible LLHs and
developing a framework used to control the selection ad application of LLHs
[60]. Typically, high-level heuristics and metaheuristics (variable neighborhood
search, simulated annealing, tabu search, evolutionary algorithms, and many
others described in Section 4.2) are used as search methods across the search
space of heuristics.

In 2009, Garrido and Castro [60] proposed the Hill-climbing-based hyper-
heuristic for the CVRP problem. This technique works with ordered sequence
of the so-called structures, and each structure defines one constructive and one
improvement heuristic components. Initially, a random sequence of structures is
generated with equal probability of each constructive and improvement heuris-
tic. This sequence is next iteratively enhanced in a hill-climbing way trying to



Heuristics, metaheuristics, and hyperheuristics Chapter | 4 141

find a new neighbor sequence having better fitness than actual one. They also
proposed some perturbing moves to add, delete, and replace structures and real-
locating moves for exchanging customers between two adjacent structures.

Another hyperheuristic for the CVRP based on evolutionary algorithm was
proposed by Garrido et al. [61] in 2009. This technique works with a population
of sequences of structures, but contrary to the hill-climbing method described
previously, structures may contain only one heuristic component and only of
the same type, either constructive or improvement heuristics. This evolutionary
hyperheuristic uses one recombination operator and eight mutation operators
to generate new individuals. The population of individuals is evolving using a
steady-state evolutionary model, where in each generation, one or two offsprings
are constructed, which are further inserted into the main population.

In 2013, Mlejnek and Kubalík [116] proposed an evolutionary-based con-
structive heuristic selection hyperheuristic for the CVRP (HyperPOEMS), based
on iterative local search algorithm. The HyperPOEMS operates on an ordered
sequence of units containing selected constructive improvement heuristics. The
design of that method allows for autonomous searching a structured space of
various low-level heuristics to find proper combinations producing good solu-
tions to the problem. The LLHs used in HyperPOEMS are various construc-
tive (saving concept, sweep mechanism, cluster-first route-second, route-first
cluster-second methods), improvement (2-opt, 3-opt, Or-opt, Van Breedam’s
moves) and order heuristics (increasing/decreasing demand, increasing/decreas-
ing distance to the depot, radial sweeps). HyperPOEMS technique outperformed
both hyperheuristics proposed by Garrido et al. [61].

Addressing limited availability of the constructive heuristics used by both
Garrido et al. and Mlejnek and Kubalík, Drake et al. [46] proposed in 2013
a hyperheuristics methodology using Grammatical Evolution to simultaneously
evolve constructive and perturbing heuristics. In this method a single initial solu-
tion is created by the construction heuristics, which is next iteratively enhanced
by perturbation heuristics.

In 2016, Sim and Hart proposed a novel method for generating new con-
structive heuristics in a combined generative and selective hyperheuristic for the
VRP. They tried to address the lack of available constructive methods and the
potentially limiting quality of creating a weak candidate solution. This new con-
struction heuristics may be used with any hyperheuristic methods requiring the
creation of candidate solutions. Another important point is that they proposed
also a new multipoint hyperheuristic method, called GP-MHH, comprising ge-
netic programming in the first phase to evolve a population of construction
heuristics, and a population of candidate solutions is constructed in the second
phase by the evolved heuristics. The Memetic Hyperheuristic (MHH) is even-
tually applied on the population, which is a sophisticated perturbative-selection
hyperheuristic. Based on extensive experimental studies, this method outper-
formed the grammatical evolution approach proposed by Drake et al. [46].
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4.4 Summary

In this chapter, we described the most important heuristic methods for solv-
ing different variants of the Vehicle Routing Problems and Pickup and Delivery
Problems. A heuristic approach to solve an optimization problem does not guar-
antee obtaining the optimal solution but enables to elaborate a feasible routing
schedule in a very efficient way and in short time. Due to NP-hardness of the rich
vehicle routing problems, solving problem instances to optimality is possible
only in case of small-size tests. The main challenge in most of these problems
is finding balance between available CPU time, size of the problem, and the
quality of the approximated solution or need to find exact solution. Rapid devel-
opment of various heuristic, metaheuristic, and hyperheuristic approaches helps
in achieving both reduced computation time and better results.

In the first part of this chapter, we described the construction and improve-
ment heuristics as two main groups of the classical heuristics. The construction
heuristics build feasible solutions while trying to minimize its cost but often do
not consider any improvement phases. The improvement heuristics are usually
used for already generated solutions by other heuristics or exact algorithms. Lo-
cal search methods are typically applied for simple local modifications, such as
customer or arc exchanges, to generate neighboring solutions of possibly better
quality.

The metaheuristics can be described as an enhancement of classical heuris-
tics with emphasis on deep exploration of the solution space, and they usually
combine sophisticated neighborhood search rules and recombination of solu-
tions. The quality of the solutions produced by metaheuristics is typically much
higher than that obtained by classical heuristics techniques but with a price of
increased computing time. It is worth noting that the metaheuristic techniques
are context dependent and usually require finely tuned parameters, which unfor-
tunately make their extensions to other problems difficult.

Many various metaheuristics have been proposed for the vehicle routing
problems, and they can be widely divided into local search, population search
and learning mechanism groups; however, best metaheuristics merge ideas from
different approaches. In the second part of this chapter, we described a wide
range of the most popular metaheuristics algorithms.

The Simulated Annealing is a stochastic algorithm involving asymptotic
convergence and allowing random movements in the searched neighborhood
to escape local minima. Due to low-complexity, it can be used in many various
optimization problems, not only related to the rich vehicle routing problems.

The Tabu Search is a search technique comprising local search methods and
memory structures called tabu-list. Its main idea is to avoid cycling by inserting
recently checked solution on the tabu-list, so during the search process, the so-
lutions marked with tabu label are not taken into consideration. Such approach
helps in getting out from the local minima and increases chances to find the
global optimal solution.
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The Adaptive Memory Procedure is based on the idea of the so-called adap-
tive memory being pool of good-quality solutions. The solutions in adaptive
memory are always replaced with the new better-quality solutions coming from
recombination of existing ones.

The Variable Neighborhood Search can be described as a framework for
building heuristics, exploiting the neighborhoods both finding local optima and
getting out of them by perturbation moves. In contrary to classical local search
methods, the Variable Neighborhood Search is not based on following the tra-
jectory but rather on exploring increasingly distant neighborhoods of a given
solution and moving to the new one only in case of improvement. Such a method
usually leads to maintaining best characteristics of current solution and helps
obtain neighboring solutions of better quality.

The Large Neighborhood Search can be described as an iterative way of
destroying and repairing the solution in the neighborhood. Destroying methods
have some randomness such that different parts of the solution are destroyed and
broader parts of the search tree are visited, and thus the searched neighborhood
is larger than in classical local search methods.

The Greedy Randomized Adaptive Search Procedure is based on iterative
two-phase search algorithm comprising construction and local search phases
applied to various combinatorial optimization problems. In each iteration in the
construction phase a feasible solution is constructed by a randomized greedy
function. The solution is then iteratively improved in the second phase by local
search movements.

The Particle Swarm Optimization aimed at producing computational in-
telligence by exploiting analogues of social interaction rather than individual
cognitive abilities. It is an optimization method based on the idea of iterative
improvements of a solution with regard to certain quality measures. The Parti-
cle Swarm Optimization is using a population of particles representing solutions
to move them around in the search space due to some mathematical rules over
particles velocity and position. Similarly to flock of birds collectively searching
for food, the swarm is likely to move close to an optimum of the fitness function.

The Ant Colony Algorithm is based on the behavior of ants seeking paths
between their colony and sources of food and laying some pheromone on trails.
The fact that ants always follow the same path, which is indeed the shortest path,
was the main motivation to take advantage of such real natural behavior of ants.
The walking ants mark trails by laying down pheromones with information of
quantity and quality of food. Such idea could be translated to the vehicle routing
problems as searching in the neighborhood for good-quality solutions.

The Artificial Bee Colony algorithm is based on two fundamental con-
cepts, namely self-organization and division of labor, which allow problem-
solving systems to self-organize and adapt to the environment. The Artificial
Bee Colony model related to collective intelligence of honey bees comprises
employed and unemployed bees and food sources. It defines also recruitment
to a nectar source and abandonment of such source as two leading methods of
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the honey bees behavior. The value of the food source for honey bees usually
depends on its richness, proximity to the nest, and the ease of forage extract-
ing, and they can be identified with good-quality solutions in the Artificial Bee
Colony algorithm.

The Bat Algorithm is based on echolocation behavior of microbats when
searching for their prey in nature.

The Cuckoo Search is a metaheuristic optimization algorithm inspired by
the cuckoo birds being the “brood parasites” birds as they never build they own
nests and instead lay their eggs in nests of other host bird nests. In terms of
optimization algorithms, each egg represents a solution, and each cuckoo egg
represents a new potentially better solution. The Cuckoo Search algorithm is
based on the idea of creating subsequent generations of nests containing best
eggs and thus highest quality solutions.

The Firefly Algorithm is inspired by flashing behavior of fireflies. The main
purpose why fireflies flash is to signal and attract other flies.

The Golden Ball is a multipopulation metaheuristic based on soccer concept.
The whole population of players (indicated as solutions) is created followed by
random division of players into a fixed number of subpopulations called teams.
Each team has its own couch related to training method, which is also randomly
assigned to each time. The training method can be also associated with the way
how each player evolves individually in the team, and in terms of the vehicle
routing problems, it may be associated with local search moves.

The Gravitational Search Algorithm is based on the gravity law and mass
interactions and was inspired by gravitation being the tendency of masses to
accelerate toward each other. In the Gravitational Search Algorithm, agents are
considered as objects, and their masses are related to their performance. All
the agents attract each other by the gravity force communicating each other
through gravitational force. The heavy objects, related to high-quality solutions,
move slower than lighter objects, and this guarantees the exploitation step of
this algorithm.

The idea of the Bacterial Foraging Optimization Algorithm is to mimic
biological principles shown in the foraging behavior of E. coli bacteria for
distributed optimization and control. In the Bacterial Foraging Optimization Al-
gorithm a swarm of bacteria is used as searching agent for a solution to a specific
optimization problem. A bacteria position represents a solution of the problem
by a simple sequence of customer nodes. The bacteria direction vector is used
to represent its ability to search for solution and is driving bacteria movement.
In each step of the Bacterial Foraging Optimization Algorithm, all bacterium
moves from one position to another are based on these directions, and by mov-
ing there are evaluated various solutions of the problem.

The Genetic Algorithms are optimization search methods based on the evo-
lution process in nature, and they imitate the biological process of natural
selection where stronger populations among different species survive. The Ge-
netic Algorithms belong to the larger class of Evolutionary Algorithms, which
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are generic population-based metaheuristic optimization algorithms. All Evolu-
tionary Algorithms and thus also Genetic Algorithms use biological evolution
mechanisms such as representation, selection, recombination, and mutation. In
terms of the rich vehicle routing problems, the representation of the solution
comprises encoding most important features of the solution as genes in a chro-
mosome, which identifies the so-called individual in the population. The recom-
bination is carried out on two selected parent solutions by combining genes of
parent chromosomes to create offspring solutions with potentially better quality.
In turn, mutation is performed on the offspring solutions by random modifica-
tion of genes to further explore the solution space and ensure genetic diversity.
The Genetic Algorithm is based on creating subsequent generations, and each
new generation is constructed by selection, recombination, and mutation of all
the solutions in the population.

The Memetic Algorithms are population-based hybrid genetic algorithms
hybridized with local search refinement procedures. From optimization point of
view, the evolutionary algorithm is used to perform exploration, whereas the
local search methods are used to perform exploitation. The MAs are inspired by
models of adaptation in natural systems combining evolutionary adaptation of
populations of individuals with individual learning within a lifetime.

The hyperheuristics is a new optimization paradigm, commonly described as
heuristics to choose heuristics, comprising search methods, and learning tech-
niques for generating or selecting heuristics to solve optimization problems. The
main difference between metaheuristics and hyperheuristics is that metaheuris-
tics directly search the solution space of a problem, whereas hyperheuristics
search the space of heuristics.
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