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Abstract
This work studies the problem of clustering one-dimensional data points such that they
are evenly distributed over a given number of low variance clusters. One application is the
visualization of data on choropleth maps or on business process models, but without over-
emphasizing outliers. This enables the detection and differentiation of smaller clusters. The
problem is tackled based on a heuristic algorithm called DDCAL (1d distribution cluster
algorithm) that is based on iterative feature scaling which generates stable results of clusters.
The effectiveness of the DDCAL algorithm is shown based on 5 artificial data sets with
different distributions and 4 real-world data sets reflecting different use cases. Moreover,
the results from DDCAL, by using these data sets, are compared to 11 existing clustering
algorithms. The application of the DDCAL algorithm is illustrated through the visualization
of pandemic and population data on choropleth maps as well as process mining results on
process models.

Keywords Heuristic clustering · Classification · Data visualization · Choropleth maps ·
Process mining

1 Introduction

In 2021, the size of information that was “created, captured, copied, and consumed world-
wide” accounted for 79 zettabytes and will grow to 181 zettabytes in 2025.1 “Information
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Fig. 1 Mined process model using DISCO on Data Set 1 containing frequencies of activities (search terms)

visualization can accelerate perception, provide insight and control, and harness this flood
of valuable data to gain a competitive advantage in making business decisions” (Al-Kassab
et al., 2014). One way to visualize information is to enrich an analysis model by assigning
colors to different elements of the model where the basic idea originates from cartogra-
phy (Coulson, 1987). An example for such analysis models is process models that describe
the process logic of business processes, e.g., a patient treatment or manufacturing process.
Then, for example, the service time or the frequency of an activity representing a node can
be mapped to different colors (van der Aalst, 2016). In order to assign the colors, often
clustering is employed as pre-processing step, i.e., the data is clustered and colors the area
assigned to the resulting clusters (Jiang, 2013).

Process models can be designed by domain experts or discovered from process execu-
tion data stored in process event logs, based on process mining techniques (van der Aalst,
2016). Process mining constitutes one of the key technologies for digital transformation
(Reinkemeyer, 2022). One example use case is to mine process models from an information
system, containing a keyword-based search functionality. Each search term appears several
times in the event log and represents a node in the finally mined process model. The result-
ing process model is depicted in Fig. 1 by using the process mining software DISCO2 on
Data Set 1 which is further described in Appendix 1.

The search term * is represented by one node in the discovered process model and is
marked as the most frequent term in the process model with a frequency of 2.887. The
second most frequent search term has a frequency of 90. Both frequencies 2.887 and 90
are unique for the data set. By contrast, 7 different search terms have a frequency of 3 and
6 different search terms have a frequency of 4 where the frequencies of 3 and 4 account
for the lowest frequencies in the data set. For all 33 search terms, 17 different frequencies
have been observed. Overall, the data set, as for many real-world applications, contains
huge gaps between data points, i.e., the frequencies of the search terms. As depicted in
Fig. 1, the process mining software DISCO maps the frequencies to colors of the process
model nodes which range from dark blue to light gray. As stated in van der Aalst (2016), a
process model can become more meaningful by mapping colors to its nodes. However, in
this particular process model, the dominating search term * has such a high frequency that
as a consequence, less frequent search terms appear all in the same color, i.e., light gray.
This prevents differentiation between nodes such as “sport” with a frequency of 48 and
“sport familie” with a frequency of 3. Therefore, not much information gain can be achieved
through the usage of assigned colors.

Hence, it is of utmost importance to think about how to assign colors to the nodes in order
to maximize the information gain of the visualization, even in the presence of “dominating”
data points. Of particular interest is also the analysis of paths through the process model,
including the happy flow of the process, which denotes the path taken by an average trace

2https://fluxicon.com/disco/, accessed 2022-08-08
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(Leemans et al., 2014) or more “exceptional” paths with particularly high/low frequencies
of their nodes.

For the visualization of analysis models, often clustering is employed as pre-processing
step (Jiang, 2013). Colors are then assigned to the clusters. If, for example in the process
mining case (cf. Fig. 1), 10 colors are available for assignment to the frequencies and each
frequency is assigned to one of these 10 colors, each color can be considered as a clus-
ter. In order to meet these requirements, the clustering should be performed by considering
a low variance inside each cluster and a wide distance between nearby clusters and at the
same time an even distribution of data over all clusters. Without the latter, especially for
real-world data sets, many clusters will be sparse due to outliers, tailed or non-uniform dis-
tributions. As a consequence, results can become uniform and colors assigned to clusters
do not show much additional information when, e.g., investigating a particular path. How-
ever, there is a trade-off between a low variance inside each cluster with a wide distance of
nearby clusters, and an even distribution of all clusters. This trade-off is investigated in this
paper. In the following, possible approaches for tackling the problem are discussed.

At first, one could argue to classify the frequencies connected to nodes with unclassed
colors. Doing so for each frequency a different color is assigned by using a color gradient
which has the advantage of a “raw accuracy.” Exactly these discussions between unclassed
and classed colors arose already in cartography when generating choropleth maps (Tobler,
1973), which is quite similar to the visualization problem as discussed here on process mod-
els. While unclassed colors have the advantage, as mentioned before, of a “raw accuracy,”
classed colors are easier to process for humans. This is due to the few number of distinct
colors to recognize, which helps to reduce the cognitive load by using a legend that lists the
ranges of values corresponding to each color (Dobson, 1973; 1980). A naive pre-processing
approach to generate classed colors would be to slice the frequencies into m equal intervals,
where m is the targeted number of clusters. This approach is also used when creating his-
tograms, where each class interval has the same width. While being simple and transparent,
the approach might result in sparse or even empty classes, if the data set is not uniformly
distributed or contains huge gaps, leading to show just two colors in extreme cases.

Another approach would be to use quantiles (n/m, where n is the number of data points)
as classification method where the number of data points (aka frequencies) in each class is
roughly equal, which overcomes the problem of equal intervals. However, this approach has
many disadvantages. While it maximizes an even distribution of data into clusters, it does
not consider any clustering by minimizing the variance inside each cluster and maximizing
distances between clusters which may lead to problems of interpretation of colors in models.
Another problem arises when there are many identical data points in the data set, which can
lead to ambiguous classes.3

A more sophisticated approach on pre-processing, which comes from cartography and is
well established there, is to use the algorithm called Jenks natural breaks, which produces a
classification for a pre-defined number of classes that can be mapped to colors, by minimiz-
ing the variation within each class (Jenks, 1967). A result by using this algorithm on Data
Set 1 is shown in Fig. 2. Here the blue frame shows the same activities as shown in Fig. 1,
but in contrast, it becomes obvious that the three nodes in the process path indicate different
frequencies.

The process model depicted in Fig. 2 conveys more information than the process model
depicted in Fig. 1. Nevertheless, Jenks natural breaks is not optimized for considering

3https://geographicdata.science/book, accessed 2022-08-08
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Fig. 2 Mined process model from Data Set 1 containing frequencies of activities (search terms) assigned to
colors through pre-processing with Jenks natural breaks

an even distribution of the data points over all clusters, which helps to show differences
between frequent elements in the process model, for example between frequencies 3 and
4. When discovering particular paths as shown in the red frames, such a distinction is use-
ful to recognize differences in nodes and in further consequence, subpaths with splits at
first glance. Also, a happy flow is hard to discover and “exceptional” paths with particular
high/low frequencies of their nodes can be discovered, but not all related paths are high-
lighted in the process model. Another problem can be discovered from the legend in Fig. 2:
Jenks natural breaks produces sparse classes (cf. classes with number 4–6, count only one
data point), while putting the main outlier (i.e., the search term with a frequency 2.887) into
the same class (cf. class with number 1) as the second most frequent search term (frequency
90) which both occurred just once in the whole process model.

Another use case is to divide students into equal learning groups in relation to an equal
number of students and an equal level of knowledge in each group. Consider, for example, a
previously executed test with 300 students, where 0–200 points were possible to reach. The
test was performed at the beginning of a semester and the goal is to bring all students to a
uniform level of knowledge. There are 6 teachers available to support the students during
the semester, where each teacher teaches in one of 6 classes. Ideally, an equal number of
students and an equal level of knowledge of students in each group is aspired. This problem
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can be solved by an approach that favors an even distribution in contrast to an equal level of
knowledge.

In the following, the mentioned requirements and desired characteristics of the clustering
algorithm for pre-processing to be designed and realized in this work are summarized. The
algorithm is supposed to

1. Handle one-dimensional data sets
2. Handle negative and floating point data points
3. Handle non-unique data points in data sets
4. Define a targeted number of clusters (which can also be less), e.g., to map them with
predefined colors

5. Avoid overlapping cluster ranges
6. Avoid filtering/omitting of elements by the cluster algorithm because it already
performed through pre-processing steps like outlier detection if desired for a
particular use case

7. Reproduce the same clusters after each execution on the same data set, i.e., stable
results of clusters

8. Work on real-world data sets, e.g., data sets containing gaps between data points
9. Produce fair results with classical clustering metrics such as low sum of variances
(SV) from all clusters and a good score of mean silhouette coefficient (MSC)

10. Result in an even distribution of data points into clusters

The requirements and characteristics can be formulated into the following problem:

Problem 1 Given a set D ⊆ R of (one-dimensional) data points and a targeted number of
clusters M ≥ 1, where m is the number of actually built clusters, 1 ≤ m ≤ M .

Find clustering Cluster:D �→ C =< C1, ..., Cm > with Ci ⊆ D,
⋃̇

iCi = D for
i = 1, ...,m with ∀Ci ∈ C:
– |Ci | converges to |D|

m
(Requirement 1) and ideally M clusters are built

– Minimize variance of Ci (Requirement 2)
– ∀Cj ∈ C, Ci 	= Cj : maximize distance between Ci and Cj ( Requirement 3)
– Requirement 1 is prioritized over Requirement 2 and Requirement 3.

Problem 1 requires a given number of M clusters to be populated with data points under
Requirements 1, 2, and 3. M is assumed to be determined based on the application, e.g.,
number of colors to be used for data visualization. 1 is measured with the metric SED (score
even distribution) which is introduced in this paper. Similar to existing algorithms such as
Jenks natural breaks (Jenks, 1967), Requirements 2 and 3 aim at finding low variance clus-
ters which are separated from each other. And basically, cluster algorithms which produce
low variance clusters do not intend to produce an even distribution of data points into clus-
ters (Requirement 1), see Shapiro (2005). Unlike Jenks natural breaks, we do not consider
the maximization of distances between the clusters (Requirement 3), in favor of achieving
an equal distribution of the data points over the clusters (Requirement 1). This “forces”
every cluster to be populated and avoiding the over-representation of frequent data or out-
liers at the same time. As discussed before, there might be a trade-off between Requirement
1 on the one side and Requirements 2 and 3 on the other side as filling all clusters might take
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a toll on cluster variance. This work addresses Problem 1 based on the following research
questions:

RQ1 How to design a (heuristic) clustering algorithm to evenly distribute 1d data points
into a maximum number of low variance clusters?

RQ2 On which underlying data distributions and real-world data sets does the algorithm
perform most effectively?

RQ3 How does the algorithm support data visualization?

To tackle RQ1–RQ3, this paper presents the heuristic 1d distribution cluster algorithm
(DDCAL) that aims at balancing Requirements 1, 2, and 3 for Problem 1. The idea of
DDCAL in a nutshell is to use an iterative approach by using the feature scaling method
min-max normalization or also known as rescaling, for normalizing a sorted list of one-
dimensional data points and to compare the results against defined boundaries from a set
list. From each boundary, outliers from the upper or lower bound are considered as new
cluster if the quantity of elements of a potential cluster is inside a given tolerance factor.
Otherwise, the next boundary from the list is tested or if all boundaries were tested, the
tolerance factor is increased and the testing of boundaries starts again. In other words, in
every iteration step, the lower or upper quantity of outliers from a boundary, which is inside
a given tolerance factor, that is used to support an even distribution of elements over all
clusters, is chosen for building a new cluster.

In order to evaluate the effectiveness of the DDCAL algorithms and to compare them to
existing algorithms, we use four quality metrics. We first analyze the results of the DDCAL
algorithm in comparison to k-means++, Jenks natural breaks, head/tail breaks, DBSCAN,
kernel density estimation (KDE), Gaussian mixture model (GMM), mean shift, largest gaps,
Gaussian kernel k-means, k-medoids, and trimmed k-means on five artificial data sets,
reflecting a selection of common distributions such as the normal and uniform distribution.
The DDCAL algorithm is then compared to the before mentioned cluster algorithms based
on 4 real-world data sets, i.e., process mining, weather, star distances, and population data,
with respect to quality metrics. Finally, the applicability of the DDCAL algorithm for data
visualization is demonstrated for process mining, US population, and Corona pandemic
data sets. The real-world data sets were chosen because of their different data structures
according to different distributions and different number of data points. Based on this, they
illustrate the application possibilities of the DDCAL algorithm on different use cases.

Overall, DDCAL achieves better results than existing algorithms with respect to quality
metrics and data visualizations on data sets with gaps, i.e., outliers, and tails. Moreover,
the DDCAL algorithm yields promising results for data which contain just one peak with
a distribution that looks like a bell curve (cf. normal/gumbel distribution). The results are
even good if the number of peaks is equal or higher than M . The latter is reflected, for
example, by the results for data with a uniform distribution.

The paper is structured as follows: Section 2 presents the DDCAL algorithm as well
as the quality metrics. Section 3 comments on the implementation of the different algo-
rithms and evaluates DDCAL on different data sets, which are real-world and synthetic data
sets. The evaluation is compared with existing algorithms. Furthermore, different parameter
setups on DDCAL are evaluated to demonstrate their implications on, e.g., different distri-
butions. Section 4 shows applications from visualization of process mining results and maps.
In Section 5, we discuss related work. Section 6 concludes the paper and discusses ongoing
and future work. Appendix 1 details the data sets and Appendix 2 the implementation of the
algorithms.
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2 1D Distribution Cluster Algorithm (DDCAL)

This section provides the DDCAL algorithm, and metrics for assessing the quality of the
clustering with respect to Problem 1.

2.1 DDCAL

Given a set of 1d data points, the idea of DDCAL to tackle Problem 1 is as follows:
In the first step, the data points are sorted in ascending order. In a second step, the list of

data points is copied and normalized by using the feature scaling method min-max normal-
ization as described in Section 1. A list of boundaries to test outliers of clusters is defined.
Boundaries from this list, starting with the lowest, are tested dynamically in each itera-
tion where outliers from the upper and lower boundary are added to potential clusters. On
these potential clusters, neighboring elements are added if the standard deviation inside the
potential cluster decreases. If both potential clusters are above a set minimum quantity of
elements — which is calculated from the combination of elements to even distribute over
all remaining clusters and a set tolerance factor — the cluster with the least difference to the
minimum quantity is actually built. If only one potential cluster or even no potential cluster
is above the set minimum quantity of elements, the next boundary is tested and if all bound-
aries were tested without success of a new built cluster, the tolerance factor is increased and
the set boundaries from the list, starting first with the lowest, are tested again as described
before. Once a cluster is built, only the remaining empty clusters can be filled. The algo-
rithm terminates if no empty cluster is left (i.e., of the maximum number of clusters M) or
all data points are already assigned to clusters.

The pseudo code of DDCAL is provided in Algorithm 1 and explained in the follow-
ing: The input data is an unsorted one-dimensional array of data points d ∈ D. The output
clustered results is a list containing all data points from the input where each ele-
ment consists of a data point d with an assigned cluster number. The algorithm has six
parameters: (1) M contains the targeted number of clusters, e.g., 10 for 10 clusters to build.
(2–3) boundary min and boundary max contain two parameters which define the min-
imum and maximum boundary for calculating outliers in each iteration to assign the data
points from data to potential clusters. The parameters contain a value, ranging from >0 to
<1, where, e.g., 0.1 stands for 10%, which means, that for a sorted normalized list of data
points, outliers are the data points which are in the first 10% and in the last 10% of the list.
(4) num simulation defines the number of boundaries, ranging from boundary min
to boundary max which are evenly spaced and stored in a list for finding the best bound-
ary in each iteration step. (5) q tolerance sets the quantity tolerance factor of elements
for building a new cluster, which aims to produce only evenly distributed elements over all
clusters within the defined factor. (6) q tolerance increase step contains a growth
factor which is responsible for increasing the q tolerance factor, if all simulation steps
for the list of different boundaries (cf. input parameters 2–3) did not satisfy the quantity
tolerance factor.

As the first step (line #1), data is sorted in ascending order. In line #2, a list of
clusters is generated from M, which contains M elements with ascending numbers, rang-
ing from 0 to M-1. Next in #3, the temporary value q aim lo is calculated which determines
the minimum quantity, a cluster must have to be created. The value is built by dividing the
size of data which is not yet assigned to a cluster through the current q tolerance fac-
tor. In the next step (#4), the data to cluster is normalized and stored as norm data. For
data points D, the feature scaling method min-max normalization is used with the
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Algorithm 1 DDCAL (O(n log n).

following formula (Milligan & Cooper, 1988) to calculate relative results norm(d) of data
point d ∈ D depending on the respective minimum min(D) and maximum value max(D):

norm(d) = d − min(D)

max(D) − min(D)
(1)

Continuing with step #5, a list containing num simulation evenly spaces boundaries
is created which comprises a sorted list of decimal numbers, ranging from boundary min
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to boundary max. From #6 to #15, boundaries from the list of boundaries, which was cre-
ated in #5 and starting with the lowest boundary (i.e., first element in the list), are treated. On
step #7, all outlier elements from data are determined by using the current boundary
from the list of boundaries and comparing it with norm datawhich contains the same data
points on the same position as data. The lower outliers are stored in q lo and the upper
outliers are stored in q up. Step #8 adds neighboring elements from q lo/up from not yet
added data, as long as the standard deviation inside q lo/up decreases. From line #9 to
#14, there is a check with handling defined, if the number of elements from q up and q lo
is above q aim lo. If yes, the differences from the number of elements from q up/lo and
q aim lo are calculated and stored in diff q aim up/lo and the algorithm continues
with line #19. If no, a next current boundary will be tested by continuing with line
#6. The lines #16–#19 are only reached if no boundary was found (#6–#15) which produced
both, diff q aim lo/up. Thus, diff q aim up or diff q aim lo is not set and
the q tolerance factor is increased by the factor of q tolerance increase step
(#17). The algorithm continues with line #3 by calculating the q aim lo again for all
boundaries to test. In steps #20–#28, a cluster is built from the outliers q lo or q up. q lo
is chosen, if the associated diff q aim lo is smaller or equal diff q aim up. Then,
on line #21, a cluster is built from the data points of q lo where each data point is assigned
with the first element from the list of clusters. Next, the first element is removed
from the list of clusters (#22) and the data points from q lo are removed from
data (#23). Otherwise, if the diff q aim up is smaller than diff q aim lo, a cluster
is built from the data points of q up where each data point is assigned with the last element
from the list of clusters (#25). Then, the last element is removed from the list
of clusters (#26) and the data points from q up are removed as well from data
(#27). In both cases, the build cluster is added to the list of clustered results (#29).
Line #30–#34 handles if the list of clusters contains only one element. Then, a
cluster is built with all remaining data points from data which are assigned to the element
from the list of clusters (#31). Next on steps #32–#33, the cluster is added to the
list of clustered results and the algorithm continues with step #39. If there exist no
remaining data to cluster, the algorithm continues as well with step #39 (#35–#37). Oth-
erwise, after a new cluster was built and added to the list of clustered results and
there exists data to cluster and as well a list of clusters containing more
than one element, the algorithm starts the next iteration for building a cluster and continues
with step #3 (#38). Finally, on #39, the built list of clustered results is returned as
output of the algorithm.

DDCAL produces stable results, i.e., the output of the algorithm remains the same after
each execution if the data set and the parameters do not change. Furthermore, the algorithm
does not contain nested loops of the input list data which results basically in O(n) with
n = |D| in terms of runtime or space requirements if the number of clusters is considered
as constant and the sorting step (#1) is left out, where all general sorting functions are, at
best, O(n log n).

The algorithm uses the feature scaling method min-max normalization with boundaries
in an iterative approach. The concept is inspired from statistical tests based on data distribu-
tions and their significance threshold which is in the case of this algorithm defined through
a boundary. DDCAL compares in every iteration the whole remaining data set for building
a new cluster. The term remaining means in this case that data points are assigned to a clus-
ter, which are typically outliers, and then these data points are removed from the data set
of data to cluster. By addressing Problem 1 (cf. Section 1), DDCAL aims to increase the
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number of elements in each cluster which is reflected in evenly distributed elements over
all clusters (cf. Requirement 1). The even distribution can be influenced with the parame-
ter q tolerance, which sets the minimum amount of elements for building a cluster on
a given range of boundaries to test. And if these boundaries do not produce the minimum
amount of elements as outliers, the parameter q tolerance increase step increases
the q tolerance factor and thus, influences the even distribution of the results as well.

By using this iterative approach on the remaining data for building clusters with outliers,
it becomes more likely to be able to add more data points to clusters in subsequent iteration
steps on lower boundaries, because they contain less outliers. To add too many data points
into a cluster is hampered through the logic, that on each iteration, clusters are built starting
with the lowest boundary to test and a cluster can actually be built, if the minimum amount
of elements on both sides, the upper and lower bound, are reached or exceeded where
the side with the fewer data points is used for building a cluster. This benefits of course
Requirement 1, but through the iterative approach of removing outliers in every iteration,
the variance of the whole remaining data set decreases. Therefore, clusters with outliers
have lower variances in their clusters in later iterations which benefits Requirement 2 and
also indirectly Requirement 3.

2.2 Clustering Quality Metrics

We use four quality metrics, i.e., number of used clusters (NUC), sum even distribu-
tion (SED), sum variances (SV), and mean silhouette coefficient (MSC) that capture the
coverage of a clustering result with respect to Problem 1.

How evenly the data is distributed over built clusters is measured with the metric SED.
The aim of DDCAL, which is described in detail in Algorithm 1, is to produce clusters
with high SED values (Requirement 1), as top priority in addressing Problem 1, but also
to consider Requirements 2 and 3 which are measured through the quality metrics SV and
MSC. Section 3.4 employs the four quality metrics in order to compare DDCAL with other
clustering algorithms.

Note, while DDCAL produces high SED values, we performed different simulations of
parameters with existing algorithms if available and picked the results with the highest SED
values in order to foster a fair comparison.

Definition 1 (Quality Metrics) Consider Problem 1 with D ⊆ R being a set of (one-
dimensional) data points. Then, quality metrics NUC, SED, SV, and MSC measure the
quality of a clustering C =< C1, ..., Cm > (m ≤ M), where M denotes the targeted number
of clusters. With respect to Requirements 1 and 2, the following quality metrics are defined:

– NUC := m
M

– SED :=
∏m

i=1 | Ci |
– SV :=

∑m
i=1

∑|Ci |
j=1 || xij − zi || where m is the number of the actually built clusters, xij

denotes the j th data point in cluster Ci , and zi the mean value of cluster Ci (see (Faber,
1994)).

– MSC : = 1
|D| ∗ ∑

d∈Ds(d) where s(d) denotes the silhouette coefficient for data point

d ∈ D with s(d) = b(d)−a(d)
max{(a(d),b(d))} where a(d) is the average dissimilarity of d to all

other objects of Ci , b(d) is the minimum dis(d, Cj ) with i 	= j , and dis(d, Cj ) is the
average dissimilarity of d to all objects of Cj (see (Rousseeuw, 1987)).
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NUC ∈ [0; 1] assesses the number of used clusters, in particular the implicit requirement
to fill M clusters. NUC=1 denotes the best result and NUC=0 the worst. When compar-
ing the different algorithms as described in Section 3, we compare just results with NUC=1
which indicates that all targeted clusters were actually built and a fair comparison with the
other clustering quality metrics is therefore valid. SED, the score of even distribution, eval-
uates how evenly the data is distributed over the clusters ( �→ Requirement 1); the product
of the cluster cardinalities is maximized for clusters of equal size and if NUC=1. It is mini-
mized for clusters, where every cluster contains just one element with the exception of one
cluster which contains all remaining elements of a data set. Higher results of are better,
where the best result appears, if all clusters contain the same number of elements and the
worst result will be if all clusters contain just one element with the exception of one cluster
which contains the remaining elements. SV, the sum of variances, measures the homogene-
ity of the clusters, which considers intra-cluster distances. Thus, it assesses low variance
clusters which are compact ( �→ Requirement 2) and is defined according to literature (e.g.,
(Faber, 1994)). A low value is therefore better than a higher one. MSC, the mean silhouette
coefficient, considers compact (cf. SV) and clearly separated clusters ( �→ Requirements 2
and 3). The possible results range from −1 to 1 where 1 signals the optimum and thus clus-
ters are built well apart from each other and are clearly distinguished. 0 shows that clusters
are indifferent and −1 is the worst result, where clusters are wrong assigned (e.g., many
overlapping cluster ranges).

3 Assessment Based on Quality Metrics

3.1 Implementation of Algorithms

In order to evaluate the quality of Algorithm 1 (DDCAL), we compare it to a set of exist-
ing algorithms such as kmeans++ based on the quality metrics defined in Section 2.2.
Furthermore, the parameters of DDCAL are evaluated.

In Section 3.2, the comparison is based on artificial data sets with different distribu-
tions and on these distributions, the evaluation of the DDCAL parameters is performed in
Section 3.3. Finally, Section 3.4 compares the algorithms on real-world data sets. For this,
we implemented Algorithm 1.4 as well as a selection of existing algorithms for comparison.

We used Python 3.9 for implementing all algorithms. For data operations, the numpy
framework (version 1.21.2) was used. Because every algorithm produces different outputs,
like clustered data points, centroids, breaks, or extrema on a curve, we converted each output
to a uniform list of resulting elements, where each element contains a cluster number and a
data point. Through these conversion steps, the performance of an algorithm may differ and
a comparison of runtime should be considered with caution. Nevertheless, long runtimes
when comparing different algorithms on huge data sets are pointed out in this work. Further
details on the implementation of all algorithms can be found in Appendix 2.

3.2 Evaluation Based on Artificial Data with Different Distributions

We first want to understand how the results produced by Algorithm 1 relate to the
distribution of the underlying data, also in comparison with k-means++, Jenks natural

4https://github.com/luxmar/DDCAL

https://github.com/luxmar/DDCAL
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breaks, head/tail breaks, DBSCAN, KDE, GMM, mean shift, largest gaps, Gaussian kernel
k-means, k-medoids, and trimmed k-means.

We generate artificial data sets of 1000 data points for different distributions. One thou-
sand data points seem to result in meaningful data distributions to be distinguished from
each other. Each data set contains at least one-third non-unique data points (cf. Section 1)
to represent roughly a real-world data set. Moreover, when clustering the data sets by using
M = 10 targeted clusters, each cluster contains about 100 data points if the results are
evenly distributed over the clusters. Therefore, built clusters are small enough to be still be
observed manually but are big enough to represent meaningful results. For representing dif-
ferent distributions, we have chosen well-known statistical distributions, to cover a broad
range of possible data sets and to show how each algorithm, especially DDCAL, performs
differently on different distributions. The following data sets are also accessible with details
at5 normal distribution with 369 unique data points, gumbel distribution with 393 unique
data points, uniform distribution with 558 unique data points, exponential distribution with
587 unique data points, and two peaks distribution with 362 unique data points which con-
sists for two randomly generated normal distributions where the first has 300 and the second
has 700 data points (cf. Table 1).

We compare existing clustering algorithms with DDCAL by using M = 10 on the arti-
ficial data sets with different distributions. The results are shown in Tables 1, 2 and 3 by
comparing based on metrics SED, SV, and MSC (cf. Section 2.2, and more details of the
results can be found here.)6 The parameters set for the different algorithms for distributions
to produce these results are shown in Table 4. The default parameters, which are not changed
regarding a particular distribution, except for DDCAL which is described in the follow-
ing, are shown in Appendix 2, for each particular algorithm. Also for stochastic algorithms,
where the results depend on trial because of random methods in the particular algorithm, the
variances from 10 trials are shown. The results show one execution. k-medoids and Gaussian
kernel k-means result in the highest variances and thus the worst results. Furthermore, for
k-medoids, metric SED showed the highest variance on all distributions, with exception of
the exponential distribution, where Gaussian kernel k-means has the highest variance. The
trimmed k-means algorithms lead to the lowest variances, with the exception of metric SV
on uniform distribution with trimmed k-means O+. Thus, the trimmed k-means algorithms
perform best and also k-means++ shows low variances over all data sets.

For DDCAL (cf. Algorithm 1), we use the following input parameter val-
ues, i.e., boundary min=0.1, boundary max=0.49, num simulation=20, and
q tolerance increase step=0.5. The parameter q tolerance is set based on the
distribution: for normal, gumbel, and two peaks distribution q tolerance=0.45 and for
uniform and exponential with q tolerance=0.1. The setting of the input parameters is
discussed in Section 3.3.

For other algorithms which need input parameters, we implemented simulation meth-
ods which aim to maximize the result of the metric SED if the precondition of NUC=1 is
fulfilled. Further details on each algorithm are described in Appendix 2.

The algorithm containing the best result is highlighted by a bold value in each table
and on each distribution. We omit results and consequently algorithms which produce less
than 10 clusters (i.e., NUC<1) due to a fair comparison of the different algorithms. Also,

5https://github.com/luxmar/DDCAL/tree/main/tests/data
6https://github.com/luxmar/DDCAL/tree/main/supplemental

https://github.com/luxmar/DDCAL/tree/main/tests/data
https://github.com/luxmar/DDCAL/tree/main/supplemental
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Table 1 Algorithm results for SED if NUC=1 from different artificially generated distributions

Algorithm Normal Gumbel Uniform Exponential Two Peaks

DDCAL 6.69e+19 7.08e+19 9.93e+19 5.29e+19 3.97e+19

k-means++ 8.50e+18 1.16e+19 9.47e+19 1.29e+18 1.61e+19

variance of 10 trials 2.29e+36 1.83e+37 2.79e+36 1.49e+34 3.90e+36

Jenks natural breaks 6.24e+18 2.56e+18 9.37e+19 1.63e+18 1.84e+19

head/tail breaks − − − − −
DBSCAN 7.08e+04 2.37e+04 − − 3.86e+08

KDE 1.48e+14 7.89e+11 5.73e+19 4.96e+10 3.23e+14

GMM 8.33e+18 9.37e+17 7.43e+19 1.30e+18 1.78e+19

variance of 10 trials 1.42e+37 8.86e+36 3.04e+37 3.90e+34 4.94e+37

mean shift − − − 5.64e+14 −
largest gaps 2.35e+05 7.90e+03 3.25e+06 3.51e+05 4.74e+08

Gauss. kernel k-means 2.69e+19 1.45e+19 8.83e+19 4.35e+19 5.87e+19

variance of 10 trials 1.25e+37 5.72e+35 4.37e+35 7.70e+38 1.36e+38

k-medoids 1.43e+19 1.99e+18 8.31e+19 1.61e+18 2.92e+19

variance of 10 trials 2.00e+38 6.73e+37 8.89e+36 1.05e+36 1.12e+38

trimmed k-means O- 2.69e+19 2.06e+19 3.36e+19 1.37e+19 1.90e+19

variance of 10 trials 8.16e+34 1.19e+35 1.05e+35 9.06e+34 4.01e+34

trimmed k-means O+ 6.42e+19 9.73e+19 2.97e+19

variance of 10 trials 4.14e+35 1.29e+36 3.55e+34 5.31e+35 2.21e+35

Number of elements for each distribution =1000 and M = 10 where max SED =1.00e+20 (except for
trimmed k-means O- (where O- means without outliers), which means that a defined percentage (=10%) of
elements to cluster were filtered because they were considered as outliers).
Bold values indicate the best results if NUC=1.0

results from trimmed k-means are excluded in the evaluation of the results because the
algorithm filters outliers. The parameter of the trim factor is set to 0.1 which means that
for 10% of the data to cluster, a separate cluster is built which contains identified outliers
of the data set. This behavior violates 2 of 10 requirements set out in Section 1: (6) to
avoid filtering/omitting of elements by the cluster algorithm and (5) to avoid overlapping
cluster ranges. The latter is violated, because outliers are thrown in a separate cluster which
contains likely elements from all areas of the data set. For this reason, bold values from
trimmed k-means are highlighted in color blue if the result is best among the compared
algorithms. We executed trimmed k-means twice on each data set, where the postfix O-
indicates that only results without outliers are considered for metrics SED, SV, and MSC in
order to avoid results with overlapping clusters as described before. Therefore, if 10% of the
data points in the data set are trimmed, only the remaining 90% of the data points with their
built clusters are evaluated. Hence, when M = 10 clusters are targeted, as described before,
the actual targeted number on the algorithm is set to M+1 (i.e., 11). From the actually built
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Table 2 Algorithm results for SV, if NUC =1, from different artificially generated distributions

Algorithm Normal Gumbel Uniform Exponential Two peaks

DDCAL 3.87e–01 7.88e–01 5.51e–01 1.53e+01 3.69e–01

k-means++ 5.25e–01 8.12e–01 5.12e–01 7.75e+00 2.49e–01
Variance of 10 trials 3.04e–05 5.77e–04 2.11e-05 2.90e–01 3.36e–06

Jenks natural breaks 5.22e–01 8.11e–01 5.07e–01 9.57e+00 6.68e-01

Head/tail breaks − − − − −
DBSCAN 8.59e–01 1.17e+00 − − 4.54e–01

KDE 3.15e-01 5.17e–01 5.40e–01 5.21e+00 2.75e–01

GMM 5.26e–01 7.32e–01 5.46e–01 6.88e+00 2.50e–01
Variance of 10 trials 5.68e–03 6.23e–04 1.98e–04 7.15e–01 2.38e–05

Mean shift − − − 4.57e+00 −
Largest gaps 1.21e+00 1.42e+00 3.39e+00 1.03e+01 4.68e-01

Gaussian kernel k-means 4.66e–01 8.13e–01 5.35e–01 1.47e+01 2.84e–01

Variance of 10 trials 9.98e–05 8.31e–08 2.32e–07 5.23e+01 1.99e+00

k-medoids 5.32e–01 8.02e–01 5.23e–01 7.85e+00 2.55e–01
Variance of 10 trials 6.07e–03 9.23e–04 9.99e–05 4.04e+00 1.46e–05

Trimmed k-means O–
Variance of 10 trials 2.44e–08 4.89e–08 9.85e–07 7.12e-06 4.06e-08

Trimmed k-means O+ 4.22e+00 4.89e+00 9.33e+00 1.72e+01 4.14e+00

Variance of 10 trials 6.66e–05 6.06e–08 1.02e–02 4.64e–06 1.11e–04

Number of elements for each distribution =1000 and M = 10.
Bold values indicate the best results if NUC=1.0

clusters, only m-1 clusters, without the 1 outlier cluster are considered with the evaluation
metrics. With this approach, the trimming of outlier data to cluster is performed, but no
overlapping cluster ranges are produced. In contrast, if the postfix O+ is shown for trimmed
k-means, also the cluster which contained the filtered outliers is considered based on metrics
SED, SV, and MSC. However, using this approach, the appearance of overlapping cluster
ranges is likely and thus it might not be useful for certain use cases (cf. Data Set 1 in
Appendix 1).

In Table 1, the SED results are shown where the highest values represent the best ones.
DDCAL performs best on the normal, gumbel, uniform, and exponential distribution and
is slightly behind Gaussian kernel k-means (average rank of 2.2) on the two peaks distri-
bution, resulting in an average rank of 1.2. trimmed k-means O+ performs also good on
all distributions and best on normal and two peaks distribution. However, as mentioned
before, overlapping clusters are produced on all distributions due to the outlier cluster, which
contained 10% of the whole data set to cluster.

Table 2 shows the result for SV, where the lowest results indicate the best performance of
an algorithm. DDCAL performs below average, except on the normal (rank 2) and gumbel
(rank 3) distribution. In comparison, when calculating the average rank of all distribu-
tions, KDE performed best with 2.4, followed by k-means++ with 3.4 and GMM with 3.6.
DDCAL had an average of 5.2 and was ranked as “6th” best algorithm, out of 8.
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Table 3 Algorithm results for MSC if NUC=1, from different artificially generated distributions

Algorithm Normal Gumbel Exponential Two peaks

DDCAL 0.5 0.52 0.53 0.51 0.5
k-means++ 0.53 0.53 0.56 0.57 0.55
Variance of 10 trials 5.05e-07 2.45e-06 1.36e-05 1.18e-06 1.20e-06

Jenks natural breaks 0.53 0.53 0.56 0.57 0.55
Head/tail breaks − − − − −
DBSCAN 0.25 0.28 − − 0.35

KDE 0.44 0.46 0.53 0.56 0.43

GMM 0.53 0.53 0.52 0.57 0.55
Variance of 10 trials 1.93e-05 7.06e-06 1.13e-04 1.01e-04 4.21e-05

Mean shift − − − 0.54 −
Largest gaps 0.26 0.56 0.17 0.62 0.36

Gaussian kernel k-means 0.52 0.53 0.54 0.49 0.52
Variance of 10 trials 1.48e-05 3.98e-06 1.32e-08 2.62e-03 3.76e-04

k-medoids 0.52 0.52 0.55 0.57 0.52
Variance of 10 trials 2.39e-05 6.79e-05 3.53e-05 4.97e-05 1.36e-04

Trimmed k-means O– 0.56
Variance of 10 trials 1.09e-07 1.39e-08 7.87e-07 1.11e-06 1.99e-08

Trimmed k-means O+ 0.42 0.44 0.46 0.51 0.44

Variance of 10 trials 1.84e-07 2.12e-07 2.42e-08 2.50e-08 2.42e-08

Number of elements for each distribution =1000 and M = 10.
Bold values indicate the best results if NUC=1.0

Table 3 shows the results of metric MSC, where the highest value shows the best result.
k-means++, Jenks natural breaks, and GMM perform best on all distributions. These algo-
rithms achieve always the first or second place, with the exception of GMM on the uniform
distribution with only rank 7. Note that equal results have the same rank. DDCAL ranks
5 on uniform distribution, 6 on normal, gumbel, and two peaks distribution and 7 on the
exponential distribution. By calculating the average rank of all distributions, k-means++ and
Jenks natural breaks share the first place as best algorithms with 1.4, followed by GMM
with 2.6 and k-medoids with 4. DDCAL scores below the average with an average rank
of 6. Only KDE achieves a lower result with 6.6. MSC ranges from −1 to +1 and in most
cases, except for the exponential distribution, the results for DDCAL differ from the results
of the other algorithms on the second decimal place. Hence, we can still say that DDCAL
performs close to the best performing algorithms.

When putting the ranks of all metrics on each algorithm together, by calculating the
average rank on each distribution, DDCAL and Gaussian kernel k-means perform best on
the normal distribution with an average order value of 3.0 (e.g., for DDCAL: 1+2+6

3 ) from
SED, SV, and MSC. On the gumbel distribution, DDCAL and GMM perform best with
3.3. For the other distributions, DDCAL performs worse than on the normal and gumbel
distribution, where, for example, on the uniform distribution, k-means++ and Jenks natural
breaks have the best average rank with 1.7 and DDCAL is on “5th” place. When looking at
the exponential distribution, GMM scores best with 3.0 and DDCAL performs poorly with
the “7th” place and an average rank of 5.3. Finally, on the two peaks distribution, k-means++
and GMM perform best with 2.7. DDCAL ranks 6 with an average score of 4.7.
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Table 4 Algorithm parameters which were set for the different distributions as shown in Tables 1, 2, and 3

Algorithm Normal Gumbel Uniform Exponential Two peaks

DDCAL
q tolerance= 0.45 0.45 0.1 0.1 0.45

DBSCAN
min pts= 1, 1, 1, 1, 1,
eps= 0.09 0.11 0.04 0.47 0.07

KDE
h= 0.07 0.08 0.14 0.30 0.02

Mean shift
q= 0.002 0.002 0.002 0.214 0.005

Gauss. kernel k-means
var= 13.39 15.81 26.38 0.40 0.31

Trimmed k-means O-/+
trim= 0.1 0.1 0.1 0.1 0.1

Additionally to the ranking techniques as shown above and to get an even better picture
of the effectiveness of the algorithms, we consider the differences between the scores for
metrics SED, SV, and MSC by each algorithm. First, we normalize the results for each of
the three metrics for each distribution by using the feature scaling method min-max normal-
ization with the equation from Section 2 to obtain scores, ranging between 0 and 1, where
1 shows the best result, e.g., on SED for normal distribution DDCAL=1.0 (indicates the
best rank), KDE =0.59 (indicates that the result is about less the half than the best ranking
result), and largest gaps =0 (indicates worst rank). On SV, we have to do an extra step after
normalization, because the best result has the lowest score. Thus, we subtract each normal-
ized result from 1, e.g., for KDE: 1 − 0 = 1. For metrics SED on the normal distribution,
we discover that, for example, DDCAL has a normalized result of 1 and the second best is
Gaussian kernel k-means with only 0.40. Nearly the same picture is shown when we look
at the gumbel distribution, where the DDCAL has a normalized result of 1 and the second
is Gaussian kernel k-means with 0.20. With the exception of the two peaks distribution,
where DDCAL ranks second best 0.68 behind Gaussian kernel k-means, DDCAL performs
best on all tested distributions. When DDCAL is compared based on metric SV, the results
are about average, i.e., 0.91 on normal distribution, 0.69 on gumbel distribution, 0.98 on
uniform distribution, and 0.71 on two peaks distribution, except for the exponential distri-
bution with a result of 0. The normalized results for MSC show nearly the same picture as
shown for the previous metric SV: 0.89 on normal distribution, 0.6 on gumbel distribution,
0.92 on uniform distribution, and 0.74 on two peaks distribution. Similarly to SV, DDCAL
shows an below-average performance with with 0.15 for MSC with the exponential distribu-
tion. By averaging the normalized results from all metrics, where each metric is considered
with equal weight, on each distribution, DDCAL performs best on normal distribution with
0.94 ( 1+0.92+0.89

3 ), followed by Gaussian kernel k-means with 0.73. On gumbel distribu-
tion, DDCAL performs best with an average of 0.77, followed by Gaussian kernel k-means
with 0.53 which was close to k-means++ with 0.51. For the uniform distribution, the first
three algorithms lead to similar results, i.e., 0.984 for k-means++, 0.981 for Jenks natural
breaks, and 0.97 for DDCAL. On the exponential distribution, KDE performs best with an



Journal of Classification

average of 0.51 and DDCAL ranks 7 with a score of 0.38. Finally, on the two peaks dis-
tribution, Gaussian kernel k-means has the highest average score with 0.92 and DDCAL
ranks 4th place with a score of 0.71. Based on the sum of the normalized results over all
distributions from all metrics the algorithms can be ranked as follows: DDCAL with 3.77
(0.94+0.77+0.97+0.38+0.71), Gaussian kernel k-means with 3.41, k-means++ with 3.35,
GMM with 3.26, k-medoids with 3.25, Jenks natural breaks with 2.91, KDE with 2.67, and
largest gaps with 0.99.

Through the analysis of the different metrics, it seems that DDCAL performs well on
normal and gumbel distributions. By considering the mechanics of DDCAL, outliers above
or below a threshold are the first generated clusters. After every iteration, these outliers are
removed continuously from the input list and assigned to clusters. Through this procedure,
the input list becomes more evenly distributed. DDCAL builds only a cluster in an iteration
if on both sides, above and below a threshold, outliers are identified as potential clusters,
containing a minimum amount of data points. Hence, the algorithm performs better, if just
one peak with two tails exists in the distribution of a given data set, and also because outliers
are considered as local in DDCAL instead of global. DDCAL can be improved on data sets
with two or more peaks by a pre-processing step which cuts the data set into two or more
slices where every data set contains one distribution.

3.3 Evaluation of DDCAL Parameters on Different Distributions

In the previous sections, we proposed particular values for parameters on DDCAL
which we also used for evaluation. These default parameters (boundary min=0.1,
boundary max=0.49, num simulation=20, q tolerance increase step=0.5,
q tolerance=0.45 resp. 0.1) are chosen because of the results from simulations on dif-
ferent distributions, as shown in Figs. 3, 4, and 5 for the DDCAL algorithm (more details
of the results can be found here.)7 We left out the gumbel distribution because the impact
on the results, by setting different input parameters, is nearly the same as on the normal
distribution.

At first, we evaluate different settings for parameter q tolerance, which defines the
minimum quantity of elements for building a cluster. As shown in Fig. 3, we tested different
values between 0.005 and 0.5 with the observation that DDCAL performs well on normal
(also gumbel) and two peaks distribution, when the parameter is set to 0.45. On the uniform
and exponential distribution, 0.1 performs well. On the two peaks and exponential distribu-
tion, there exist many jumps in the results of the metrics. Therefore, a high q tolerance
factor of, for example, 0.4 on the exponential distribution can perform well, resulting in a
lower SED value and the best value for MSC.

Overall, we recommend for real-world data sets, which are similar to the tested distribu-
tions, to set q tolerance to a higher value like 0.45 on normal and gumbel distribution
and to a lower value, like 0.1 on a uniform distribution. On exponential and two peaks dis-
tribution, we recommend to test both high and low q tolerance factors, such as 0.45 and
0.1.

The q tolerance has huge impact on the results on different distributions and can be
used to adjust the trade-off between the results of SED and the classical clustering metrics
SV and MSC in small steps, e.g., by setting the parameter from 0.45 to 0.5 on the normal

7https://github.com/luxmar/DDCAL/tree/main/supplemental

https://github.com/luxmar/DDCAL/tree/main/supplemental
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Fig. 3 Visualization of metrics SED, SV, and MSC for DDCAL on different distributions with different
q tolerance parameters and M = 10

distribution, where a higher q tolerance factor decreases SED (which is still high) but
produces better results for SV (which gets lower) and MSC (which increases).

For further tests on different parameters, we use the best performing q tolerance set-
ting on each distribution as discovered before. Note, we also performed tests on the uniform
and exponential distribution by setting q tolerance to 0.45, even though our observation
showed that a lower q tolerance factor seems to perform better. In most cases, except
for testing the parameter boundary min on exponential distribution, similar curves in the
diagram are produced and the results on all three metrics decrease.

For DDCAL, we consider boundaries up to 0.49 as meaningful with respect to achieving
fair results and because clustering outliers above 49%, these results cannot be considered as
“outliers,” as they make upmore than half of the remaining data points on each iteration step.
The results depicted in Fig. 4, for which different boundary max parameters (ranging
from 0.15 to 0.9) are tested, show that the overall performance is good with a maximum
boundary of 0.49. Thus, we recommend to use the parameter boundary max=0.49 on all
distributions. The exponential distribution with a higher value performs also good and even
better on SED.

When investigating the parameter boundary min, where the results are shown in
Fig. 5, it turns out that to start with a 10% boundary (minimum boundary) for clustering
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Fig. 4 Visualization of metrics SED, SV, and MSC for DDCAL on different distributions with different
boundary max parameters and M = 10

outliers, seems to be a good balance between a high SED value and good results on SV, and
MSC. Starting with 15%, leads to DDCAL performing even better in some cases. For exam-
ple, on the exponential distribution boundary min=0.15 yields better results than =0.1 on
SV and MSC on slight costs of SED, but on normal distribution this observation is reversed,
where SED is slightly higher on costs of SV and MSC. Therefore, we recommend to use
boundary min=0.1 on all distributions and to test boundary min=0.15 for fine tuning.

With the parameter num simulations, as described in Algorithm 1, we defined
the number of simulation steps for testing different boundaries on each iteration in
DDCAL. These boundaries are evenly spaced values from the defined input parameters
boundary min to boundary max with the defined number of simulation steps, where
we consider that 20 elements are sufficient to test all necessary boundaries.

This number is confirmed through testing different numbers of simulation steps (above
and below) which show that less than 20 simulation steps decrease the results from the met-
rics and more than 20 simulation steps do not show significant improvements, but increase
the runtime of the algorithm.

Also, the parameter q tolerance increase step is tested with different values. A
value of 0.5 seems to perform best, but slight changes have hardly any impact on the results.
When setting q tolerance increase step too low, more iteration steps are per-
formed, which increases the runtime of the algorithm. A too high value such as 3 decreases
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Fig. 5 Visualization of metrics SED, SV, and MSC or DDCAL Advanced on different distributions with
different boundary min parameters and M = 10

the performance of the metrics, especially for SED, because clusters are built too early when
the minimum quantity for building a cluster is reached immediately.

We tested DDCAL by changing more than one parameter at the same time, but the
results from the metrics always decrease. Thus, we recommend to change only one param-
eter value and to use the recommendations as described before. In detail, parameter
q tolerance can be used as pivot for better results. For slight improvements, the param-
eter boundary min can be changed, as well. An exception, where the boundary min
changes the results completely, is shown on the two peaks distribution by setting
boundary min to the value 0.35 instead of 0.1, which shows, when comparing DDCAL
with 7 other algorithms (cf. Tables 1, 2, and 3) the following results: the performance of
SED declines from ranks 2 to 6. The rank of SV remains 6 and MSC improves from 6 to
the best performing algorithm (rank 1) with an MSC value of 0.56.

Discussion: Throughout the paper, we assume M = 10, but other M values were tested
on the data sets described in Section 3.2. On data set normal distribution, for example, we
compared DDCAL with Jenks natural breaks on different values of M (more details of the
results can be found here.)8 We have chosen Jenks natural breaks for comparison, because
it was the best performing algorithm in Section 3.2 (cf. Tables 1, 2, and 3) with stable
results on M = 10. Jenks natural breaks ranks third behind DDCAL and k-means++ when

8https://github.com/luxmar/DDCAL/tree/main/supplemental

https://github.com/luxmar/DDCAL/tree/main/supplemental
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calculating the average rank for each distribution (cf. Section 3.2) and ranks sixth behind
DDCAL and the stochastic algorithms Gaussian kernel k-means, k-means++, GMM, and
k-medoids when calculating the normalized results.

For DDCAL, we used the default parameters (boundary min=0.1,
boundary max=0.49, num simulation=20, q tolerance increase step=0.5,
q tolerance=0.45) as stated above. First we observe that for M ∈ {3,4}, Jenks natural
breaks shows better results for SED, SV, and MSC. For M ∈ {5, 6, 8, 12, 15, 30}, SED and
SV perform better for DDCAL, but MSC turns out slightly worse than Jenks natural breaks,
which shows the same observation as with M = 10 (cf. Tables 1, 2, and 3). As shown
before, in some cases, MSC can be improved without costs of other parameter perfor-
mance, when setting the parameter boundary min to =0.15 instead of 0.1. For M = 12,
for example, SED improves from 7.78e+22 to 9.01e+22, SV remains the same value of
3.69e-01, and MSC improves from 0.48 to 0.5 where Jenks natural breaks has values of
SED=8.11e+21, SV=4.90e-01 and MSC=0.54. The same observation of the improvement
of DDCAL by changing this parameter is discovered for M = 6, where all metrics improve.
By changing the parameter for other values of M , the performance of the metrics decreases.

When setting M to a high value of, e.g., 100 (with just 1000 data points in the data
set), Jenks natural breaks produces 100 clusters where DDCAL produced only 44 clusters.
The lower number of produced clusters in the output results from the termination of the
algorithm, if no data is left for clustering (cf. Algorithm 1 step #36) and hence it makes no
sense to produce more clusters. Because of the fewer clusters, the results of DDCAL rank
behind Jenks natural breaks for metrics SED (1.51e+52 vs. 3.50e+90) and SV (3.97e-01 vs.
3.86e-01) and better for metric MSC (0.53 vs. 0.5). However, a fair comparison can only be
made if both algorithms produce the same number of clusters. When setting the parameter
boundary min to 0.01 instead of 0.1, DDCAL produces 100 clusters, where all metrics
perform better than Jenks natural breaks (SED=1.17e+97, SV=3.40e-01, and MSC=0.54).
By lowering boundary min, it is more likely that the envisaged number of data points
per cluster is found, because even low deviations of the data points are counted as outliers
(cf. Algorithm 1 step #7). In other words, if not a sufficient number of clusters (m<M) are
built after executing DDCAL, boundary min can be lowered, to fill the target number of
clusters (M) with data points.

3.4 Evaluation Based on Real-world Data Sets

To compare DDCAL with existing algorithms as described in Sections 3.1 and 3.2, we use
four real-world data sets from different domains in order to show the wide range of possible
applications, i.e., Data Set 1 on search processes, Data Set 2 on US population, Data Set 3
on star distances, and Data Set 4 on weather (all data sets are described in Appendix 1).

The results of comparing selected algorithms (cf. Appendix 2) are shown in Tables 5, 6,
7, and 8 (more details of the results can be found here).9 Like shown on Tables 1, 2, and
3 (cf. Section 3.2), each table contains variances from 10 trials for stochastic algorithms,
where the yielded results depend on the trial because of random methods in the particular
algorithm. The results of each of these algorithms represent one execution for the actual
comparison among the other algorithms.

In the description of each table, the maximum SED value is listed for the data set to indi-
cate how close each algorithm performs to this value. Bold values indicate the best results

9https://github.com/luxmar/DDCAL/tree/main/supplemental

https://github.com/luxmar/DDCAL/tree/main/supplemental
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Table 5 Results for Data Set 1 (process mining) by using M = 10 where max SED =1.40e+05 (except for
trimmed k-means O- (where O- stands for without outliers), which means that a defined percentage (=10%)
of elements to cluster were filtered because they were considered as outliers)

Algorithm name NUC (max) SED (max) SV (min) MSC (max)

DDCAL q tol=0.45 boundary min=0.1 1.0 4.08e+04 1.68e+02 0.78

k-means++ 1.0 9.60e+02 5.81e+00 0.7

Variance of 10 trials 0 0 0 0
Jenks natural breaks 1.0 2.18e+03 1.96e+06 0.35
Head/tail breaks 0.2 3.20e+01 4.31e+02 0.96
DBSCAN min pts=1 eps=3 1.0 9.60e+02 5.81e+00 0.7
KDE h=0.1 0.2 3.20e+01 4.31e+02 0.96

GMM 1.0 3.51e+03 1.41e+01 0.59
Variance of 10 trials 0 3.91e+06 1.09e+01 1.26e-04

Mean shift q=0.1 0.2 3.20e+01 4.31e+02 0.96
Largest gaps 1.0 9.60e+02 1.96e+06 0.63

Gaussian kernel k-means var=20.39 1.0 6.32e+03 2.38e+0 0.61
Variance of 10 trials 0 1.18e+08 1 2.40e+03 1.08e-02

k-medoids 1.0 3.51e+03 1.41e+01 0.59
Variance of 10 trials 0 5.31e+04 5.80e+00 1.43e-04

Trimmed k-means O- trim=0.1 1.0 2.27e+03 0.69
Variance of 10 trials 0 0 1.18e-32 4.44e-33

Trimmed k-means O+ trim=0.1 1.0 1.36e+04 1.77e+06 0.6
Variance of 10 trials 0 0 6.62e+11 7.84e-05

Bold values indicate the best results if NUC=1.0

among the compared algorithms in a table if NUC=1.0 and therefore M is reached (m=M).
As described in Section 3.2, in the following, we discuss only those results with NUC=1.0
and without trimmed k-means where bold values from this algorithm are highlighted in
color blue if the result was best among the compared algorithms.

The default parameters for the comparison algorithmswhich are not changed regarding a particu-
lar data set are shown in Appendix 2. For the DDCAL algorithm, we used the default param-
eters (boundary min=0.1 resp. 0.15, boundary max=0.49, num simulation=20,
q tolerance increase step=0.5, and q tolerance=0.45 resp. 0.1) as described
in Sections 3.2 and 3.3. For Data Set 4, q tolerance is set to 0.1 because of the uni-
form distribution and on all other data sets, q tolerance is set to 0.45. For Data Set 2,
boundary min is set to 0.15 because the metrics SED, SV, and MSC perform better. For
Data Set 4, boundary min is set to 0.15, where SED performs a little weaker than 0.1,
but the performance increases for metrics SV and MSC.

DDCAL achieves outstanding results given an equal distribution of the data points over
the clusters (SED) for all real-world data sets, where DDCAL hit always rank 1 in compari-
son to all other algorithms. On SV and MSC, the performance of DDCAL is in the midfield
or below.

On Data Set 1 (process mining), DCAL ranks 6 for SV 1 for MSC. k-means++ and
DBSCAN yield the same output and thus the metrics have the same results. They both
rank 1 for metric SV, 2 for MSC, and second last for metric SED which demonstrates a
trade-off between SED and the classical clustering metrics SV and MSC. For the stochastic
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Table 6 Results for Data Set 2 (U.S. population 2018) by using M = 10 where max SED =6.25e+06 (except
for trimmed k-means O- (where O- stands for without outliers), which means that a defined percentage
(=10%) of elements to cluster were filtered because they were considered as outliers)

Algorithm name NUC (max) SED (max) SV (min) MSC (max)

DDCAL q tol=0.45 boundary min=0.15 1.0 3.70e+06 6.69e+13 0.49
k-means++ 1.0 2.02e+05 1.96e+12 0.61
Variance of 10 trials 0 5.28e+06 7.46e+18 2.53e-06

Jenks natural breaks 1.0 3.81e+05 4.31e+13 0.4
Head/tail breaks 0.4 1.45e+03 3.82e+13 0.56
DBSCAN min pts=1 eps=565973.5 1.0 3.59e+03 2.67e+12 0.42
KDE h=428947 1.0 5.24e+04 1.84e+12 0.52

GMM 1.0 3.14e+05 2.50e+12 0.56
Variance of 10 trials 0 7.96e+09 9.85e+22 9.79e-04

Mean shift q=0.074 1.0 8.74e+04 1.79e+12 0.55

Largest gaps 1.0 3.18e+04 3.11e+13 0.51

Gaussian kernel k-means var=559009.01 1.0 3.63e+06 1.21e+14 0.41
Variance of 10 trials 0 7.90e+11 1.24e+28 9.21e-03

k-medoids 1.0 4.03e+05 2.38e+12 0.56
Variance of 10 trials 0 2.12e+10 9.63e+22 4.35e-04

Trimmed k-means O- trim=0.1 1.0 4.35e+05
Variance of 10 trials 0 1.11e+09 1.36e+20 3.50e-05

Trimmed k-means O+ trim=0.1 1.0 3.05e+06 6.29e+13 0.6
Variance of 10 trials 0 3.98e+10 1.36e+20 2.44e-05

Bold values indicate the best results if NUC=1.0

algorithms, k-means shows the same results for all trials and the variance for all metrics thus
turns out as 0. Also, the trimmed k-means algorithms performs with no variance for SED.
The Gaussian kernel k-means performs worst regarding variances from the 10 trials.

For Data Set 2 (U.S. population 2018), mean shift followed by KDE performed best on
metric SV and DDCAL had the “9th” rank out of 10. Regarding metric MSC, DDCAL
ranks on place number 7 and k-means++ ranks the first place, followed by GMM. Similar
to the previous discussed data set, the variance of k-means++ is the lowest and thus the best
and for Gaussian kernel k-means the variance is the highest and thus the worst on stochastic
algorithms on this data set.

For Data Set 3 (Stars), with respect to metric SV, DDCAL ranks 4 out of 7 algorithms.
k-means++ and GMM perform best. For MSC, DDCAL hits the last place where DBSCAN
hits the first, and largest gaps the second place. When comparing the variances of the
stochastic algorithms, the trimmed k-means algorithms perform best with low variances
where GMM shows the highest variances after 10 trials.

Finally, on Data Set 4 (Weather), for metrics SV and MSC, DDCAL scores between the
“6th” and the “7th” rank out of 8. GMM performs best for SV and MSC. k-medoids has
the second best results for SV and the best ones for SV. Gaussian kernel k-means performs
second best for MSC. For the stochastic algorithms, the variances of trimmed k-means O+
are the highest and thus worst among the compared algorithms. The variances for Gaussian
kernel k-means are the lowest and thus the algorithm performs best when comparing the
deviations on the metrics from 10 trials.
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Table 7 Results for Data Set 3 (distances to stars) by using M = 10 where max SED =6.00e+40 (except for
trimmed k-means O- (where O- stands for without outliers), which means that a defined percentage (=10%)
of elements to cluster were filtered because they were considered as outliers)

Algorithm name NUC (max) SED (max) SV (min) MSC (max)

DDCAL q tol=0.45 boundary min=0.1 1.0 3.22e+40 1.59e+04 0.55

k-means++ 1.0 5.71e+39 1.04e+04 0.57
Variance of 10 trials 0 3.13e+78 1.49e+05 6.99e-06

Jenks natural breaks 1.0 6.08e+39 8.58e+07 0.57
Head/tail breaks 0.2 1.12e+09 3.63e+04 1.0
DBSCAN min pts=1 eps=8.34 1.0 4.25e+24 3.32e+04 0.69
KDE h=0.1 0.2 1.12e+09 3.63e+04 1.0

GMM 1.0 8.92e+39 1.06e+04 0.57
Variance of 10 trials 0 1.17e+79 4.51e+05 2.26e-05

Mean shift q=0.068 1.0 2.24e+34 1.40e+04 0.58
Largest gaps 1.0 4.66e+24 8.58e+07 0.68

Gaussian kernel k-means − − − −
k-medoids − − − −
Trimmed k-means O- trim=0.1 1.0 1.29e+40 0.58
Variance of 10 trials 0 5.58e+76 2.38e+01 −
Trimmed k-means O+ trim=0.1 1.0 2.05e+04 0.53
Variance of 10 trials 0 2.39e+77 2.34e+01 −

Bold values indicate the best results if NUC=1.0

As for the synthetic data sets (cf. Section 3.2), we sum up all results for all metrics for
each distribution and algorithm by using the feature scaling method min-max normalization
using the equation provided in Section 2. The scores range from 0 to 1 where 1 indicates
the best result. For Data Set 1 (process mining), DDCAL hit the first place, followed by k-
means++ and DBSCAN. For Data Set 2 (U.S. population 2018), k-means++ performs best,
followed by DDCAL and k-medoids. For Data Set 3 (Stars), DDCAL shows the best overall
performance, followed by DBSCAN and GMM. Finally, for Data Set 4 (Weather), DDCAL
performs best and is followed by k-means++ and Jenks natural breaks.

In summary, for metrics SV andMSC, none of the algorithms achieves a good ranking on
all real-world data sets. In contrast, the SED results on DDCAL come close to the maximum
SED value for each of the real-world data sets. Furthermore, the results show that there
exists a trade-off between metric SED and the classical clustering metrics SV and MSC, as
discussed earlier. Section 4 will illustrate why a high SED value from clustered results as
pre-processing of 1d data for visualization is favorable based on different use cases, as also
already mentioned in Section 1.

The comparison of the characteristics of the algorithms leads to the following observa-
tions: k-means++ shows a good overall performance on the real-world data sets. One reason
is that the real-world data sets are similar to an exponential and uniform distribution, where
the algorithm also achieves good results (cf. Section 3.2).

k-means++, GMM, Gaussian kernel k-means, k-medoids, and trimmed k-means (which
was left out in the comparison) are struggling to be reproducible, because different results
are yielded depending on the trial (Thrun, 2021). Thus, after each run, the clustered results
differ and thus, do not produce stable results like DDCAL. This behavior produces a weak
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Table 8 Results for Data Set 4 (weather) — min temperatures by using M = 10 where max SED =4.31e+15
(except for trimmed k-means O- (where O- stands for without outliers), which means that a defined
percentage (=10%) of elements to cluster were filtered because they were considered as outliers)

Algorithm name NUC (max) SED (max) SV (min) MSC (max)

DDCAL q tol=0.1 boundary min=0.15 1.0 3.91e+15 5.13e+00 0.51

k-means++ 1.0 3.19e+15 4.82e+00 0.55
Variance of 10 trials 0 5.07e+28 3.09e-03 2.15e-05

Jenks natural breaks 1.0 3.52e+15 4.84e+00 0.54

Head/tail breaks 0.2 3.35e+04 1.83e+01 0.63

DBSCAN min pts=1 eps=0.3 0.9 1.94e+08 1.67e+01 0.24

KDE h=0.62 0.7 7.42e+10 6.60e+00 0.52

GMM 1.0 4.14e+14 4.48e+00 0.56
Variance of 10 trials 0 6.99e+29 1.95e-02 1.77e-04

Mean shift q=0.15 1.0 3.99e+13 5.91e+00 0.53

Largest gaps 1.0 5.15e+09 1.67e+01 0.19

Gaussian kernel k-means var=1.61 1.0 3.40e+15 4.75e+00 0.56

Variance of 10 trials 0 0 1.97e-31 1.97e-33

k-medoids 1.0 4.39e+14 4.48e+00 0.56

Variance of 10 trials 0 7.63e+29 1.86e-02 3.35e-05

Trimmed k-means O- trim=0.1 1.0 1.38e+15
Variance of 10 trials 0 1.60e+27 6.64e-05 1.60e-05

Trimmed k-means O+ trim=0.1 1.0 3.59e+15 7.72e+01 0.46
Variance of 10 trials 0 1.29e+28 6.08e+01 5.21e-05

Bold values indicate the best results if NUC=1.0

violation of one requirement set out in Section 1. We speak of a weak violation, because trial
sensitive randommethods can be set to a fixed number (e.g., the random state parameter
for k-means++ on the Python framework sklearn)10, with the effect that the random method
will be deterministic and returns always the same results. However, this approach may not
lead to the best results of an algorithm.

The variance of the before mentioned algorithms is shown for the metrics in Tables 1,
2, 3, 5, 6, 7, and 8 because we use random methods without restrictions. Head/tail breaks,
DBSCAN, KDE, and mean shift do not entail any parameter to define the number of aimed
clusters, M . Except for head/tail breaks, the aforementioned algorithms have input param-
eters for which we use simulation methods to maximize metric SED which implies to
optimize m. We use the simulation method also in order to not exceed M for the particular
algorithms. In terms of runtime, mean shift, trimmed k-means, and Gaussian kernel k-means
are the slowest algorithms on the biggest Data Set 3. For 119,614 data points, the Gaussian
kernel k-means is not able to terminate within 48 h, the trimmed k-means algorithms takes
more than 15 h, and the mean shift algorithm was quite slow on this data set with an execu-
tion time of about 4 min without the simulation method. DDCAL has a runtime of about 3 s
with its built-in simulation method (the algorithm has a complexity of O(n log n), by includ-
ing the sorting step at the beginning. Regarding the observed runtime of the algorithms,
it should be noted that their implementation in Python (cf. Section 3.1) may use different

10https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html, accessed 2022-08-08

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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frameworks and data structures under the hood. This might cause different results in terms
of performance. Thus, the observations regarding runtime should be considered with cau-
tion and interpreted as experimental run and are not further discussed. Also, k-medoids is
not able to to produce results on the biggest Data Set 3, because the computer, where the
algorithm was executed, ran out of memory.

4 Application: Visualization of Data onMaps and Process Models

Getting the most insights out of the data can be supported by the “[t]ight integration of visual
and automatic data analysis methods” (Keim et al., 2008); particularly, the model building
can be seen as the iterative application of data mining methods and visual exploration.

Hence, we can identify pre-processing of 1d data for visualization on business process
models and (cloropleth) maps as applications for DDCAL (Algorithm 1).

The visualization of business process models represented by directed graphs, as intro-
duced in Section 1, can be enriched by data connected with the nodes of the graph. Data
Set 1, for example, stores the number of search results for nodes in a process model that
reflects the search behavior of customers. Figure 6 depicts the process model that is used as
underlying structure for visualizing Data Set 1 using different clustering algorithms, i.e., k-
means++ and DBSCAN in Fig. 6(a) and DDCAL in Fig. 6(b), for coloring each node based
on their frequency, labeled as freq in each node. The results for all clustering algorithms are
shown in Table 5, where k-means++ and DBSCAN had the same output. We have chosen
k-means++ and DBSCAN to compare with the DDCAL because its overall normalized per-
formance among algorithms from the metrics SED, SV, and MSC together was the second
best performing with NUC=1, where DDCAL performed best (cf. Section 3.4).

At first sight, both visualization results differ. In Fig. 6(a) which used k-means++
and DBSCAN for coloring the nodes, there is no difference between the most frequently
occurred frequencies in the process model, namely between frequencies 3 and 4 which were
assigned to the the same “green” color gradient. By contrast, in Fig. 6(b), there is a distinc-
tion between frequency 3 and 4 which is highlighted as a blue frame in the process model
and for readability, and these nodes are magnified as well in a blue box on the left side. Such
a distinction is important as the whole process model shows 33 nodes in total and nodes
with frequency 3 appear 7 times (i.e., 21%) and nodes with frequency 4 appear 6 times (i.e.,
18%). Furthermore, if a visualization tool for process models supports a filter option to fil-
ter out nodes with low frequencies, for example to show just frequencies >4, the distinction
between often occurred nodes with colors is important because an observer can see visu-
ally, which elements are affected from such a filtering step. Generally, a higher variety of
colors apart from just “green” tones is shown in the process model which helps to recognize
heat maps, for highlighting regions with a high frequency. Such an example is demonstrated
through the violet highlighted region in the process model. This also enables a stronger
distinction of execution frequencies and in the sequel execution behavior of users between
these activities. Furthermore, a happy flow of process paths can be easily discovered at first
glance through the coloring of nodes based on their frequencies in process models. A happy
flow from process paths which contain more than 4 nodes is highlighted with a red frame.

Note that the clusters do not have to be necessarily mapped onto colors for visualization.
For the process mining use case, a mapping onto edges in terms of stroke width is also
conceivable.
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Fig. 6 Process mining data set pre-processed by (a) k-means++/DBSCAN and (b) DDCAL

A different visualization is shown on Data Set 2. The goal on this data set is to visu-
alize the data on a US map in order to distinguish the population sizes of different states.
For visualization of a choropleth map, we downloaded the shape files of the US states from
the year 2018 from census.gov.11 Then, the data is pre-processed by clustering using (a)
Jenks natural breaks and (b) DDCAL. The results of all clustering algorithms were already
introduced in Table 6 and discussed as well in Section 3.4. We used the algorithm Jenks
natural breaks to compare with DDCAL because it was designed to visualize choropleth
maps (Jenks, 1967). Figure 7 depicts the results for both algorithms. In Fig. 7(a), it is shown
that the clustering by using Jenks natural breaks does not result in well distinguishable col-
ors for states with low population sizes due to the “dominance” of a few states with high
population size in the south and east. Thus, the majority of the states with lower popula-
tions (in green colors) can hardly be distinguished. Compared to Jenks natural breaks, the
visualization in Fig. 7(b), by using the clustering algorithm DDCAL, the assigned colors to
the states lead to a more fine-grained exploitation, enabling the distinction of the population
sizes of more states, particularly of those with lower population sizes.

Additionally, Data Set 5 features data on the Corona pandemic that has posed highest
priority to monitor closely the infection development in order to enable quick reactions to
(local) outbreaks and subsequent mitigation actions (Thomas et al., 2020). Several visual-
izations have been provided, for example, the dashboard of the World Health Organization
(WHO).12 For the visualization with cluster pre-processing, we take the subset of abso-
lute confirmed cases from 2020-06-05. That day, the US accounted for around 28% of
all confirmed cases world-wide while the 52 African states captured by the data together
account for around 2.6%. Hence, we can speak of outliers in the data. Figure 8 displays
two visualizations of the data set that have been pre-processed by clustering and are dis-
played using the app.13 In (a), k-means++ is used for clustering, in (b) the DDCAL (cf.
Section 2) algorithm to be proposed in this work. At first glance, it can be seen that in
(a) there is almost no visual differentiation for African countries, whereas in (b) different
clusters can be differentiated. For example, the cluster containing Egypt (0.5%) and South
Africa (0.6%) can be distinguished from a cluster containing — among other countries —

11https://tinyurl.com/tgw4vty, accessed 2022-08-08
12https://covid19.who.int, accessed 2022-08-08
13https://corona.swis.io/

census.gov
https://tinyurl.com/tgw4vty
https://covid19.who.int
https://corona.swis.io/
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Fig. 7 Process mining data set pre-processed by (a) Jenks natural breaks and (b) DDCAL

Nigeria (0.18%) and Algeria (0.15%) and furthermore, Mali (0.002%) can be distinguished
from Niger (0.001%). The numbers in brackets denote the percentages of confirmed cases
in the respective countries in relation to the number of confirmed cases world-wide.

5 RelatedWork

The definition of clustering is still an open discussion (Estivill-Castro, 2002). In some
ways, it is described to group similar data into a cluster for permitting a significant
generalization (Bonner, 1964) and it helps in data mining to identify interesting struc-
tures in data (Thrun et al., 2020). A different clustering concept, which is not treated
in this work, is conceptual clustering, which accepts a set of object descriptions to
produce a classification scheme over observations (Fisher, 1987). Section 3 provides
a detailed comparison of DDCAL with a set of related clustering algorithms, i.e., k-
means++ (Arthur & Vassilvitskii, 2007) (Arthur & Vassilvitskii, 2006), Jenks natural
breaks (Jenks, 1967), head/tail breaks (Jiang, 2013), DBSCAN (Ester et al., 1996),
KDE (Scott, 2015), GMM (Reynolds, 2009), mean shift (Comaniciu &Meer, 2002), largest
gaps, Gaussian kernel k-means (Dhillon et al., 2004), k-medoids (Park & Jun, 2009), and

Fig. 8 Corona visualization of absolute confirmed cases for the date 2020-06-05 from the Johns Hopkins
CSSE data set pre-processed by (a) k-means++ and (b) DDCAL
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trimmed k-means (Cuesta-Albertos et al., 1997). Further algorithms which can be used for
clustering of (1d) data points are, for example, hierarchical cluster methods like pairwise
agglomerative clustering as described in Faber (1994). This method has a major drawback
in terms of performance on large data sets because each iterative step requires multiple dis-
tance calculations. Many popular algorithms such as k-means have various modifications of
their basic concept, e.g., the k-medoids algorithms (Thrun, 2018) which are designed to be
less sensitive to outliers than the original algorithm. One implementation here is the PAM
algorithm (Kaufman & Rousseeuw, 1990) which uses medoids instead of centroids, i.e.,
data points in the data set itself and the Minkowski distance. One-dimensional clustering
can be used to generate choropleth maps (Wright, 1938) for visualizing how a measurement
varies across a geographic area. Another use case for one-dimensional clustering is to gen-
erate heat maps, e.g., for visualizing the frequency of nodes or edges in directed graphs from
mined processes by using process mining algorithms (van der Aalst, 2016), which are sim-
ilar to choropleth maps, but with the difference that they do not use geographic areas. Fair
clustering techniques such as Chierichetti et al. (2017) aim at minimizing distances between
the data points within the clusters and maximizing the distances of the points between dif-
ferent clusters. On top of that, they try to respect fairness constraints with respect to possibly
sensitive features such as age. The DDCAL algorithm can be interpreted as fair clustering
technique with respect to the even distribution of the data points over the clusters, but do
not assign any sensitivity to features.

6 Summary and Outlook

Summary Regarding Research Questions: This work addresses research questions RQ1–
RQ3 as set out in Section 1 as follows: DDCAL constitutes a heuristic clustering algorithm
for evenly distributing data into clusters over a maximum number of low variance clusters
based on the iterative feature scaling method min-max normalization which is also known
as rescaling (RQ1). Regarding RQ2, we studied DDCAL on several synthetic and real-
world data sets and compared the results to 11 existing clustering algorithms. From the
synthetic data sets it can be observed that DDCAL performs well for data with outliers and
data following (tailed) distributions with one peak, which show a bell curve such as nor-
mal and gumbel distribution. Additionally, DDCAL has a good performance on uniformly
distributed data, or the number of peaks in the data set is equal or higher than the number
of targeted clusters (M). If the number of peaks is lower than the number of targeted clus-
ters or the data set to cluster is exponentially distributed, the DDCAL shows weaknesses.
For DDCAL, outliers are particularly treated in a way such that they do not “dominate” the
resulting clusters. Three use cases from process model/mining to map visualization indicate
that DDCAL results in a more differentiated color grading and hence might lead to a more
effective visualization of the data (RQ3).

Discussion: The assessment of the algorithms is based on four quality metrics applied to
synthetic as well as real-world data sets. We do not employ supervised quality measures
because no gold standard for the clusters on the used data sets is available which perfectly
suits the trade-off between the metrics SED, an even distribution of data points into clusters
and the classical clustering metrics SV and MSC. As shown in Section 5, even the defini-
tion of clustering is still an open discussion. The usage of unsupervised quality measures
is always biased (Handl et al., 2005; Thrun, 2021) and therefore we evaluate the results
based on use cases where we show what additional information could be observed by using
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DDCAL in comparison to other algorithms which had a good performance on the employed
quality metrics.

We observed that DDCAL basically outperforms the other algorithms when evenly dis-
tributing data over all clusters and shows average results on building low variance clusters.
Thus, DDCAL can be seen as good “all-rounder” for use cases demanding for evenly dis-
tributing data elements into a given number of clusters. k-means++ yields good results for
all quality metrics. Gaussian kernel k-means performs well regarding an even distribution
of data over all clusters. Both algorithms have one drawback, which is the missing “repro-
ducibility” of the results because the initial cluster centers are set differently after each
initiation run, which leads to different cluster results after every execution. Gaussian kernel
k-means has further problems: The algorithm produces overlapping clusters in some cases
and has a high time and space complexity. Moreover, for Gaussian kernel k-means and other
existing algorithms analyzed in this work requiring input parameters, there is no research
for setting these parameters for 1d data to produce results with an even distribution of data
over all clusters and at the same time, having a low variance in clusters. We tackled this
problem by simulating different input parameters, but possibly better approaches may be
used with further research.

Higher-Dimensional Data: Currently, we are working on extending DDCAL for clus-
tering multidimensional data sets. Starting with 2d data, we follow two directions using
(a) several distance measures and (b) pre-processing the data. For (a), we can use, for
example, the Euclidean distance, Manhattan distance, cosine coefficient, Jaccard coeffi-
cient, dice coefficient, Minkowski distance, root mean squared error coefficient14, and
TS-SS (Heidarian & Dinneen, 2016) by comparing them with extreme data points, like
(max-x-value/min-y-value), (min-x-value/max-y-value), (max-x-value/max-y-value), and
(min-x-value/min-y-value). Option (b) includes an additional pre-processing step which is
responsible for converting the multidimensional data points into one dimension and then
using the core concepts of DDCAL. Subsequently, we aim at developing an algorithm for
merging the produced clusters from each dimension for building multidimensional clusters.

Future Work: Beyond data visualization, we will evaluate how DDCAL can be used for
problems like clustering test scores of students for grading (Faber, 1994) or to build evenly
distributed learning groups based on previous test scores. Additionally, we will investigate
whether and how DDCAL can be used for indexing of data to achieve, for example, a faster
information retrieval.

Appendix 1. Data set descriptions

Data Set 1 (Process Mining, Search Process Models) The data set15 contains the search
frequencies (column freq) of 33 nodes labeled with the corresponding search term from a
customer search process (i.e., a directed graph) that was discovered using process mining
techniques. For an overview on process mining techniques such as the Heuristic Miner, we
refer to van der Aalst (2016). For detailed insights into customer process mining, we refer
to Lux et al. (2018) and Bernard and Andritsos (2019).

14https://developers.google.com/machine-learning/clustering/similarity/manual-similarity, accessed 2022-
08-08
15https://github.com/luxmar/DDCAL

https://developers.google.com/machine-learning/clustering/similarity/manual-similarity
https://github.com/luxmar/DDCAL
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Fig. 9 Box plot of Data Set 1

In general, the representation of process mining results poses a challenge, and represen-
tations of process models are denoted as “maps” for process execution behavior for users
(van der Aalst & et al, 2011). Specifically, for the analysis of customer behavior, the pro-
cess model reflects search processes which were mined from event logs collected through
the information system.16 These logs were generated by tourists through keyword-based
entered search terms to find touristic activities in this information system over a period of

16Available at https://github.com/luxmar/DDCAL/tree/main/supplemental

Fig. 10 Box plot of Data Set 2

https://github.com/luxmar/DDCAL/tree/main/supplemental
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Fig. 11 Box plot of Data Set 3

time. The data contains one outlier reflecting the * search17 which accounts for 2887 out
of 3444 searches (i.e., 84%). Moreover, the data is skewed, i.e., contains more nodes with
small frequencies than nodes with large ones: 16 out of the 33 nodes (i.e., 48%) have a
search frequency ≤ 5, reflecting search terms such as hiking tours or sports family. One
could argue to remove the * search term from the analysis. However, the * search is part
of different search paths in the customer processes, and hence conveys meaningful insights
into the search behavior (Lux et al., 2018). Without the outlier, which is responsible for a
huge gap, the data is comparable to an exponential distribution. The box plot of the data set
is shown in Fig. 9.

Data Set 2 (United States Population) The estimated population of the United States (US)
per state in 2018 (1 year) is provided from the census data base census.gov of the US gov-
ernment.18 Column S0101 C01 001E contains the number of total population per state. We
exclude Puerto Rico, Hawaii, and Alaska by deleting the associated rows, as these states are
not displayed in our final visualization on the map. We added the population from District
of Columbia to the state Maryland and removed the corresponding row, because it is part of
the latter state. Also, the row United States, which contains the whole estimated population
of the United States, was removed. Thus, the final data set of US population per state covers
to 48 states. The data is skewed and comparable to an exponential distribution with many
gaps: 25 (52%) of the 48 states, for example, have less than 5 Mio inhabitants where 4 (8%)
states have more than 15 Mio inhabitants. The box plot of the data set is shown in Fig. 10.

Data Set 3 (Stars) Distances from earth to observed stars are stored in a star database.19

Column dist represents the distance information in 119,614 rows. Distances are stored in the
unit parsecs, which is the most common unit in astrometry. For conversion of parsecs to light
years, they are multiplied by 3.262. A distance≥= 100,000 indicates that the data is missing
or dubious (e.g., negative). Ten thousand two hundred fifteen elements have a distance of

17https://www.luxactive.com/en/
18* means that a keyword based search was performed without entering a search term
19https://tinyurl.com/wnpo23y, accessed 2022-08-08

census.gov
https://www.luxactive.com/en/
https://tinyurl.com/wnpo23y
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Fig. 12 Box plot of Data Set 4

100,000. The data set has therefore two peaks, where the second peak has the same value.
There is also a large gap between both peaks. Without these high distance elements, the
data set can be seen as heavy tailed and be comparable to a mixture of exponential and
Gumbel distribution. Through cluster algorithms like DDCAL, the distances from this data
set can be clustered and the number of stars in each cluster can be visualized, for example,
to show infographics for the closest, over distant up to the farthest stars away from earth.
A corresponding infographics can be found here.20 The box plot of the data set is shown in
Fig. 11.

Data Set 4 (Weather) From the source, there is no description where the data set21 orig-
inates from and if it is artificially generated or not. However, it seems to be a real-world
data set. The data set is stored in the file weather.csv with the column MinTemp and
contains 366 elements. We used the lowest temperatures in Celsius over a period of time
as input for comparing the algorithms summarized in Section 3.1. The data set follows a
uniform distribution. One use case could be to cluster the data into low, medium, and high
temperatures and to show the occurrences in an infographics. Alternatively, if more points
exist, we could plot a heat map on a geographical map, respectively, a choropleth map. The
box plot of the data set is shown in Fig. 12.

Data Set 5 (Corona Pandemic) The data set relies on the 2019 Novel Coronavirus COVID-
19 (2019-nCoV) Data Repository by Johns Hopkins CSSE.22 Particularly, we are interested
in the number of confirmed infections, deaths, and recoveries for all countries starting from
22 January 2020.

20https://tinyurl.com/sp3pdgx,accessed2022-08-08
21https://github.com/luxmar/DDCAL/tree/main/supplemental
22https://www.kaggle.com/zaraavagyan/weathercsv, accessed 2022-08-08

https://tinyurl.com/sp3pdgx, accessed 2022-08-08
https://github.com/luxmar/DDCAL/tree/main/supplemental
https://www.kaggle.com/zaraavagyan/weathercsv
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Appendix 2. Implementation of algorithms

DDCAL: Following the pseudo code descriptions of Algorithm 1, the implementation was
made in the programming language Python without using additional frameworks, with
exception of numpy (version 1.21.2). DDCAL has 6 parameters to set where recommen-
dations on specific data sets are described in Section 3.3. The algorithm produces stable
results. The Python implementation of DDCAL is accessible on GitHub.23 and usable on
PyPI.24

kmeans++: The kmeans++ implementation is based on Arthur and Vassilvitskii (2006).
We used the Python framework scikit-learn (version 0.24.1) to create the cluster cen-
ters. An input parameter is given for the number of aimed cluster centers. Then for each
data point, the nearest cluster center is calculated and assigned to this cluster by using the
Euclidean distance. The initialization method (k-means++) which selects the initial cluster
centers for k-means clustering is performed according to Arthur and Vassilvitskii (2007) and
thus is a stochastic algorithm, which may produces different results after each run. We used
this method, because it is the most common method for k-means clustering which is used as
well as default in the popular Python framework scikit-learn and has two advantages:
(a), to avoid k-means for converging to a local minimum and (b), to avoid iterations which
saves computing time. However, we also tried “random” as initialization method and the
results were very close to the results from the “k-means++” initialization method. E.g., after
execution of 10 runs on normal distribution (cf. Section 3.2), we observed, that the SED
value was most of the times slightly higher, SV was most of the times nearly the same MSC
was always the same (cf. metrics from Section 2.2). Details about further default parameters
(e.g., maximum iterations =300) which were used as parameters in the algorithm are shown
in.25

Jenks natural breaks: The core idea of the algorithm is based on Jenks natural breaks
(Jenks, 1967) and improved in terms of time complexity with the Fisher-Jenks algorithm
as described in.26 We used the Python framework jenkspy (version 0.2.0) for creating
the breaks. Based on the calculated breaks, we created classes and assigned every data
point to one of these classes. The algorithm contains one input parameter for defining the
number of aimed clusters and aims to reduce the variance within classes and maximizes
the variance between classes. It is popular in cartography to generate choropleth maps. The
algorithm contains basically three steps27, where in the first step, for each data point, the
“sum of squared deviations for array means” (SDAM) is calculated. In the second step, for
each range combination, the “sum of squared deviations for class means (SDCM ALL) is
calculated. Next, smallest variation within classes is chosen which leads to the third step
that assesses the “goodness of variance fit” (GVF := SDAM−SCDM

SDAM
) which ranges from 1

(perfect fit) to 0 (worst fit). Thus, the best combination has the highest value for GVF and
is finally chosen as result. The algorithm produces stable results.

Head/tail breaks: This algorithm is mainly inspired by the Jenks natural breaks algorithm
(Jiang, 2013) and creates breaks as well as output. We used an existing Python implemen-
tation.28 and assigned the data points to classes like explained in Jenks natural breaks. The

23https://github.com/CSSEGISandData/COVID-19, accessed 2022-08-08
24https://github.com/luxmar/DDCAL
25https://pypi.org/project/ddcal/
26https://scikit-learn.org/1.0/modules/generated/sklearn.cluster.KMeans.html, accessed 2022- 08-08
27https://tinyurl.com/2dpfr2sr, accessed 2022-08-08
28https://www.ehdp.com/methods/jenks-natural-breaks-explain.htm, accessed 2022-08-08

https://github.com/CSSEGISandData/COVID-19
https://github.com/luxmar/DDCAL
https://pypi.org/project/ddcal/
https://scikit-learn.org/1.0/modules/generated/sklearn.cluster.KMeans.html
https://tinyurl.com/2dpfr2sr
https://www.ehdp.com/methods/jenks-natural-breaks-explain.htm
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results of the algorithm are stable. The algorithm contains no input parameter. Thus, the
number of envisaged clusters cannot be specified. Basically, the algorithm performs best for
visualization of choropleth maps with data sets where far more small data points than large
ones exist.

DBSCAN: The core idea of the algorithm is based on Ester et al. (1996). We used
the Python framework scikit-learn (version 0.24.1) for creating the clusters. The
algorithm produces stable results and has two input parameters. The parameter which is
responsible for the minimum number of points was set to 1 which implies that no data points
were discarded. The parameter ε was calculated through simulations for suitable maximum
allowed gaps. There exist many methods to calculate an optimum value for ε, like plotting
distances between data points and selecting ε as the point of the maximum curvature. These
approaches did not work in our case because we have a fixed number of envisaged clusters
which is not considered in such approaches. Furthermore, the algorithm has no parameter
for a number of aimed clusters as upper boundary. Therefore, we implemented a simulation
method with the input of different ε values which identified the maximum score of even
distributed data points over all clusters (SED) within the given number maximum clusters
(M), which were in our case the number of aimed clusters (for further details on SED and
M, cf. Section 2.2). The range of ε values used for simulation was determined by the min-
imum and maximum gap between data points in a given data set. We used 1000 simulation
steps to test evenly spaced ε values based on the determined range.

KDE: Kernel density estimation is a statistical method to estimate the probability den-
sity function of a random variable (Scott, 2015). KDE has many application possibilities,
for example on visualization of data, to plot a density curve in place of plotting a histogram.
We used the KDE method for clustering in a Python implementation which is described as
follows.29 First we calculated an evenly spaced interval by using the KDE with the Gaus-
sian kernel. Then, we calculated its relative minima. We sorted the minima descending and
took the first (largest) minimum according to the desired number of clusters. Then, we cre-
ated a list of classes, which represented our clusters, with the minima as splitting points.
Finally, we assigned the data points to the list of classes. For the KDE algorithm we used the
framework scikit-learn (version 0.24.1) and for calculating the minima we used the
framework scipy (version 1.6.2). The KDE has only one input parameter called bandwidth
h. Like on DBSCAN, we implemented a simulation method with different input parameters
of h which had the goal to identify the maximum score of evenly distributed data points
over all clusters (SED) for a given number of maximum clusters (M) which is the number of
aimed clusters (cf. Section 2.2). Thus, there exists no parameter to define aimed clusters and
the number of clusters was identified through simulation of different h values. The range
of different h values for simulation was determined, by testing different ranges of h values
which produced m clusters. After a matching range was found, we executed on this range
1000 simulation steps and the highest result for SED was kept. The results of the algorithm
are stable.

GMM: Gaussian mixture model attempts to find clusters from a mixture of a finite
number of Gaussian distributions with unknown parameters (Reynolds, 2009), (VanderPlas,
2016). It is a density estimator like the previously introduced KDE. We used the frame-
work scikit-learn (version 0.24.1) for our Python implementation where the default
parameter for EM iterations to perform, was set from 100 to 500, otherwise the default

29https://github.com/chad-m/head tail breaks algorithm, accessed 2022-08-08

https://github.com/chad-m/head_tail_breaks_algorithm
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parameters were used.30 The framework requires as input parameter the number of Gaus-
sian distributions M, and the clusters are built based on the calculated probabilities from the
Gaussian mixture model, where data points are assigned to the most probable distribution.
The algorithm is based on expectation maximization (EM), where yielded results depend
on a trial (Thrun, 2021) and thus, the algorithm is stochastic.

mean shift: The algorithm is described in Comaniciu and Meer (2002) and for the Python
implementation we used the framework scikit-learn (version 0.24.1). The framework
is designed to assign each data point to its associated cluster and uses the Flat kernel. The
algorithm requires as input parameter a defined quantile to estimate the bandwidth h. Fol-
lowing the same logic on simulating input values, as described on DBSCAN and KDE, we
implemented a simulation method for different values of quantiles with the goal to identify
the best score of even distributed data points over all clusters (SED) within the given num-
ber of maximum clusters (M) where further details are on SED and M , are discussed in
Section 2.2. Thus, the algorithm has basically no parameter for aimed clusters or maximum
clusters, but the number of aimed clusters was be determined through simulation by test-
ing quantiles ranging 0.005 to 1. The exact range on each data set of different quantiles for
simulation was determined, as described on KDE, by simulating different quantiles which
produced about m clusters. On each simulation, we executed 100 simulation steps to test a
range of quantiles. The algorithm produces stable results.

largest gaps: This algorithm is not based on literature and implemented in a Python
framework. It is an ordinary method based on the largest gaps in a sorted data set between
adjacent data points for clustering which was implemented as follows: First we sorted the
list of data points in ascending order. Then, we calculated and stored for every data point (a)
the gap between the current and the previous data point and (b) the average value between
the current and the previous data point. After that, we sorted the list of data points based
on their calculated gaps (a) in ascending order. The algorithm had only one input parameter
which was the number of aimed clusters (M). Based on the set number of aimed clusters, we
took the number first elements from the list of gaps (a) and stored for every data point the
average values (b) in a separate list. This list was finally our classification list for assigning
each data points to clusters. For example the first cluster, which was the cluster contain-
ing the lowest data points, ranges from the minimum data point to the lowest element of
the classification list. The second cluster ranges from the lowest element of the classifica-
tion list plus one, up to the second lowest element of the classification list, and so on. This
algorithm is very intuitive and simple to implement which produces stable results.

Gaussian Kernel k-means: This algorithm is a variant of k-means which was introduced
before, but uses the the Gaussian kernel method as non-linear distance function. Therefore,
it is a stochastic algorithm, which may produces different results after each run. Because
there exists no implementation in the Python Package Index, we used an implementation.31

which is based on Dhillon et al. (2004). The implementation was extended by us for han-
dling empty clusters on an iteration by terminating the algorithm if an empty cluster was
found. The algorithm has three input parameters. The first parameter defines the number of
aimed clusters (M), the second parameter defines the initial positions of the centroids, which
was set to “random” and the third parameter defines the variance of the kernel. The latter
parameter was optimized by using a simulation method, as described in DBSCAN, KDE,

30https://stackoverflow.com/a/35151947, accessed 2022-08-08
31https://scikit-learn.org/1.0/modules/generated/sklearn.mixture.GaussianMixture.html, accessed 2022-08-
08
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and mean shift. As mentioned on KDE and following this approach, the range of different
variance values for simulation was determined by testing variances, on which the results
produced m clusters. With exception of Data Set 1, where we tested variances ranging from
10,000 to 1,000,000, the range for simulation of the variances was 0.1 to 30 by using 100
simulation steps. Because the initial positions of the centroids were chosen randomly (sec-
ond parameter as mentioned before), the simulation method was extended to simulate each
variance value 10 times which keeps the best result with the maximum score for even dis-
tributed data points over all clusters (cf. metric SED from Section 2.2). Thus, on each range,
1000 simulation steps were executed in total and the result containing the highest SED value
was kept. The algorithm has two major drawbacks: (a) it was the only one which produced
overlapping cluster ranges. Such results were filtered out through a python implementation
which extended the simulation method. (b) The time and space complexity of O(n2) (Sarma
et al., 2013) resulted in long execution times on “huge” data sets (containing >1000 data
points).

k-medoids: The algorithm is another variant of k-means which was introduced before.
Instead of calculating centroids like in k-means which may no be actual data points in a data
set, where they are the average between the points in the cluster, k-medoids chooses always
actual data points as centers, which are called “medoids” (Park & Jun, 2009). Through the
minimizing of the sum of pairwise dissimilarities instead of minimizing the sum of squared
Euclidean distances, the algorithm is more robust to noise and outliers than k-means. In con-
trast to k-means which requires generally the Euclidean distance as dissimilarity measure,
k-medoids can be used with arbitrary dissimilarity measures for producing effective solu-
tions, where we used for example the Manhattan distance. For the Python implementation,
we used the framework scikit-learn-extra (version 0.2.0) with the dissimilarity
metric Manhattan and the initialization method k-medoids++. Because of the random ini-
tialization method, the algorithm is, like k-means++, a stochastic algorithm, which may
produce different results after each run.

Trimmed k-means: It is a variant of k-means which optimizes the algorithm under
trimming a portion of the data points in a data set. The algorithm has the aim of robus-
tifying k-means (Cuesta-Albertos et al., 1997). For implementation of the algorithm used,
the trimcluster packages from R, which was called from Python where the analysis
method of the results was performed. We used this particular R package, and not a python
framework, because there was no implementation of trimmed k-means in the Python Pack-
age Index. The trim factor was set to 0.1 which means that 10% of outliers are detected by
the algorithm from the data to cluster and put in an separate “outlier” cluster. The number
of algorithm runs from initial means, which are randomly chosen from the data points, was
set to 500. The rest of the parameters were set to their default parameters, as described in.32
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