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Abstract

Decision mining enables the discovery of decision rules from event logs
or streams, and constitutes an important part of in-depth analysis and op-
timisation of business processes. So far, decision mining has been merely
applied in an ex-post way resulting in a snapshot of decision rules for
the given chunk of log data. Online decision mining, by contrast, enables
continuous monitoring of decision rule evolution and decision drift. Hence
this paper presents an end-to-end approach for the discovery as well as
monitoring of decision points and the corresponding decision rules dur-
ing runtime, bridging the gap between online control flow discovery and
decision mining. The approach provides automatic decision support for
process-aware information systems with efficient decision drift discovery
and monitoring. For monitoring, not only the performance, in terms of
accuracy, of decision rules is taken into account, but also the occurrence
of data elements and changes in branching frequency. The paper provides
two algorithms, which are evaluated on four synthetic and one real-life
data set, showing feasibility and applicability of the approach. Overall,
the approach fosters the understanding of decisions in business processes
and hence contributes to an improved human-process interaction.

1 Introduction

Process mining and specifically decision mining allows for increased transparency
of processes, which is crucial across all domains [11]. Decision mining is a part

1

ar
X

iv
:2

30
3.

03
96

1v
1 

 [
cs

.A
I]

  7
 M

ar
 2

02
3



of process discovery, allowing for the discovery of decision points in a process
model and the corresponding decision rules guarding that decision based on data
elements [7, 19]. A decision rule can consist of multiple conditions, which are
usually of the form v(ariable) op(erator) c(onstant), e.g., temperature below
50°. Conditions can be concatenated to form decision rules. Decision mining
can be seen as a classification problem. Therefore the potential branches that
can be chosen and executed are regarded as decision classes.

Existing decision mining methods [7] are applied in an ex-post manner.
However, especially when aiming at increased transparency, runtime analysis
is particularly interesting, as information about decisions can be communicated
to the user in almost real-time. In addition, runtime analysis allows for the
prompt detection of decision drift, i.e., the manifestation of changing decision
rules and decision points in event logs and streams. Decision drift can occur
due to errors or changes in the environment. Detecting drifts is important to
ensure correctness and compliance of a process, i.e., assuring that the drift oc-
curred intentionally and not due to errors. This is crucial across domains such
as manufacturing to ensure quality of products and health care to ensure quality
of patient care. This is especially relevant as “[e]ffective decision making – that
is connected, contextual and continuous – results in a host of business benefits,
including greater transparency, accuracy, scalability and speed [18]. Our previ-
ous work [21] introduced an approach for detecting decision rule changes during
runtime. However, the approach has several limitations. It is assumed that
decision points are already known. Therefore the approach cannot be used as
end-to-end approach, i.e. decision discovery methods have to be applied com-
plicating analysis during runtime. In addition, the definition of decision drift
has been limited to changes in decision conditions, neglecting decision point
changes.

As running example consider a simplified loan application process depicted
in Fig. 1. A customer applies for a loan, the application data is checked for
completeness. Then either a normal or extensive check is performed. The
results of the check contribute to the overall assessment that results in either
rejection or acceptance of the loan. Lastly, the assessment is communicated to
the customer. The exemplary process includes one decision point, i.e., whether
a normal or extensive check is necessary. Multiple data elements are part of the
process and serve as basis for the decision, e.g., the requested amount.

Figure 1: Running Example, Loan Application

Standard decision mining techniques result in the following decision rule:
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IF amount loan <= 80.000 THEN Normal ELSE Extensive. The decision
depends on data element amount loan. Assume that during process execution
changes can occur, e.g., a change in regulation leads to stricter checks and
therefore an extensive check is already required for any amount greater than
50.000. Other changes might include additional data that becomes available
during process execution and can be used to more accurately mine decision
rules, e.g., income, the addition of an additional branch (class) at the existing
decision point, e.g., a branch Simple Check is added, or the addition of a new
decision point, e.g., a customer is handled differently depending on whether the
assessment resulted in rejection or acceptance of the application.

A comprehensive, end-to-end decision mining and monitoring approach should
be able to mine and monitor decision rules and decision drifts during runtime as
soon and as accurately as possible. End-to-end requires minimum involvement
of users for setting up the algorithms and providing meaningful results. Online
requires continuous mining with limited storage and appropriate handling of
outdated data. These requirements can be addressed based on the following
questions: RQ1: What exactly is decision drift and when/why does it happen?
RQ2: How to mine decision points, rules, and drifts in a connected and con-
tinuous way without prior knowledge of the process model? RQ3: How to deal
with limited storage? and RQ4: How to deal with outdated data which might
become useful or even detrimental for mining current decision rules?

To address RQ1–4, this paper derives and discusses a definition of decision
drift and its triggers based on literature (7→ RQ1). In order to meet RQ2, the
approach is designed to only require an event stream as input to provide users
with information about current decision points, the corresponding rules, and
potential drifts. The presented approach is comprehensive as it mines decision
points, rules, and drifts in a connected way (7→ RQ2). For this, data values
as well as the frequency of branching conditions are taken into consideration as
indicators for decision drift. If drift is detected, users are notified about the drift
and changed decisions, and can check if these changes are intentional (7→ RQ2).
To account for limited storage and outdated data, a window based approach
is taken, where only the recent data is taken into account (7→ RQ3 and RQ4).
Overall, used in conjunction with a process aware information system (PAIS),
that continually provides new event data in the form of an event stream, the
approach provides continuous and increased transparency for users.

Section 2 discusses and defines decision drift concepts. Section 3 describes
the algorithms, which are evaluated in Sect. 4. Related work is discussed in
Sect. 5 and a conclusion is provided in Sect. 6.

2 Decision Drift: Definition and Analysis

Decision drift refers to different kinds of changes affecting decisions in a pro-
cess. A decision is defined by a corresponding decision point in a process model
(control flow) and the associated decision rule defining which branch is chosen
based on process data (data flow). Decision drift, consequently, can occur due
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to control flow change, data flow change, and changes to the decision rule it-
self. Hence, in the following, we analyze state-of-the art approaches for process
change (patterns), changes of data and decisions, as well as concept drift, aiming
at achieving an understanding and definition of decision drift.

[24] provide a framework of process change patterns referred to as adaptation
patterns (AP). The following APs are relevant for decision drift: AP1 describes
the insertion of process fragments, including a conditional insert, i.e., an activity
is inserted into a process model together with a condition, i.e., decision point.
AP2 refers to the deletion of a process fragment, which can also entail the
deletion of a decision point. AP8 describes the addition of a loop, which also
involves the addition of a decision point. AP10 refers to the addition of a
decision point in the process. Lastly, AP13 refers to modifications of decision
rules.

[8] define change patterns in Decision Model and Notation (DMN) models.
DMN models consist of a decision requirement diagram (DRD), depicting input
of decisions and the dependencies between elements. Elements can either be
decision nodes or input nodes. Each decision node can be represented by a
table, including multiple decision rules. A decision rule consists of combinations
of input and output variables, i.e., decision classes. [8] propose four change
categories. First, change within decision rules, i.e., the decision table changes
by including or deleting input or output, or a change in the decision logic.
Second, change on decision rules in their entirety, i.e., the inclusion or exclusion
of a decision rule from a decision table. Third, change of the decision nodes in
the DRD, i.e., deleting/adding a decision node (consisting of multiple decision
rules). And lastly, change of the input data nodes in the DRD, i.e., including
or excluding data as input.

Summarizing the literature analysis results, the following decision changes
can potentially occur in a process: changes of data values in a condition, addi-
tion/deletion of a condition a decision rule, addition/deletion of data elements
in a decision rule, addition/deletion of decision classes in a decision rule, and
addition/deletion of decision points in a process model.

Concept drift [2] describes changes in processes with regards to their man-
ifestations in the process execution (logs), i.e., sudden, recurring, gradual, and
incremental drift. Accordingly, decision drift can be understood as manifesta-
tion of decision changes in process execution logs (ex post) or event streams
(online). With respect to their detection and monitoring, decision drifts can
be further classified in changes of decision rules (incorporating changes in con-
ditions), decision classes, and decision points. Changes on higher levels, i.e.,
decision points, classes or rules, can also entail changes on lower levels, i.e., con-
ditions, rules or classes. In [21], a significant drop in accuracy when predicting
newly incoming instances is used as sign that a decision drift occurred. [12]
suggests detecting changes in decision rules by monitoring the branching fre-
quency, i.e., how often a specific branch is chosen. [23] looks at changes in data
values to determine if a concept drift occurred. Overall, decision drift can be
detected based on (1) decreased performance, (2) changing branching frequency
and (3) changes in data elements or data ranges. A comprehensive decision drift
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Figure 2: End-to-End Approach – Overview

analysis approach should be able to monitor occurrence of (1)–(3) in order to
detect decision drift.

3 End-to-End Runtime Decision Mining, Moni-
toring, and Decision Drift Detection Approach

The overall approach is depicted in Fig. 2. The input is an event stream, emit-
ted by, e.g., a PAIS, which is used to mine a process model using online process
discovery methods (for an overview of online methods see [3]). The process
models are the basis for determining the decision points and the corresponding
decision classes, which, in turn, are the basis to mine decision rules for each of
the decision points. The decision rules are continuously monitored, using newly
incoming events. If either the performance, the frequency of taken branches, or
the data value ranges change, we assume that decision drift occurred and remi-
ning is performed. Therefore the approach consists of two continuous processes:
first, the process discovery part continues considering newly occurring events
and remining the process model if necessary. If this leads to new or changed
decision points, decision rules are remined as well (cf. Alg. 1). Second, the ex-
isting decision rules are continually checked for compliance with newly incoming
events and remined if necessary (cf. Alg. 2).

Algorithm 1 reflects the overall framework, combining existing methods for
process discovery and decision point analysis with new techniques for decision
rule mining to achieve a fully automatic end-to-end approach. Algorithm 1 calls
Alg. 2 for decision rule and remining in case of decision drifts.

Algorithm 1 works as follows: as soon as a new event occurs it is stored in a
queue, which continues to store newly incoming events, while the next phases of
the approach are executed in parallel. Therefore, even while process models and
decision rules are discovered, new incoming elements are not lost. Each event
is stored in the queue and will be processed. In addition to the event stream,
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Algorithm 1 Runtime Decision Mining, End-to-End Approach

Input: Queue of Elements From Event Stream, Grace Period
Output: Decision Points, Decision Rules for Each Decision Point

1: Trace Dict = {}, Window Size WS = Grace Period
2: while Element in Queue do
3: Adapt Directly-Follows-Graph(Element), using Lossy Counting
4: HN = Make Heuristics Net(Directly-Follows-Graph)
5: if New HN then . Find Decision Points
6: Find Places with Multiple Outgoing Arcs as PS
7: Discover Respective Classes (i.e. next activities)
8: DPS Data = Dictionary with Decision Point as Key and Empty Val-

ues
9: end if

10: Get Data from Element and Store in Trace Dict
11: if Current Event in DPS Data.Keys then
12: Store Data Up to This Point From Trace Dict in DPS Data[Current

Event]
13: if DPS Data[Current Event] > WS then
14: Remove Oldest Instance
15: end if
16: if Current Event is the Last Decision Point of Instance then
17: Remove Instance From Trace Dict
18: end if
19: end if
20: if Grace Period Finished then . Initial Rule Mining
21: for DP in DPS Data.Keys do
22: Data = From DPS Data[DP]
23: Build Decision Tree
24: Build ADWIN Models for Data, Decision Classes, Accuracy
25: Store Decision Tree and ADWIN Models in DMS
26: end for
27: end if
28: if Current Event in DPS Data.Keys AND Initial Mining Finished then
29: DMS, WS = Monitoring(Current Event, DPS Data, DMS) see Alg.

2
30: end if
31: end while

the initial grace period is needed as input, either set manually, or by default,
a grace period of 200 instances will be used. The appropriate grace period
is oriented towards how frequently new instances arrive and how complex the
contained data and underlying decision rules are expected to become. However,
when testing the approach, we did not observe a significant impact by different
settings of the grace period.
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Each new event is instantly stored as part of the directly-follows-graph, which
contains two events and the count of how often this combination occurred. Lossy
counting and the S-BAR method [26] are used, which continually drop less
frequent combinations, thereby accounting for finite storage and concept drift.
The next step, the process model discovery, is realized using the Heuristics
Miner (HM) [25]. The HM is used as discovery technique, as only a directly-
follows-graph is needed as input, whereas other algorithms often need defined
start and end events. This is not trivial when dealing with runtime discovery,
as it is not know when an instance is finished.

As output, a petri net is generated, which is used as input for the decision
point discovery. Using the algorithm proposed in [19], decision points, i.e.,
the places with multiple outgoing arcs, as well as the decision classes, i.e., the
next occurring events, are discovered. A discovered decision point could look
like this: ”Checkapplicationdata” : [”NormalCheck”, ”ExtensiveCheck”], i.e.
the event before the decision as well as the decision classes are specified.

Up to this point, the only used data structure is the directly-follows-graph
which is stored in a hash table, more specifically a dictionary. As soon, as deci-
sion points are mined, two additional hash tables are created. First, Trace Dict

is a dictionary, where each new instance is stored, using the instance identifier
as key and all events and corresponding data elements of the respective instance
as values. Second, DPS Data uses decision points as key and every time an event
occurs that was beforehand identified as a decision point, all available informa-
tion in Trace Dict up to this point for this instance, is stored as the value.

After the grace period finishes and decision points have been found, decision
rule mining is performed, using the data stored in DPS Data for the decision
points. Any decision mining method can be applied. Here, a CART decision
tree is used. The mined rules for each decision point are stored in a dictionary
DMS using the decision point as key and the current decision tree models as well
as some statistics as values, for example the accuracy, that will be added in
the monitoring phase. In addition, a new ADWIN instance is generated for the
average accuracy, each decision class, and each data element that is part of the
associated decision point and stored in DMS. ADWIN is a well-known approach
for concept drift detection [1], where the window size is adapted according to
the change of data in the window. ADWIN is used in the monitoring phase to
detect changes.

For each newly occurring event that reflects a decision point, Alg. 2 for
Monitoring and Remining is called.

With regards to limited storage, the directly-follows-graph in combination
with the S-Bar method, is inherently storage efficient. As for the Trace Dict,
instances are removed as soon as all decision points have occurred and therefore
all data for this instance is already stored in DPS Data. As for DPS data, for each
decision point, the most recent instances are kept, the exact number depends
on the window size WS. The window size is by default set as the grace period
and therefore the same for all decision points. As soon, as a drift is detected
at a decision point, the window size is set to the ADWIN window size for that
decision point. See Alg. 2 for details.
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Algorithm 2 Monitoring and Remining

Input: Decision Point DP, DPS Data, DMS
Output: DMS with Updated Decision Rules

1: Compare Current Data with DPS Data
2: if New Data Element then
3: DMS[DP][Drift] = True
4: end if
5: Predict Class for Current Event using DMS
6: Calculate Overall Average of Accuracy, Data, Frequency
7: Add Averages to Respective ADWIN Models, Calculate Drift
8: if ADWIN Drift Detected then
9: DMS[DP][Drift] = True

10: WS = ADWIN.window
11: end if
12: if DMS[DP][Drift] == True then
13: Remine Decision Model, Store Decision Model in DMS
14: Reset Stored Data (Averages, ADWIN Models,...)
15: DMS[DP][Drift] = False
16: end if
17: Return DMS, WS

Algorithm 2 builds on our previous work presented in [21] and has been
significantly extended and adapted. Instead of relying on changes in the perfor-
mance of decision rules, the monitoring also includes, data elements, i.e. new
data elements occurred at a decision point or ranges of data values changed and
changes in the branching frequency. Branching frequency refers to the frequency
that decision classes, i.e. the respective branch, is chosen. The function is called
with an event that has been identified as a decision point, e.g., for the running
example, a new event Normal Check following an event Check Application Data
occurred, which is part of a decision point. First, all data that occurred up to
this point for this instance, and is stored in Trace Dict, is gathered. The names
of the data elements are compared to the data elements that have occurred be-
fore at this decision point and have been stored in DPS Data. E.g., up until the
event Normal Check the data elements requested amount and age were logged
for this instance. In DPS Data for the current decision point also only these two
data elements are stored. Therefore no new elements have been detected. If
unseen data elements, e.g., a data element income, are discovered, the variable
DMS[DP][Drift] is set to True and stored in DMS. Otherwise, the class for the
current decision point is predicted and compared to the actual class, to calcu-
late the current accuracy, which is used in the next step to calculate the average
decision rule accuracy.

The drift detection method ADWIN [1] is employed in order to detect
whether a drift has occurred, either in the performance, i.e., the accuracy of
the decision rules, the data values, or the branching frequency. ADWIN is
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the basis for window-based concept-drift detection methods such as [9, 13] and
compares statistics between windows to check if these are significantly different,
i.e., a drift happened. As setting the window sizes manually is not trivial, the
sizes are chosen according to the amount of changes in the data. If the data
is stationary, the window is increased to improve accuracy. If drift occurs, the
window is decreased. [12] propose a method for identifying changes in process
models based on changes in the branching frequency ex-post. This change de-
tection method is not able to work with event streams. Therefore, we opted for
the ADWIN approach that is specifically optimized for runtime analysis.

For the end-to-end approach presented in this paper, the average decision
rule accuracy is calculated each time the monitoring function is called, using the
overall accuracy and the overall number the function was called, which are both
stored in DMS. The same is done to calculate the average branching frequency,
i.e., the average percentage which branches are taken, i.e. which classes are
chosen. For the running example, Extensive Check is on average performed for
30% and Normal Check for 70% of instances, but then the averages change to
40% and 60% respectively, which could be a sign that decision drift occurred.
In addition, the average value for all data elements are calculated. Here, the
average requested amount could be 45.000, whereas the average age is 39.

The calculated averages are used as input to the ADWIN models. In Alg. 1,
ADWIN models for the accuracy, the decision classes and data values are built
at each decision point and stored in DMS. The calculated averages are added to
the respective models, which then calculate whether a drift occurred. If a drift
is detected, DMS[DP][Drift] is set to True. The ADWIN window size from
the model where drift was detected is set as window size. The window size is
used to control the maximum size of DPS Data, i.e., if the ADWIN window size
is, for example, 500 after a drift was detected, no more than 500 instances are
stored for that decision point in DPS Data. The First In - First Out principle
is applied, i.e., the oldest instance is removed as soon as the maximum size
is reached. This allows to dynamically increase and decrease the amount of
instances stored, which is necessary as storage is limited and outdated data
should not be used for remining decision rules. As the window decreases when
drift is detected, only the more recent instances are used to remine.

If DMS[DP][Drift] is set to True, a new decision model is mined and stored
in DMS. Lastly, all corresponding data, e.g., the calculated averages and ADWIN
models are reset.

4 Evaluation

The approach was implemented using python and as available online 1.
As we propose, to the best of our knowledge, the first end-to-end runtime

decision mining approach, the evaluation does not contain a comparison to other
approaches. Instead, the general feasibility and applicability of the approach are
evaluated. The requirements for data sets to be used for evaluation are:

1https://github.com/bscheibel/dmma-e

9

https://github.com/bscheibel/dmma-e


1. Process-based data set, e.g., an event log or stream

2. Underlying process model contains one or more decisions

3. Decisions are based on numeric data attributes

4. Decision drifts occur

5. Available ground truth: decision rules and drifts are known

Requirements 1-3 are necessary to be able to use the approach at hand.
Requirement 4 is prerequisite to show the ability of the approach to detect
different kinds of drift. Requirement 5 enables the validation of the results, i.e.,
to check whether the detected decision rules and drifts correspond to reality. We
analyzed publicly available real-life data sets from the BPI Challenge2 and from3

along Requirements 1–5. The BPIC17 log fulfills Requirements 1–3 and the data
elements are named to allow intuitive interpretation. Hence, the BPIC17 log
is chosen for evaluating the applicability of the approach. In order to show its
feasibility, we start with four synthetic data sets (SD) for which we know the
ground truth. The evaluation results contain the average accuracy and for the
synthetic data sets SD I–IV the number of instances from a decision drift until
new decision rules are remined.

4.1 Feasability: Synthetic Datasets

SD I–IV are based on the running example depicted in Fig. 1 and contain
the following decision drifts: I) value changes in a condition, II) additional data
elements in a decision rule, III) additional branch for a decision point and IV) an
additional decision point. The corresponding datasets have been created using
random variations. Each data set consists of 5000 instances and is stored in a
CSV file. In a pre-processing step, the contents are stored in a queue (event by
event) in order to simulate an event stream. SD I–IV together with the complete
evaluation results, including all decision rules, are available online4.
SD I reflects a decision rule change. The initial rule:
IF amount loan <= 80.000 THEN Normal ELSE Extensive
is changed to:
IF amount loan <= 50.000 THEN Normal ELSE Extensive
at instance 2500. The overall average accuracy is 0.99. The drift was detected
505 instances after it occurred, at instance number 3005, and the decision rule
was remined. The result can be seen in Fig. 3a. The accuracy continually de-
creases after the drift occurred, immediately after remining at instance number
3005, a sharp increase in accuracy can be seen.
SD II simulates an additional data element that is added to the decision rule.
The initial decision rule is:

2https://www.tf-pm.org/competitions-awards/bpi-challenge
3https://data.4tu.nl/
4https://github.com/bscheibel/dmma-e
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(a) SD I: Decision Rule Change. (b) SD II: Decision Rule Change.

(c) SD III: Decision Class Change. (d) SD IV: Decision Point Change.

Figure 3: Evaluation of SD I-IV.

IF amount loan <= 80.000 THEN Normal ELSE Extensive
The data element income is added to the decision rule at instance number 2500
and the rule is therefore changed to:
IF amount loan <= 80.000 AND income > 3000 THEN Normal ELSE Extensive
To overall average accuracy is 0.99. The drift was detected 473 instances after
it occurred, at instance number 2973, and the decision rule was remined. The
result can be seen in Fig. 3b. The accuracy decreases after the drift occurred.
After remining the accuracy increases.
SD III includes a decision class change, i.e., at first, only two decision classes
are part of the decision point:
IF amount loan <= 70.000 THEN Normal
IF amount loan > 70.000 THEN Extensive
then the additional class Simple Check is added at instance number 2500:
IF amount loan <= 30.000 THEN Simple
IF amount loan > 30.000 AND amount loan <= 70.000 THEN Normal
IF amount loan > 70.000 THEN Extensive

The average accuracy is 0.98. The drift was detected 62 instances after it
occurred, at instance number 2562, and the decision rule was remined. How-
ever, the mined rules did not reflect the new rule accurately, therefore a second
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remining occurred at instance number 3585. The result can be seen in Fig. 3c.
The accuracy decreases after the drift occurred. After the first remining the
accuracy still decreases, whereas the second remining leads to an increase.
SD IV represents a decision drift in the form of an additional decision point.
After Overall Assessment, two alternative branches are inserted: Write Accep-
tance Letter and Write Rejection Letter, before the branches are joined and the
event Inform Customer occurs.
DP1: IF amount loan <= 80.000 THEN Normal ELSE Extensive
After instance number 2500, a second decision point is added:
DP2: IF risk level < 4 AND amount loan < 80.000 THEN Write Acceptance Letter
ELSE IF risk level <= 1 AND amount loan => 80.000 THEN Write Acceptance Letter
ELSE Write Rejection Letter

The overall average accuracy for DP1 is 0.98 and for DP2 0.96. The drift
was detected 133 instances after it occurred, at instance number 2622 and the
decision rules were remined, including the new decision point. The result can
be seen in Fig. 3d. The accuracy for the first decision point remains relatively
constant. However, after remining, the accuracy for the second decision point
is added in the plot. The accuracy for the second decision point is relatively
low at first. However, at instance number 4552 another remining for the second
decision point occurs, resulting in increased accuracy.

4.2 Applicability: BPIC17

Figure 4: BPIC17: Mined Process Model.

Figure 5: BPIC17 Results.

The BPIC17 data set5 consists of
a loan application process from a fi-
nancial institute, including loan ap-
plications and offers, where each ap-
plication can contain multiple offers.
For the evaluation, the offer data set
was used. Before applying the ap-
proach, pre-processing was done to
simulate an event stream.

Fig. 4 shows the final process
model with two decision points. The
process model was remined through-
out the process: in the beginning it
contained only one decision point. Figure 5 shows the accuracies of the decision

5https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
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points. The average accuracy for the first decision point is 0.78 and for the
second decision point 0.91. In total, remining occurred 19 times, 14 times for
the first decision point and 5 times for the second decision point. Both decision
rules include the data elements NumberOfTerms, i.e. the number of payback
terms agreed to, and CreditScore. For example, the last mined decision rule for
decision point 2, i.e., if the offer was refused or accepted, contains the condition
that the offer is accepted if the CreditScore is above 324. The exact values in
the decisions change with each remining.

4.3 Discussion

The evaluation of the synthetic datasets shows that the approach is feasible and
able to discover different kinds of decision drift during runtime. The full results
also show that the mined decision rules are equal to the underlying rules. For
the real-life dataset, the evaluation shows that the approach is able to work with
real-life data. However, the BPIC17 dataset probably did not encompass any
decision drifts, and the frequent remining was executed rather due to insufficient
data than to mine accurate decision rules. Additional evaluations in real-life
settings will be part of future work to show the generalisability of the approach.
In terms of interpretability, the output consists of textual decision rules, which
enables manual interpretation and analysis. The approach can also be easily
adapted to work with different kinds of decision mining approach, see Sect. 5,
enabling the inclusion of e.g. categorical or time-series data as input.
Limitations and threats to validity: The approach might not work for cases
where drifts are happening very frequently. If lots of unfinished traces occur, this
could lead to storage build-up. In addition, only sudden drifts have been tested
in the evaluation. Theoretically the approach should also work for incremental
and gradual drifts, however this would probably include frequent remining until
a stable decision rule is discovered. Furthermore, the current definition of data
change is a change in the average, this is of course a very restricted definition.

5 Related Work

The first decision mining approach [19] includes an algorithm for detecting de-
cision points and the corresponding decision classes from a Petri Net as well as
classification techniques to mine the decision rules. Subsequent approaches fo-
cus on specific aspects of decision mining, e.g., including overlapping rules [14],
incorporating decision rules based on linear relationships between variables [6],
or mining decision rules based on time series data [20] (for an overview see [7]).
Existing approaches employ ex-post algorithms. Recently, online or runtime
analysis is gaining traction for online process discovery [4, 15], conformance
checking [10], drift detection [5, 22], and predictive process monitoring [17]. Es-
pecially, drift detection, partly overlaps with decision drift analysis as changes
in decision points are part of control flow drift. For process discovery, [15]
introduce an approach to mine data-aware declarative process models, i.e., con-
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straints, from event streams. The approach is similar as constraints could also
be seen as decision rules, but still quite different as constraints do not trans-
late straightforwardly to decision points and rules. [16] present an approach for
predictive decision mining for operational support. None of these approaches
include decision drift analysis, the remining of decision points and rules, and
the textual generation of decision rules. [12] propose a method for identify-
ing decision rule changes based on changes in the branching frequency. This is
done ex-post and neither decision point discovery nor remining are part of the
approach. However, part of the approach is included in this approach for de-
tecting change. Our previous work [21] assumes that decision points are already
known and no changes of decision points occur. Hence, this work constitutes a
significant extension of [21].

6 Conclusion

This paper presents an end-to-end approach for mining decision rules during
runtime, as well as monitoring of decision drift, and updating decision points
and the associated decision rules if necessary. Decision drift encompasses dif-
ferent changes with regards to decisions in processes, i.e., changes in decision
rules, decision classes, and decision points. The change detection is based on the
drift detection method ADWIN and monitors the performance, the branching
frequency as well as data values for changes. The approach is optimized for
runtime use, i.e., limited storage as well as forgetting outdated data is taken
into account. An event stream generated by, e.g., a PAIS is used as input. The
output comprises textual decision rules for each discovered decision point, that
are updated as soon as decision drift is detected, as support for users to evaluate
if these changes are intentional. This enables increased transparency and can be
used as basis for process enhancement. The evaluation shows that the approach
is able to detect different kinds of decision drift with high accuracy and to work
with real-life data. However, further testing is planned for future work as well
as the analysis of drift patterns, root-cause analysis, and drift prediction.
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[16] Park, G., Küsters, A., Tews, M., Pitsch, C., Schneider, J., van der Aalst,
W.M.P.: Explainable Predictive Decision Mining for Operational Support
(2022), https://arxiv.org/abs/2210.16786

[17] Pauwels, S., Calders, T.: Incremental Predictive Process Monitoring: The
Next Activity Case. In: Business Process Management. pp. 123–140. Cham
(2021)

[18] Rollings, M.: How to make better business decisions
(2021), https://www.gartner.com/smarterwithgartner/

how-to-make-better-business-decisions

[19] Rozinat, A., van der Aalst, W.M.P.: Decision Mining in ProM. In: Business
Process Management. pp. 420–425 (2006)

[20] Scheibel, B., Rinderle-Ma, S.: Decision Mining with Time Series Data
Based on Automatic Feature Generation. In: Advanced Information Sys-
tems Engineering. pp. 3–18. Springer (2022)

[21] Scheibel, B., Rinderle-Ma, S.: Online Decision Mining and Monitoring
in Process-Aware Information Systems. In: Conceptual Modeling. pp. 271–
280 (2022)

[22] Stertz, F., Rinderle-Ma, S.: Process Histories - Detecting and Representing
Concept Drifts Based on Event Streams. In: OTM Conferences. pp. 318–
335 (2018)

[23] Stertz, F., Rinderle-Ma, S.: Detecting and Identifying Data Drifts in Pro-
cess Event Streams Based on Process Histories. In: CAiSE Forum, pp.
240–252 (2019)

[24] Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change
support features – Enhancing flexibility in process-aware information sys-
tems. Data & Knowledge Engineering 66(3), 438–466 (2008)

[25] Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In:
Computational Intelligence and Data Mining. pp. 310–317 (2011)

[26] van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Event stream-
based process discovery using abstract representations. Knowledge and In-
formation Systems 54(2), 407–435 (2018)

16

https://arxiv.org/abs/2210.16786
https://www.gartner.com/smarterwithgartner/how-to-make-better-business-decisions
https://www.gartner.com/smarterwithgartner/how-to-make-better-business-decisions

	1 Introduction
	2 Decision Drift: Definition and Analysis
	3 End-to-End Runtime Decision Mining, Monitoring, and Decision Drift Detection Approach
	4 Evaluation
	4.1 Feasability: Synthetic Datasets
	4.2 Applicability: BPIC17
	4.3 Discussion

	5 Related Work
	6 Conclusion

