
Cloud Process Execution Engine: Architecture
and Interfaces

Juergen Mangler and Stefanie Rinderle-Ma

Department of Informatics, Technical University of Munich,
85748 Garching, Germany

{firstname.lastname}@tum.de

Abstract Process Execution Engines are a vital part of Business Pro-
cess Management (BPM) and Manufacturing Orchestration Management
(MOM), as they allow the business or manufacturing logic (expressed in a
graphical notation such as BPMN) to be executed. This execution drives
and supervises all interactions between humans, machines, software, and
the environment. If done right, this will lead to a highly flexible, low-code,
and easy to maintain solution, that allows for ad-hoc changes and func-
tional evolution, as well as delivering a wealth of data for data-science
applications.

The Cloud Process Execution Engine CPEE.org implements a radically
distributed scale-out architecture, together with a minimal set of inter-
faces, to allow for the simplest possible integration with existing services,
machines, and existing data-analysis tools.

Its open-source components can serve as a blueprint for future develop-
ment of commercial solutions, and serves as a proven testbed for aca-
demic research, teaching, and industrial application since 2008.

In this paper we present the architecture, interfaces that make CPEE.org
possible, as well as discuss different lifecycle models utilized during exe-
cution to provide overarching support for a wide range of data-analysis
tasks.

1 Introduction

The Cloud Process Execution Engine is an open-source bare-bones radically
service-oriented process engine, that, together with a set of components forms
a Business Process Management (BPM) system that proved (a) great for teach-
ing as all internal mechanisms are exposed as REST interfaces [2,3] and can be
inspected, used and augmented by interested students, and proved (b) great for
research to either experiment with the currently prevalent graphical modelling
language - Business Process Management notation (BPMN) - through exten-
sions, or by developing altogether novel modelling languages [5]. Implement-
ing worklists, correlators, run-time data-analysis, self-healing processes, or novel
means of inter-process and inter-instance synchronization is easy and stream-
lined: external REST-services utilizing your language/framework of choice do it

ar
X

iv
:2

20
8.

12
21

4v
2

 [
cs

.O
H

]
 1

8
Se

p
20

22

https://orcid.org/0000-0002-6332-5801
https://orcid.org/0000-0001-5656-6108

2 J. Mangler et al.

all. Finally, (c) also companies took an interest, due to scalable highly flexible
architecture that scales from a raspberry-pi with some instances to mainframes
with 1000s of parallel running processes, while efficiently utilizing multi-core
architectures.

CPEE.org tries to further the low-code and model-based process execution paradigm,
that allows non-programmers to connect software, machines, and humans in sim-
ple and easy to understand ways. By allowing for ad-hoc instance changes to
realize repair, as well as providing tools for process model versioning and evolu-
tion, it wants to show-case features that will hopefully make it into many current
and future BPMs.

2 BPM Basics

Since many years, moving infrastructure and with it software components to
the cloud is an important topic when dealing with digitization. Business Process
Management is about graphical models containing sequences of activities, deci-
sions and parallel branches. Activities describe how to invoke (external) func-
tionality implementing an activity, including the required input, and how to
transform the expected output to be usable for subsequent activities and deci-
sions. Business Process Management (BPM) traditionally has been relying on
monolithic Process Engines, mostly written in Java, conceived in the late 90s,
and not changed much since then. The typically consist of the following tightly
coupled components as also depicted in Fig. 1:

(A) Process Model
Editor

(B) Process Model
Repository

(C) Task
Repository

Process
Engine

(E) Process
Execution

Supervision
(F) Process

Engine

(H) Automatic
Tasks

(G) Human
Tasks

(D) Organisation
Model

& User Repository

Process
Designer

Process
Supervisor

Process
Participant

Loging,
Event Stream;
➔ Data Analysis

Fig. 1. Architecture & Stakeholders

CPEE 3

(A) Process Model Editor (UI, nowadays probably BPMN 2.x, CMMN, DMN)

(B) Process Model Repository

(C) Task Repository

(D) Organization Model and User Repository

(E) Process Execution Supervision (UI)

(F) Process Engine

(G) Worklists, Dashboards: Human Tasks (UIs)

(H) Invoked Applications: Automatic Tasks

Thus the traditional stakeholders in a BPM system are the

– Process Designers: they create the process at design time, and improve /
evolve process models if necessary.

– Process Supervisors: instantiate processes and supervise their execution.
They user

– Process Participants: take care of the work as modelled by human /
manual tasks. They user their own independent UI, and potentially know
nothing about the existence of a BPM.

The Process Model Editor (A) allows Process Designer to create and change Pro-
cess Models (PMs), which are stored in a Process Model Repository (B).

A PM is not executable, until each activity is assigned the corresponding func-
tionality, and the required input/output parameters are set. The same goes for
events. For example a timer event requires additional information how long to
wait in machine-readable form. Typically the Task Repository (C) holds a list of
functionalities available to the Process Designer for association with activities.
This is true for automatic (H) as well as human tasks (G).

Human tasks (G) are typically come in the form of UIs called worklists or dash-
boards (see Sec. 5, “Components”), worklists require information about their
users for work assignment. When worklists target work-distribution in organi-
zations, user/role relationships are typically utilized to automatically distribute
work between all users of a role. If worklists target customers, all work is assigned
to one customer. In both cases users have to be logged-in/identified. The same
goes for dash-boards if they allow for interaction, but it might also possible that
interactions are possible without being logged in, because of the assumption that
only eligible users have physical access to the dashboard. All information about
users and roles (Organizational Structure) is kept in a Organization Model and
User Repository (D).

The Process Execution Supervision (UI) (E) is used to deploy PMs from the
Process Model Repository to the Process Engine (F) - the is used to create
an instance (instantiate). Each instance is a COPY of the model, changes

4 J. Mangler et al.

to the instance might be possible (depending on engine features, i.e. run-time
adaptation), in which case the model of the instance might deviate from its
parent.

The Process Engine (PE) (F), is in charge of executing the instance model,
and realizing all the invocations of external services or functionalities which are
represented by activities, events or gateways (furthermore referred to as activ-
ity enactment). Process Engines most commonly are interpreters - just like for
example the Java Virtual Machine (HotSpot). Other engines like CPEE.org are
transpiling the model to lower-level languages for compilation/execution.

Invoked applications (H) are either typically either realized as Java compo-
nents, that can be loaded into the process engine, or as external services, that
have to implement a certain API as provided by the BPM software provider
(e.g. Camunda provides APIs for Java, and JavaScript, unofficial Python sup-
port exists1). Depending on the PE these services might either be realized as
REST/SOAP/OPC-UA/...

3 Process Engine Interfaces

↕↕
↕↕
↕↕
↕↕
↕↕
↕↕
↕↕
↕↕
↕↕

Manufacturing
Orchestration

Engine

C
o
n
tr

o
l I

nt
er

fa

ce
Data Stream

 In
te

rfa
ce

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑

Instance Instance

Instance

Operation Interface ↕↕↕↕↕↕↕↕↕↕↕↕↕↕

REST Interface
Create/Change Instance

Change Instance Endpoints
Change Instance Context
Change Instance Model

Start/Stop/Abandon Instance

 HTTP Push and SSE
 Publish/Subscribe
 Standard Topic/Event Model
 Standard Topic/Vote Model
 → Execution Shaping

 HTTP Calls

 Sync/Async Behaviour (Callbacks)

 Async M
ultiple Response Handling

 Load Balancing

 Retrying

Protocol Delegation (OPC UA,

 M
QTT, S7, M

ODBUS, ...)

Process
Engine (PE)

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑

Instance Instance

Instance

Fig. 2. Interfaces of CPEE.org

1 Last checked: 2022-09-25

CPEE 5

The PROCESS ENGINE (PE) is at the heart of the architecture. All other
components contribute data that is required for the execution of an instance,
but the process engine executes the process and coordinates the interaction of
all components, no matter if they are standardized ((E), (G)) or user-created
((G), (H)).

While the architecture given in Fig. 1, might be either monolithic or partially
monolithic (components may be part of one big software package, either desktop-
based or web-based), it is also possible to separate all components through clearly
defined interfaces. The architecture of CPEE.org takes the second approach, and
is realize as a set of loosely coupled services. Note that this is not necessary for
the (A) Process Model editor, or any other editor for that matter, as e.g. a Task
Editor only contributes to the (C) Task Repository, and an Organization Editor
only contributes to (D) Organization Model & User Repository. So all editors
interface if the engine through the data structures they produce ex-ante. These
data-structures might be BPMN 2.0 Interchange format or CPEE.org trees for
models, custom LDAP structures for Organization Models & User Lists, and
proprietary lists for tasks.

So at runtime, the process engine really has three interfaces with active compo-
nents, as marked through as depicted in Fig. 1 and Fig. 2.

3.1 Control Interface

The Control Interface allows UIs used by the Process Supervisor to perform all
operations related to creating, starting and managing process instances.

In order to create an instance, a Process Execution Supervision (PES) UI has
to allow to, (a) select a process model, (b) instantiate it, (c) and supervise its
execution through an execution engine:

– Which activities are currently enacted/running?

– What is the current process context (the data-elements that exist during
execution)?

– Which sub-processes have been spawned by the instance?

CPEE.org is an adaptive process engine, thus when an instance fails (stops),
through the PES the following operations can be performed:

– Change endpoints for activities, i.e. change the functionality an activity in-
vokes during enactment. E.g., when one production machine fails a second
one might take over a task.

– Changing the process context, i.e. activities might yield faulty data that
would prevent the successful execution of their instance. Manual changes to
data-elements might save the instance.

6 J. Mangler et al.

– Change the thread of control, i.e. change which activities are enacted next.
This might include skipping activities, but also re-doing activities. While re-
enacting activities, or skipping activities might be harmful, as tasks typically
have consequences, it might also be possible that re-enacting/skipping might
save the instance. Thus any process engine should allow a Process Supervisor
to do both.

– Re-starting the instance execution if it stops. As functionalities implement-
ing activities can be temporary down, or endpoints/dataelements/thread of
control can be changed to alleviate problems, re-starting the execution at a
certain point is beneficial.

– Change the instance model, i.e. whenever a process instance is stopped, it
might be necessary to change the instance model (e.g. repair the instance by
inserting or deleting activities). Changed instance model become singletons
- the no longer are identical to the process model they have been initially
instantiated from.

CPEE.org strictly relies on a REST-interface to achieve all these changes.

3.2 Operation Interface

The purpose of the operation interface is to delegate and monitor the work
described by activities. Activities (A) are modelling elements in BPMN (or other
graphical notations), that describe how to invoke (external) functionality (F),
including the required input, and how to transform the expected output to be
usable for subsequent activities and decisions. By default the functionality is
assumed to be a black box, from the point of view of a process engine (PE) it
is not important what is going on inside. In other words: the PE manages the
data-flow to and from these activities.

Activity (A) Functionality (F)

inkoves

responds_to

implements
Task (T)

Many process engines rely on an API to implement the functionality invoked
activities, i.e., F is implemented using an API, which allows to either (1) load F
into the PE (old-school monolithic engines), or (2) start F as a server which can
than be invoked by the PE enacting an activity. This has the advantage that the
protocol utilized between A and F is not important and can be changed without
affecting the implementation of F.

Alternatively, CPEE.org and other engines rely on protocol extensions instead
of an API to implement functionalities. CPEE.org‘s primary protocol implemen-
tation is HTTP, which is extended by a set of CPEE.org-specific HTTP headers
allow for some special interaction patterns between PE and F:

CPEE 7

Activity (A)Synchronous:

Request

Response

Activity (A)Asynchronous:

Request
Ack.: Response later

Ack.: Response received
Response

Activity (A)
Asynchronous

Update:

Request
Ack.: Response later

Ack.: each Response received
Response n

Response 1

For the synchronous pattern, answers are returned immediately, which in
HTTP is only possible if the answer is returned in a certain time-frame (about
30 seconds for normal network infrastructure). If the time-frame can not be
satisfied by F, the PE upon enactment of the activity in a certain instance will
receive a timeout, and the instance will be thus stopped. This type of interaction
can therefore only be used for simple and fast interactions.

The asynchronous pattern describes that (F) can delay the answer for as long
as necessary. This is done by telling the PE that the answer will arrive later.
This only works if a callback address is available to F. The PE maintains the
list of callback addresses. Each callback address allows the PE to forward the
answer to a certain activity in a certain instance.

Finally, the asynchronous update pattern, describes a special case of the
asynchronous pattern which allows to call back multiple times, e.g., to return a
series of status updates to the activity, or an arbitrary number of data chunks
(which is especially useful if large amounts of response data have to be handled
by T), This works by adding a flag to each answer, telling the PE if further
answers are to be expected.

All this in enabled by the addition of a minimal set of CPEE.org specific HTTP
headers, as enumerated below. Common CPEE.org HTTP headers, sent with
each request are:

– CPEE-BASE - base location of the engine where the instance is running
on
(e.g., https://cpee.org/flow/engine/)

– CPEE-INSTANCE - instance number
(e.g., 123)

– CPEE-INSTANCE-URL - url pointing to the instance
(e.g., https://cpee.org/flow/engine/123)

8 J. Mangler et al.

– CPEE-INSTANCE-UUID - unique identifier of the instance
(e.g., 059a4f32-dcb1-4ad0-a700-ddd3d1fbf64f)

– CPEE-CALLBACK - url to send any information to, should the imple-
mentation decide to answer asynchronously
(e.g., https://cpee.org/flow/engine/123/callbacks/f8c24f12-1419)

– CPEE-CALLBACK-ID - unique identifier for the answer (e.g., f8c24f12-
1419)

– CPEE-ACTIVITY - id of the activity invoking a functionality (e.g. a1)

– CPEE-LABEL - label of the activity invoking a functionality (e.g. Query
Production Schedule)

Each response (independent of the pattern) can sent the following optional head-
ers:

– CPEE-SALVAGE - F communicates that it can currently not provide any
answer, but might be available again later. This can be utilized by the PE
in a fail-over scenario, to reroute the request to a different F or to retry
the original F at a later point in time. If this header is present, its value is
expected to be always “true”.

– CPEE-INSTANTIATION - F communicates that it has instantiated a
(sub-) process. F will most probably additionally return the instance-url in
the body of the response (e.g., https://host2.cpee.org/flow/engine/124/). If
this header is present, its value is expected to be always “true”.

– CPEE-EVENT - F communicates that it a functionality-custom event
should be included in the data sent out trough the data stream interface.
This is especially useful if F has an internal lifecycle (e.g., if F implements
a worklist) and wants to signal custom lifecycle transitions (such as a user
taking or giving back a task). If this header is present, its value is expected
to carry the name of the custom signal (e.g., worklist/task-taken).

The asynchronous pattern, in addition to the three optional common response
headers, has to use the CPEE-CALLBACK header with the “Ack.: Response
later” message. If this header is present, its value is expected to be always “true”,
and the PE will not continue the execution of the instance, but instead wait for a
reply. Each HTTP PUT to the CALLBACK-URL will prompt the PE to for-
ward the response to the activity and subsequently continue the instance.

The asynchronous update pattern, in addition to the three optional com-
mon response headers, has to use the CPEE-CALLBACK, exactly the same
as the asynchronous pattern. For each response, additionally the CPEE-
UPDATE header is to used. Whenever this header is present and its value is
true, the PE forwards the message to a certain activity in a certain instance,
but the instance is not allowed to continue, and the activity continues waiting
for further responses. A response missing the CPEE-UPDATE header is con-

CPEE 9

sidered the last response, thus the PE will forward the response to the activity
and subsequently continue the instance.

Through these simple protocol extension, CPEE.org can support arbitrary in-
teractions. Custom protocols, such as OPC-UA (i.e., machine interfaces), can be
implemented as proxy F‘s. While the communication between A and F utilizes
the mechanisms described above, F will communicate with third-party services
and machines through custom protocol implementations.

3.3 Data Stream Interface

The purpose of the data stream interface is for a process engine PE to com-
municate the state of instances (I) as well as the state of activities (T) to
micro-services connected to the interface.

The interface supports two ways a state communication: HTTP push to ded-
icated URLs, and HTTP server sent events (SSE) upon request. In order to
communicate the state to external services, a PUB/SUB mechanism exists,
that allows to subscribe to a certain sub-set of events. Each subscription has
to carry:

– An optional endpoint, that denotes where to push the events. If the endpoint
is omitted, it is assumed that the messages grouped by the subscription will
be sent through SSE2 upon explicit request.

– An set of topics and events, that describe certain aspects of the execution of
an instance.

Execution aspects, furthermore called topics, are:

– The state topic contains a set of events describing potential instance states
(see Sec. 4.1).

– The activity topic contains a set of events describing the state of an activity
in a particular instance (see Sec. 4.2). Each activity is represented by a series
of events, as an activity at least starts and finishes. As an instance might
contain activities that are enacted in parallel, each event has to carry the
activity id (e.g., t1). When an activity is enacted in a loop, the activity id
is not enough to identify events belonging together, as through the network-
based nature of event dispersal events might be out-of-order. Thus each
enactment of an activity has to carry (in addition to the activity id) a unique
enactment identifier, e.g., “t1-enactment-1” or “t1-enactment-2”.

– The position topic allows to monitor the progression between activities.
This includes events when activities become active, activities are no longer

2 SSE is actual a special kind of pull, where a client initiates a connection with a
server, the server keeps the connection alive by heart-beating to the client, and can
thus push data through the connection when it is available. It is thus a form of
long-polling.

10 J. Mangler et al.

active, as well as events detailing the transition between two activities. A
transition between two activities does not mean that they are in sequence,
a transition might occur between an activity and a next activity based on a
decision, or multiple activities might become active due to a parallel split.

– The status topic allows to monitor information about semantic execution
properties of an instance, e.g., if a instance currently runs normally, or if
some exception handling logic is active. The instance status can be changed
as the result of any activity enactment.

– The dataelements topic allows to monitor the data-flow, independently
of the control-flow of an instance. While the enactment of activities might
change the process context (dataelements, variables), not each activity does
so. Each event includes information about added, deleted and changed (from
value, to value) dataelements.

– The description topic allows to monitor changes to the instance model.
When ever an instance is not running (e.g., before an instance is started
or when a instance stopped due to an error), changes/repairs to the process
model might be applied. Changes can include assigning different functional-
ity to an activity, inserting or deleting activities.

– The endpoints topic allows to monitor when a process instance links to
new functionality. CPEE.org for each instance manages a list endpoints
key/value pairs where each functionality is referenced by a key, e.g. time-
out →https://cpee.org/functionalities/timeout/. Functionality is assigned to
activities by this key. Change events can occur both at runtime (while an
instance is executed) as well as while an instance is stopped. An activity
might as part of their enactment dynamically change/adapt the endpoint
list, namely changing the value of any key, resulting in activities invoking
different functionality. This can be utilized to, for example, implement load-
balancing or load-distribution. Each event includes information about added,
deleted and changed (form, to) endpoints.

– The attributes topic allows to monitor changes to an instances attributes.
Attributes might include the UUID of the process model an instance was
originally spawned from (although the model of the instance might have
changed), or an arbitrary number of labels and information assigned to the
instance (name, author of the model, user responsible for repair, ...). Each
event includes information about added, deleted and changed (form, to)
attributes.

– The condition topic allows to monitor any decisions taken during the ex-
ecution of an instance. This might include decisions taken based on xor/or
gateways or loops. The event includes the condition, all involved dataele-
ments and their values, as well as the result of the evaluation (true or false).

– The task topic groups a set of special and user-defined events, such as
task/instantiation which is sent by functionalities implementing the creation

CPEE 11

instantiation of sub-processes instances. Such events are sent by functionali-
ties trough the operation interface (see Sec.5.3) and are subsequently dis-
tributed to subscribed services through the task topic. This interface is par-
ticularly useful for communicating the lifecycle or application state of func-
tionalities trough a PE. For example, worklists/tasklists are just ordinary
functionalities invoked as part of activity enactment. Although potentially
a black box to the PE, worklists might have a fine-grained internal lifecycle
dealing with how work is assigned to users, work on by users, including deal-
ings with deadlines and conflicts. For runtime or ex-post data-analysis [9,10]
it van be very useful to include this information in subscribable data streams
dispersed by the PE.

By selecting from this brad menu of topics external services can analyse all
aspects of an instance execution, regarding both data-flow and control-flow. Each
subscriber can use the data to, for example, write fine-grained execution logs
which include information far beyond the aspects specified in standards such as
the XES3 standard.

In addition to distributing events the interface also supports execution shap-
ing [4], which allows external services subscribed to events to influence the exe-
cution, without invoking the control interface, but as part of the subscription
to the data stream interface.

While normal events are sent by the PE without waiting or acknowledging a
response (fire and forget), special events, furthermore called votes are treated
differently. The PE waits for a response from each subscribed external service
and acts upon the responses. A minimal set of responses currently implemented
by CPEE.org includes:

– ack: don‘t care or approval. Instance might continue to be executed as per
the model.

– callback: answer will be sent later. Instance will remain in state running,
but the activity referenced by the vote will remain frozen until the answer
is received.

– skip: instance will remain in state running, the activity referenced by the
vote will be skipped.

– stop: instance is stopped immediately.

– start: instance is started immediately.

– value: (1) the condition referenced in the vote is evaluating to the value
(true, false). (2) the dataelement, endpoint, attribute referenced in the vote
is set to the values.

Callback is the special case, that just delays the decision. All other responses
have to be unambiguous, with ack being the neutral response. Examples
3 https://xes-standard.org/

https://xes-standard.org/

12 J. Mangler et al.

– If 1..n services send skip and the rest of the services send ack, skip goes into
effect.

– The same rule is applicable to stop and start.

– If 1..n services respond with action, but disagree on true/false, the rest of
the services send ack, then the instance will be stopped.

– If 1..n services respond with value, but disagree on the actual value, the rest
of the services send ack, then the instance will be stopped.

– If 1..n services respond with the same value, the rest of the services send
ack, then the value will be set and the instance resume executing.

– Responses of value, skip, start/stop can be partially combined:

• value and skip can be combined, with value being enacted first, then the
skipping the activity.

• value and start/stop can be combined with value being enacted first,
then starting/stopping the instance.

• skip and stop can be combined, first the skipping the activity then stop-
ping the instance.

• start and skip can be combined, first starting the instance, the skipping
the active activity immediately.

• start, value, skip can be combined according to the schema above.

• value, skip, stop can be combined according to the schema above.

– Dissenting start/stop responses can not be combined, the current state will
remain.

Topics that have votes include:

– state topic: start / stop can be prohibited or allowed. This is useful when
implementing model checking techniques. Furthermore external services can
change endpoints, attributes and dataelements on start or stop through the
value response.

– dataelements, endpoints, attributes topics: changes to individual can
be blocked (action) or corrected (value) . Furthermore, an execution of an
instance can be stopped (stop response) in compliance checking scenarios.

– condition topic: the evaluation of conditions can be modified with the value
response. Again the instance can be stopped (stop response) if necessary.

– description topic: Individual changes to the model can be prohibited through
action responses.

With this powerful voting mechanism runtime conformance and compliance
checking, as well as self-healing, which all require not only certain data, but

CPEE 13

also a set of actions to influence the execution, can be implemented through
external services.

The alternative would be, to allow external services to utilize the control
interface, which would entail to always stop instances before changes, in order
to avoid race conditions. CPEE.org can thus cover the most important areas of
runtime process mining (discovery can be ignored in this context) and adaptive
process execution.

4 Lifecycles

In order give a more detailed introduction to the state, activity and task topics
introduced as part of the data stream interface in the previous section, this
section will discuss the lifecycle models for:

4.1: The execution of instances.

4.2: The enactment of activities.

4.3: The internal behaviour of worklist functionalities.

4.1 Instance Lifecycle

While the PE executes an instance, it goes through a number of states (see Fig.
3). Reaching a state also results in sending an event through the data stream
interface for all external services subscribed to the state topic.

Ready is the state that an instance is in, immediately after it is created. In-
stances in CPEE.org are not created with an initial model, but empty. Any UI
allowing to instantiate a model as an instance, or any functionality instantiating
a sub-process instance, therefore in the next step has to load a process model
(through the control interface, which in turn triggers events being sent out
through the data stream interface). In ready state (a stopped state), changes to
all aspects of an instance are possible: the instance model(description), dataele-
ments, endpoints, attributes, as well as the position in the instance model (de-
scription) that the execution should start from.

From there (1) a UI managing the instance, or (2) a functionality instantiating
a sub-process instance can trigger a transition to state:

– Running: The instance is executed, activities are enacted.

– Abandoned: A manually set state (without proper execution) signifying
that the instance is no longer able to run. For example, external services
connected through the data stream interface might have prohibited the
proper loading of a process model into the instance, thus rendering the in-
stance unusable. This state is final, and can not be left. No further changes
to the instance are allowed.

14 J. Mangler et al.

Ready
RunningStopping

Stopped Finished
Abandoned

Purged

Initial State
Intermediate State
Final State
Vote possible

Fig. 3. CPEE.org Instance Execution Lifecycle

If the execution of a process instance is successful (without an error occurring),
the instance will transition to state Finished. This state is final, and can not
be left. No further changes to the instance are allowed. The state finished can
not be voted on, and can not be set through the control interface.

If an error occurs during the execution of a process instance, the instance transi-
tions to the state Stopping. This set can also be triggered for running instances
at any time through the control interface, and can be voted on by external
interfaces through subscriptions to the data stream interface.

The state stopping is an intermediate state to give functionalities the chance to
go into a consistent state. Synchronous activities in parallel branches need still
be able to collect responses from invoked functionalities. As soon as all func-
tionalities have successfully returned values the instance state will transition to
Stopped. Asynchronous activities do not contribute to delays. In stopped state
callbacks will be suspended, when the state changes back to Running, callbacks
are again accepted for an activity. Thus, (1) synchronous activities have to return
before stopped state, (2) asynchronous activities can be suspended.

The Purged state is only reachable from Running and Abandoned. While
for all other states, the instance can be inspected through the PE, after purging
only logs created through the data stream interface continue to exists.

4.2 Activity Lifecycle

Whenever the PE enacts an activity, the activity enactment transitions through
a set of states (see Fig. 4), which also results in events being sent to external
services subscribed to the activity topic.

Syncing Before and Syncing After are votes, thus external services can pro-
hibit or delay the enactment of an activity (cmp. [7]). Both of these states are
not part of the formal enactment of the activity but signify before and after
enactment.

The Calling state is the first state of the enactment. It signals that input data
is sent to the functionality implementing a certain task as part of the enactment

CPEE 15

Calling
Syncing Before

ReceivingFailed
Rescue

Manipulating
Status
Done

Syncing After
While Task
Outside Task (vote)

Instance Level
Data

Update

Prepare

Finalize

Instance Level
Stopping

Fig. 4. CPEE.org Activity Lifecycle

of an activity. Before actually invoking functionality a Prepare script can be
used to prepare the input data. Changes to the instance context (dataelements)
made in this script are not permanent and only exist in the scope of a certain
activity.

It the functionality responds, and data is received, the activity transitions to
the Receiving state. Receiving data can happen as part of a synchronous or
asynchronous interaction between an activity and the functionality it invokes.
Depending on the amount of data the receiving phase takes a certain amount of
time. For synchronous or asynchronous then the state transitions to Manipu-
lating, so either Finalize or Update scripts are invoked. Update is called in
case of an asynchronous update interaction (see above), Finalize is called in all
other cases. Both scripts have full access to the received data, as well as to the
instance context (dataelements) and can modify it permanently. In case of the
asynchronous update pattern the state may again switch to Receiving.

If Calling or Manipulating fails (either by a functionality not available, or
a response signifying some errors, or a update/finalize script having a syntax
error), the activity transitions into the Failed state. In Failed state a script
Rescue can clean up the instance context (dataelements), or set a special process
status to tell the PE if it should retry invoking (Calling) the functionality, just
ignore the error, or transition the instance to state Stopping. The activity then
transitions to state Status, and subsequently to Done.

4.3 Task Lifecycle

Each task may have its own internal lifecycle, implemented in the functionality
invoke by an activity. This lifecycle can be either hidden from the PE, or made
transparent through a CPEE-EVENT response from the functionality through
the operation interface (see above). If the internal lifecycle is exposed, it will be
sent out through the data stream interface to all external services subscribed
to the topic task.

Fig. 5 depicts a potential lifecycle for a human task, although other human tasks
might implement different lifecycles. The human task in this particular case is

16 J. Mangler et al.

AddedInvalid

Timeout

Assigned

Failed

Deleted

Taken

Returned

Finished

Entry Point, PE calls worklist
Wl-Control
Wl-Handling, Actors act through UI
Return to PE

Fig. 5. CPEE.org Worklist Lifecycle

implemented as a worklist functionality. Each enacted activity can pass informa-
tion about a task to the worklist functionality, which then coordinates humans
to work on the tasks stemming from different activities in parallel branches, and
different instances.

The lifecycle depicted in Fig. 5, depicts the possible states of one task. Whenever
the worklist functionality is invoked as part of the enactment of an activity, the
Added state is reached. As part of the internal functionality of the worklist
the Deleted intermediate state might be triggered (e.g., when the task is a
duplicate), leading to the state Finished.

Alternatively the Invalid state might be reached, e.g., if there is no suitable
human worker being able to work on the task (e.g. because all workers are
unavailable due to illness), leading to a Failed state.

Another possibility is triggering of state Timeout if a supplied deadline has
passed, leading again to the Failed state.

The Assigned state is a special state that can be reached for certain classes of
worklists that automatically assign tasks to humans:

– Round Robin worklist: work is assigned to a set of humans (e.g., sharing a
common role) in round robin fashion. The first task is assigned to the first
human, the second task to the second human, and so on. When all humans
have a task, the first human is again assigned a task.

– Workload worklists: a random human belonging to a group (e.g., sharing a
common role) with the lowest number of tasks is assigned a task.

– Skill based worklists: the human with the best set of skills matching the task
description is assigned the task.

This state can be reached from Added, as well well as Timeout (e.g., when
a deadline is passed, the task is reassigned to a different human) states. This
state can result in Finished state. Furthermore humans can signal that they
can not do the task resulting in the state Returned. From there the task can
be reassigned to a different human, resulting again in state Assigned.

CPEE 17

An altogether different class of worklist is described by the remaining states.
The Taken state can only occur in a worklist where tasks are not automatically
assigned, but instead actively reserved by a human from a list of available tasks.
Each task is typically visible to a group of humans sharing a common role.
Taken tasks are no longer visible to other humans in that group. Taken tasks
can either be Finished, Returned to the list of tasks for other humans in
the common group to be reserved, or automatically Assigned to a human as
described above.

Failed and Finished are the two final states reachable for a task. Taken and
Returned are states triggered by human action, while all other states are typ-
ically the result of worklist internal mechanisms.

Activities invoke Worklists in an asynchronous manner, final responses occur
when Failed and Finished states are reached. All other state changes might
lead to intermediate responses (asynchronous update, see above), and thus to
events send to all external services subscribed through the data stream inter-
face.

5 Components

In order to assemble a service-oriented BPM like CPEE.org, the interfaces pre-
sented above can be used to create and connect a set of components, allowing
for managing and operating a highly-scalable system.

5.1 Control Interface

Connected to the control interface are four main components.

The Process Design UI (PDUI) creates process models, by using the task
repository (simple list of available endpoints), as shown in Fig. 7. The PDUI is a
simple HTML/JavaScript SPA (single-page-application). It is connected to the

control interface to allow for testing the models on-the fly (by creating new
instances). Whenever process models reach a certain maturity, they can be saved
in the Process Repository (PR). The PR, just acts as a storage front-end
which versions each saved process model in arbitrary GIT repositories, which is
important to comprehend changes, and cooperative work on models. Versions
are created whenever a user saves the model into the PR (see Fig. 7, “Save” top
left).

The stored and versioned process models can be managed through the Process
Lifecycle Management UI (PLMUI) [6]. The PLMUI allows to manage the
lifecycle of models. Each model can be either a graphical design draft (no end-
points), under development (not yet fully functional and tested), in production,
or at its EOL in the archive (see Fig. 8). Each model, or each folder of models
can be shifted between these four lifecycle stages, in the top right of Fig. 8, it

18 J. Mangler et al.

Control Interface
Data Stream Interface

Instance
Instance

Instance

Operation Interface

Logging Service

Runtim
e M

onitoring Service

Runtim
e Sem

antic Visualisation Service

Execution Shaping Service

Instance M
onitoring

U
I

Process Lifecycle
M

anagem
ent U

I

Functionality

O
PC UA Im

pl.

M
Q

TT Im
pl.

M
O

D
BU

S Im
pl.

S7 Im
pl.

* Protocol Im
pl.

O
PC UA

Server

M
Q

TT
Server

M
Q

TT
Server

M
O

D
BU

S
Server

S7
Server

* Protocol
Server

U
I

U
I

Process D
esign U

I

Instance Repair U
I

Process Repository
Service

Task Repository
Service

W
ork/Tasklist Service

D
ashboard Service

D
ashboard

U
I

W
orklist
U

I
REST services for process designers,
analysts, and supervisors

H
TM

L/Javascript U
I

REST services that w
rap protocols;

e.g., sensors and m
achine interfaces

REST services for integrating process
participants; e.g. w

orkers, clerks, case handlers

Proprietary data providers;
e.g., sensors, m

achines

REST services im
plem

enting autom
atic

tasks; e.g., database access

U
I

H
igh Velocity

D
ata Coll. &

 Pack

H
ardw

are
Adapters
H

ardw
are

Adapters
Fledge

IoT

P
ro

ce
ss

E
n
g
in

e
 (P

E
)

Fig. 6. CPEE.org Components And How They Use The Interfaces

CPEE 19

Fig. 7. CPEE.org Process Design UI

Fig. 8. CPEE.org Shifting Between Lifecycles

20 J. Mangler et al.

is possible to switch which lifecycle is currently displayed. While these four life-
cycle stages are typical in Software Engineering, it is possible to configure the
PDUI for additional lifecycle stages to match different, more extensive, or more
basic development styles.

The PDUI (see Fig. 7) itself is a designed as a cooperative editor, so when mul-
tiple people work on the same model, all edits are directly shown in all browsers
currently viewing the model. This cooperative editing is realized through a SSE
(server side events) subscription the data stream interface (connection not
shown in Fig. 6 for simplicity).

The Instance Repair UI (IRUI), is very similar to the PDUI. It works on
single instances, which are in state stopped (see Sec. 4.1 “Instance Lifecycle”
above). Firstly, whenever changes are made, a user has the option to save the
changes to the process model, for later instances of the process to include the
fix. Secondly, the user can also apply the fixes to other running instances, which
have not yet reached progressed to the point of the fix.

Fig. 9. CPEE.org Instance Monitoring UI

The Instance Monitoring UI (IMUI) (see Fig. 9) shows a life view of how
instances are executed (red task is currently executed task). If an instance spawns
one or many sub-process, they are shown to the left of the instance. For each
instance, the IMUI offers controls to change the state (e.g. stop, start), change
to edit mode (i.e., IRUI), or hide an instance from view. The IRUI is again an
HTML/JavaScript SPA, which is subscribed to the data stream interface, to
receive information about which task is currently executed (red task), and the
current state of each instance. It is also subscribed to the task topic to receive
instantiation events, in order to show sub-processes.

5.2 Data Stream Interface

Exclusively connected to the data stream interface are four main compo-
nents.

CPEE 21

The Logging Service has no UI. Its purpose is to subscribe to a set of events,
in order to store an XES file on disk. The XES files are linked in the IRUI (see
Fig. 7, Log UI Element, in the main/bottom right).

Fig. 10. CPEE.org Runtime Monitoring

The Runtime Monitoring Service + UI (RMUI) (see Fig. 10) consume
events from the data stream interface to provide information:

– Running Instances, their state (running, ready, stopped), as well as the mem-
ory usage per instance (left)

– Statistics about the overall memory and CPU usage (right).

– Statistics about total instances, as well as currently active instances (right).

Please note that the URL of the engine is very prominently shown, as the RMUI
can be subscribed to multiple engines, which either together format a load-
balanced cluster of engines or are unrelated. The functionality shown in Fig. 10
is achieved by the following subscription:

– topic state, event change: monitor the creation of instances (ready), as well
as their full lifecycle as described in the Sec. 4.1.

– topic task, event instantiation: monitor the creation of sub-process in-
stances. While state/change only provides information about the existence
of an instance, this adds information about their parent/child relationship.

22 J. Mangler et al.

– topic status, event resource utilization: monitor the memory and CPU
usage for instances.

A Runtime Semantic Visualization Service + UI (RSVUI), is in con-
trast to the RMUI intended to subscribe mostly to topic dataelements, to
monitor the data-flow in process instances, and topic activity to monitor the
duration of individual tasks. An RSVUI is a custom Key Performance Indi-
cator (KPI) monitoring and visualization service. For example, when a service
is about production of parts, the number of parts, cycle times (time to produce
one part, which might be the result of multiple activities enacted in a loop) or
overall equipment efficiency (OEE) can be displayed. This can be realized in two
ways:

– Bad solution: write a custom service, the hard-codes the meaning of certain
data-element and tasks, in order to find and display the KPIs Whenever the
process model changes, it has to be checked if the RSVUI has to be changed
as well, as it might breach when new activities are added, or the data flow
changes.

– Good solution: annotate the BPMN with semantic information about how to
extract the KPIs. Thus the RSVUI will be more generic and can, whenever
events are received, inspect the corresponding BPMN for data extraction,
transformation and display (ETD) information.

Both solutions can be observed in practical applications. While the first solution
is sometimes preferred for less implementation overhead, the second solution is
always better given that a suitably powerful semantic annotation, mechanism
exists. For CPEE.org various aspect of such a BPMN extension are still subject
of on-going research [1], for other BPMN editors, such research to the best of
our knowledge is not easily possible or foreseen.

An Execution Shaping Service (ES) is a special component that subscribes
to arbitrary events and votes from the data stream interface, and enacts
actions through votes as described in Sec. 5.2 “Data Stream Interface”. Ex-
amples for such services are:

– Runtime compliance checking: directly reacting when compliance violations
are detected. Simple cases might include stopping an instance, and notifying
responsible actors, complex cases might include the automatic modification
of responsible actors in the instance process model to fix the compliance
violation.

– Self-healing: in case of errors occurring with endpoints (e.g., machines), fix
the instance by changing endpoints, or triggering compensation.

– Load-Balancing: at runtime change endpoints to select resources (endpoints)
with the least workload.

Many other applications exist, as for RSVUI these applications might be very
domain specific and might require additional information in the process model to

CPEE 23

keep the ES generic enough to not break its functionality when process models
evolve.

5.3 Operation Interface

Components using the operation interface should not use any other interfaces,
as this will negative effects on the security of the overall system. Separation the
enactment of activities, or rather the functionalities they are linked to, will guar-
antee that everything can be properly tracked and observed, and no behaviour
can be hidden.

For CPEE.org currently all components connected to the operation interface
are realized as REST services, although this is not a requirement, as the engine
supports pluggable operation interfaces that could support arbitrary proto-
cols.

For CPEE.org all REST services follow the synchronous, asynchronous, or asyn-
chronous update patterns, as described in Sec. 5.3.

The services connected to the operation interface fall into four generic groups:

– Basic Functionality: unspecified functionalities that preform automatic
tasks such as extracting data from a database, or extracting data from CRM.
They are black boxes, and implement a specific interface.

– Protocol Proxies: a class of services that wrap custom, often proprietary
protocols. Currently CPEE.org supports S7, OPCUA, MQTT and MOD-
BUS, which proved sufficient for many industrial applications. As these pro-
tocols might have very different communication patterns which might solely
rely on pushing messages, the proxy service mostly use the asynchronous
pattern to interface with the process engine.

– User Integration: User integration is again a form of proxy service, but
with the goal of integrating users into an enacted. For this a Work-/Tasklist
or Dashboard Service has to utilize the HTTP headers as described in Sec.
5.3 “Operation Interface”, store callback information and parameters in pro-
vided parameters, and tell the process engine that asynchronous pattern is
to be used. A separate UI, solely used by Process Participants then utilized
the provided parameters to present an UI, as discussed above. CPEE.org
provides both, a worklist as well as a dashboard component to build interac-
tive user interfaces. While in office automation worklists are more common,
on the shop-floor dashboards are more prevalent.

– High velocity data collection and packaging: In IoT environments such
as shop-floors, typically two kinds of components exist: Sensors and Actua-
tors. Actuators can be triggered to start some sort of operation. They are
typically directly represented as activities in process models, and typically
return a result describing success/error of an actuation. Sensors on the other
hand observe various properties of the shop-floor. They might range from

24 J. Mangler et al.

something as simple as measuring temperature and humidity, to monitoring
all conditions inside a machine, such as the power consumption of individual
motors, or the position of various axes of a lathe. There are two different
scenarios that might occur:

• Sensor information is related to one particular activity. E.g., for an ac-
tivity “Machine Part” all sensor information regarding this machining
operation can be collected, and directly attached to the task.

• Sensor information is continuous and not related to on particular activ-
ity, but rather to a group of activities, an instance, or even a group of
instances. Thus the information can not be attached to single activities
but to a higher plane of structure.

User Integration is the most prominent use-case for utilizing the operation
interface. Traditionally work-/tasklists where integrated into monolithic BPMs,
instead of being loosely coupled with it through a common interface for all
services. This can be also seen when looking, e.g., at the XES standard for storing
log information. Its lifecycle extension is mixing the lifecycle for activities (see
above) with the Lifecycle for tasks (see above), because in the traditional view
there was no separation between these. The traditional view does not consider
the different/specialized work-/tasklists could have different and much more fine-
grained lifecycles.

Traditional work-/tasklist (being integrated into the BPM) also assume that
they have access to the full process context, i.e. all dataelements, attributes and
other internal information. For CPEE.org, with its focus on modularity, loose
coupling, and strict separation of concerns, this is not true. Utilizing the
operation interface induces that all information required for a work-/tasklist do
do its job is passed to the functionality that implements it. Information required
by a tasklist might include:

(A) Which user/role is to work on a task.

(B) Which organization structure is to be used to select users based on roles.

(C) UI/Form which should be shown when working on the task.

(D) Task specific information that has to be known to the user working on the
task in order to be able to do it.

(E) Deadlines.

A work-/tasklist should return (at least) at least (1) the result of the work
(e.g., a document or success notification), and (2) which user(s) worked on the
task in order to be able to do compliance checking.

It is not wise to handle Separation of Duty (SoD) / Binding of Duty (BoD) inter-
nally in a work-/tasklist, but to escalate it to the level of the process. This should
be realized by treating the passed information (a) (see enumeration above) as
follows:

CPEE 25

– Separation of Duty (SoD): in addition to the role (list of people who can
do a task), pass information about a user / users from this list, who are
NOT allowed to do this task. The not-allowed-users can be collected from
the return of previous calls to work-/tasklists which are part of the SoD
logic.

– Binding of Duty (BoD): instead of passing a role (list of people who can do
a task), only the user that preciously worked on tasks which are part of the
BoD logic.

By implementing this on the level of the process, two main advantages:

– Simple Compliance Checking: Compliance checking can be realized at the
process level, instead of being required to access information from private
logs of the work-/tasklist service.

– Centralized Configuration: All configuration is part of the process model,
instead of being hidden inside functionality. Different work-/tasklists can be
mixed, without the requirement of accessing common configuration informa-
tion.

Dashboards are different from work-/tasklists, as they are either (1) read-
only, or (2) bound to a physical location. Because of this, they might be access
restricted, but there is no need to specify user/role or organizational information.
They also typically only show one thing. So when triggering a dashboard either
(1) the information shown is replaced, or (2) added to be shown simultaneously
in an other part of the dashboard.

High velocity data collection and packaging realizes a special service which can
be used in two ways:

– A process engine (PE) can ask for packaged data from not one or a group
of sensors. In this case the process model contains instructions to explicitly
collect sensor information.

– A process engine (PE) implements that in parallel to the execution of in-
stances or the enactment of activities sensor information is collection. In this
case the process models contains additional information to collect informa-
tion while an instance is executed or while a group of activities is enacted.

CPEE.org implements both mechanisms, both through normal BPMN and BPMN
IoT extensions.

6 Highly Scalable Architecture

CPEE.org is not only modular by providing a set of interfaces to the outside,
but it it is highly scalable by internally also being based on a set of services. This
allows to distribute one CPEE.org over multiple nodes (scale-out architecture)
in a number of different communications, best suiting the needs of a wide range

26 J. Mangler et al.

of application scenarios. As depicted in Fig. 11, the first important part is:
Each instance is a separate service, communicating with the rest of the PE
through an IPC mechanisms with Publish/Subscribe functionality, connected to
an in-memory data-base to store the internal state of an instance execution. This
introduces the following properties:

– Instances can be deployed to different nodes for maximum scalability.

– Instances can be deployed into separate containers for improved security
properties.

– Instances are managed by the underlying OS as processes, meaning any
number of CPU cores is transparently used.

– Instances can be monitored through standard monitoring facilities, their
CPU and memory usage is always separately available.

– Instances can be restricted with separate CPU / Memory quotas through
standard OS mechanisms.

REST service - implementing Control Interface
Allowed to READ IMDB, publishes IPC write events to IMDB
IPC Handling Daemons
Subscribed to IPC Events, READS and/or WRITES IMDB
In-Memory DB - e.g., REDIS
Used for PubSub IPC, i.e., to store instance data and distribute events
Instance == Independent OS process
Publishes IPC events to IMDB

REST Service

In-Memory
DB

Pub/Sub
Inter-proc.

Comm.

Persistence
Impl.

Event Dist.
Impl

Vote Dist.
Impl.

SSE

Callback End
Impl.

Data Stream
 Interface

Co
nt

ro
l I

nt
er

fa
ce

SS
E

HTTP
PUSH

Instance
==

Independent
OS Process

Instance
==

Independent
OS Process

Instance
==

Independent
OS Process

Fig. 11. CPEE.org Highly Scalable Service Oriented Architecture - Internal Message
Routing

Each instance implements the operation interface. Each instance can
be realized in two different ways:

– By having an interpreter read and execute the statements in a BPMN.

– By translating/transpiling the BPMN into a native language and then com-
piling/executing the result.

CPEE 27

CPEE.org uses the second mechanism as it provides higher performance and
lower overhead. In general it has to noted that realizing instances as standalone
services has also some drawbacks:

– The necessity of using IPC introduces some serious overhead, when compared
to having a multitude of instances being executed (interpreted) inside a
monolithic process engine. We think the possibility of scaling mitigates this
disadvantage.

– The memory overhead can be considerable, as each instance potentially has
to carry and run its own BPMN interpreter. CPEE.org avoids this by em-
ploying the transpilation mechanism.

CPEE.org employs Redis4 as the in-memory database. Any change to dataele-
ments, endpoints, or attributes, has to be made available to the Pub/Sub mech-
anism by the instance. Furthermore information about which task is currently
executed (including lifecycle information) has to be made available as well. In
fact, all information available as an event, as described in Sec. 4) has to be
constantly sent while each instance is running.

The remaining components inside the PE are subscribed to this event-stream
and act on it as follows:

– The Persistence Implementation (PI) saves the information in the in-
memory database.

– The Event Distribution Implementation (EDI) directly sends relevant
information to subscribed services, according to the logic described in Sec.
5.2. While HTTP based push messages can be distributed (fire and forget)
directly to subscribers, Server Sent Event (SSE) subscribers have to be han-
dled differently (see below).

– The Vote Distribution Implementation (VDI) does the same as the
EDI but for votes. This component also handles the answers to votes, which
can only arrive through HTTP (see below).

– The Callback End Implementation (CEI) which is responsible for clean-
ing up the database after a response to a vote or an asynchronous call.

The final and most important service is REST Service (RS) which implements
the control interface. All input to the control interface again is sent to
the Pub/Sub mechanism, and thus is distributed to the internal components.
Each process instance is subscribed to certain events as well. For example
an stopping state change, triggered through the control interface, has to be
received by the respective instance, which then has to stop running: (1) it has to
wait for all synchronous calls though the operation interface to finish, (2) has
to announce state stopped, and (3) has to exit (on the OS level, thus releasing
all memory).
4 https://redis.io/

https://redis.io/

28 J. Mangler et al.

While EDI and VDI actively distribute votes and events over HTTP, the possi-
bility to subscribe to this through SSE, brings the necessity for the REST service
RS to deliver events as well. Thus the EDI and VDI send special IPC messages,
to which the RS is subscribed, which are then sent through SSE. This allows for
example the Instance Monitoring UI component (see section above), which
is just HTML and JavaScript to receive the necessary information to update its
UI.

Instance Based
Loadbalancer

Node
Instance Instance

Distributed
in-Mem. DB

Engine
Logic

REST
Node

Instance Instance

Distributed
in-Mem. DB

Engine
Logic

REST

Distributed

Node
Instance Instance

Distributed
in-Mem. DB

Engine
Logic

REST

Node
Instance Instance

Distributed
in-Mem. DB

Engine
Logic

REST

Federated

vs.

Node
Instance Instance

Distributed
in-Mem. DB

Engine
Logic

REST

High Performance
High Availability
High Number of Instances

Cloud
 Central Simplified Logic

Edge Nodes
 Localized Fast & Secure
 Data Handling

Fig. 12. CPEE.org Distributed Vs. Federated

With these internal services, the PE can be set up in many possible ways, some
of which are depicted in Fig. 12. In the Distributed Scenario:

– Each node has its own Distributed in-memory database, but they are op-
erating as one cluster. This is for example supported by Redis as used in
CPEE.org, but also supported by others.

– Instances run on nodes.

– All other services, including the REST service are available on each node.

– A centralized load-balancer distributes control interface HTTP traffic
based on the instance id. E.g., for two nodes all even instances are hosted
on node one, all odd instances on node 2.

Of course different more complicated load-balancing mechanisms can be realized
easily. Another possibility is to not host the instances on the same node but to

CPEE 29

distribute them to separate nodes. Separate nodes for EDI/VDI, which are easily
the most taxing services, are possible as well.

Another important scenario is the Federated Scenario. For IoT/Edge use-
cases different Process Engines (PE) can run on different nodes. As the creation
of sub-process instances is realized through a special operation interface
component, federated PEs can be used like normal services.

7 Conclusion

CPEE.org realizes a Process Engine, which goes beyond the state-of-the of
both, industrially and scientifically available offerings. Its core and many com-
ponents are open-source5, actively maintained and constantly extended. Its no-
compromise architecture makes it particularly well suited for taxing industrial
applications. It is also well suited for University teaching, due to its robustness
(separate instances) and security (instances runnable in containers).

Due to its modularity, while maintaining three simple and streamlined inter-
faces, it is very well suited for research. All aspects of BPMN can be customized
through external services, without the necessity of learning any specific tech-
nologies or programming languages.

While more then 15 years old, it maintains a healthy community of developers
and users, both from industry [8] and academia.

References
1. Ehrendorfer, M., Mangler, J., Rinderle-Ma, S.: Sensor Data Stream Selection

and Aggregation for the Ex Post Discovery of Impact Factors on Process Out-
comes. In: International Conference on Advanced Information Systems Engi-
neering. vol. 424, pp. 29–37. Springer, Melbourne, Australia - online (2021).
https://doi.org/10.1007/978-3-030-79108-7 4, https://link.springer.com/chapter/
10.1007%2F978-3-030-79108-7 4

2. Mangler, J., Beran, P., Schikuta, E.: On the Origin of Services Using RIDDL
for Description, Evolution and Composition of RESTful Services. In: 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CC-
Grid). pp. 505–508 (May 2010). https://doi.org/10.1109/CCGRID.2010.126

3. Mangler, J., Schikuta, E., Witzany, C.: Quo Vadis Interface Definition Languages?
Towards an Interface Definition Language for RESTful Services. In: Service-
Oriented Computing and Applications (SOCA’09), International Conference on.
IEEE Computer Society, Taipeh, Taiwan (2009)

4. Mangler, J., Rinderle-Ma, S.: CPEE - Cloud Process Execution Engine. In:
Limonad, L., Weber, B. (eds.) Proceedings of the BPM Demo Sessions 2014 Co-
located with the 12th International Conference on Business Process Management
(BPM 2014), Eindhoven, The Netherlands, September 10, 2014. CEUR Workshop
Proceedings, vol. 1295, p. 51. CEUR-WS.org (2014), http://ceur-ws.org/Vol-1295/
paper22.pdf

5 https://github.com/etm/

https://doi.org/10.1007/978-3-030-79108-7_4
https://doi.org/10.1007/978-3-030-79108-7_4
https://link.springer.com/chapter/10.1007%2F978-3-030-79108-7_4
https://link.springer.com/chapter/10.1007%2F978-3-030-79108-7_4
https://doi.org/10.1109/CCGRID.2010.126
https://doi.org/10.1109/CCGRID.2010.126
http://ceur-ws.org/Vol-1295/paper22.pdf
http://ceur-ws.org/Vol-1295/paper22.pdf
https://github.com/etm/

30 J. Mangler et al.

5. Mangler, J., Stuermer, G., Schikuta, E.: Cloud process execution engine-evaluation
of the core concepts. arXiv preprint arXiv:1003.3330 (2010)

6. Mangler, J., Pauker, F., Rinderle-Ma, S., Ehrendorfer, M.: centurio.work - Industry
4.0 integration assessment and evolution. In: Brocke, J.v., Mendling, J., Rosemann,
M. (eds.) Proceedings of the Industry Forum at BPM 2019 co-located with 17th
International Conference on Business Process Management (BPM 2019), Vienna,
Austria, September 1-6, 2019. CEUR Workshop Proceedings, vol. 2428, pp. 106–
117. CEUR-WS.org (2019), http://ceur-ws.org/Vol-2428/paper10.pdf

7. Mangler, J., Rinderle-Ma, S.: Rule-Based Synchronization of Process Activities.
In: Hofreiter, B., Dubois, E., Lin, K.J., Setzer, T., Godart, C., Proper, E., Bo-
denstaff, L. (eds.) 13th IEEE Conference on Commerce and Enterprise Comput-
ing, CEC 2011, Luxembourg-Kirchberg, Luxembourg, September 5-7, 2011. pp.
121–128. IEEE Computer Society (2011). https://doi.org/10.1109/CEC.2011.23,
https://doi.org/10.1109/CEC.2011.23

8. Pauker, F., Mangler, J., Rinderle-Ma, S., Pollak, C.: centurio.work - Modular Se-
cure Manufacturing Orchestration. In: Aalst, W.M.P.v.d., Casati, F., Conforti,
R., Leoni, M.d., Dumas, M., Kumar, A., Mendling, J., Nepal, S., Pentland, B.T.,
Weber, B. (eds.) Proceedings of the Dissertation Award, Demonstration, and In-
dustrial Track at BPM 2018 co-located with 16th International Conference on
Business Process Management (BPM 2018), Sydney, Australia, September 9-14,
2018. CEUR Workshop Proceedings, vol. 2196, pp. 164–171. CEUR-WS.org (2018),
http://ceur-ws.org/Vol-2196/BPM 2018 paper 33.pdf

9. Stertz, F., Mangler, J., Rinderle-Ma, S.: Temporal Conformance Checking at Run-
time based on Time-infused Process Models. CoRR abs/2008.07262 (2020),
https://arxiv.org/abs/2008.07262, eprint: 2008.07262

10. Stertz, F., Rinderle-Ma, S., Mangler, J.: Analyzing Process Concept Drifts Based
on Sensor Event Streams During Runtime. In: Fahland, D., Ghidini, C., Becker, J.,
Dumas, M. (eds.) Business Process Management - 18th International Conference,
BPM 2020, Seville, Spain, September 13-18, 2020, Proceedings. Lecture Notes in
Computer Science, vol. 12168, pp. 202–219. Springer (2020). https://doi.org/10.
1007/978-3-030-58666-9 12, https://doi.org/10.1007/978-3-030-58666-9 12

http://ceur-ws.org/Vol-2428/paper10.pdf
https://doi.org/10.1109/CEC.2011.23
https://doi.org/10.1109/CEC.2011.23
https://doi.org/10.1109/CEC.2011.23
http://ceur-ws.org/Vol-2196/BPM_2018_paper_33.pdf
https://arxiv.org/abs/2008.07262
https://doi.org/10.1007/978-3-030-58666-9_12
https://doi.org/10.1007/978-3-030-58666-9_12
https://doi.org/10.1007/978-3-030-58666-9_12
https://doi.org/10.1007/978-3-030-58666-9_12
https://doi.org/10.1007/978-3-030-58666-9_12

	Cloud Process Execution Engine: Architecture and Interfaces
	1 Introduction
	2 BPM Basics
	3 Process Engine Interfaces
	3.1 Control Interface
	3.2 Operation Interface
	3.3 Data Stream Interface

	4 Lifecycles
	4.1 Instance Lifecycle
	4.2 Activity Lifecycle
	4.3 Task Lifecycle

	5 Components
	5.1 Control Interface
	5.2 Data Stream Interface
	5.3 Operation Interface

	6 Highly Scalable Architecture
	7 Conclusion

