
Collaboration Miner: Discovering Collaboration
Petri Nets (Extended Version)

Janik-Vasily Benzin1(�) and Stefanie Rinderle-Ma1

Technical University of Munich, TUM School of Computation, Information and
Technology, Garching, Germany

{janik.benzin,stefanie.rinderle-ma}@tum.de

Abstract. Most existing process discovery techniques aim to mine mod-
els of process orchestrations that represent behavior of cases within one
business process. Collaboration process discovery techniques mine mod-
els of collaboration processes that represent behavior of collaborating
cases within multiple process orchestrations that interact via collabora-
tion concepts such as organizations, agents, and services. While workflow
nets are mostly mined for process orchestrations, a standard model for
collaboration processes is missing. Hence, in this work, we rely on the
newly proposed collaboration Petri nets and show that in combination
with the newly proposed Collaboration Miner (CM), the resulting rep-
resentational bias is lower than for existing models. Moreover, CM can
discover heterogeneous collaboration concepts and types such as resource
sharing and message exchange, resulting in fitting and precise collabora-
tion Petri nets. The evaluation shows that CM achieves its design goals:
no assumptions on concepts and types as well as fitting and precise mod-
els, based on 26 artificial and real-world event logs from literature.

Keywords: Collaboration Mining · Collaboration Process Discovery · Inter-
organizational Processes · Multi-agent Systems

1 Introduction

Process discovery aims to discover a process model from process executions
recorded in an event log [8]. We distinguish two types of executed processes:
Process orchestrations or collaboration processes that represent the control-flow
for similar cases [14] or for collaborating cases [11] respectively. In the first case,
process orchestration discovery (POD) techniques aim at discovering process
models of process orchestrations from a set of process instances correlated by
cases [14]. In the second case, collaboration process discovery (CPD) [31,13,21]
techniques aim to discover a process model of collaboration processes from a
set of process instances correlated by collaborating cases. Since collaboration
processes are composed of multiple process orchestrations that jointly achieve a
shared business goal, its collaborating cases contain multiple cases each corre-
sponding to a particular process orchestration, i.e., cases and orchestrations are

ar
X

iv
:2

40
1.

16
26

3v
4

 [
cs

.F
L

]
 1

0
O

ct
 2

02
4

https://orcid.org/0000-0002-3979-400X
https://orcid.org/0000-0001-5656-6108

2 J.-V. Benzin and S. Rinderle-Ma

in a one-to-one relationship. Most of the CPD techniques target their own class
of compositional Petri net to model a collaboration process, with exceptions
that target Business Process Modeling Notation1 (BPMN) like [17,12], but can
be transformed into an equivalent Petri net. Hence, CPD techniques are char-
acterized by targeting different compositional Petri nets, yet a standard model
similar to workflow nets for process orchestrations is missing [11].

The decision of which model class to target in process discovery is crucial
as it determines the representational bias [2] that implies the search space for
the discovery technique. The variety among CPD techniques results from spe-
cializing on certain collaboration processes, e.g., cross-departmental healthcare
processes (CCHP) in healthcare [21], inter-organizational processes [13] in var-
ious domains, and web service compositions [29]. These specializations justify
assumptions on collaborations and their interaction patterns [10], e.g., only bi-
lateral, point-to-point message exchanges exist for [21]. Which of the four collab-
oration types, i.e., message exchanges, handover-of-work, resource sharing, and
activity execution, are supported also originates from the chosen collaboration
process, e.g., only message exchanges and handover-of-work are discovered in
[13]. In order to increase generalizability and lower the representational bias of
current CPD, we state our research question as follows: How can we discover
fitting and precise process models of collaboration processes from a
single event log in general?

By proposing collaboration Petri nets (cPN) and designing the new Collab-
oration Miner (CM) to discover cPN , our contribution results in a generic CPD
technique that mines fitting and precise collaboration process models across do-
mains. CM discovers high quality models for all of the 22 artificial event logs that
are recorded from multi-agent systems [23] and inter-organizational processes
[13]. Moreover, CM discovers high quality models for the four real-world event
logs that are recorded from healthcare collaboration processes [21]. As CM with
its cPN target supports all four collaboration types and does not assume certain
interaction patterns, the representational bias is lowered and model quality is
maintained across heterogeneous collaboration processes. Note that we assume a
single event log recorded from executing a collaboration process is given, i.e., we
abstract from event extraction, merging, and correlation [14] with corresponding
clock synchronization issues as well as privacy concerns [12].

First, basic definitions and notations are repeated in Sect. 2. The cPN for-
malism is introduced in Sect. 3. Section 4 presents CM by specifying event log
requirements and a generic approach for discovery. An empirical evaluation of
CM in comparison to existing CPD techniques is reported in Sect. 5. Next, re-
lated work is discussed in Sect. 6. Lastly, Sect. 7 concludes this paper and gives
an outlook.

1 https://www.omg.org/spec/BPMN/2.0/

https://www.omg.org/spec/BPMN/2.0/

Collaboration Miner: Discovering Collaboration Petri Nets 3

2 Preliminaries

We repeat basic definitions and notations.
Let X, Y be sets.
− P(X) = {X ′ | X ′ ⊆ X} denotes the powerset of X, and P+ (X) = P(X) \ ∅
(with ∅ the empty set) denotes the set of all non-empty subsets of X. Given set
X ′, the restriction of R’s domain to X ′ is R|X′ = {(x, y) ∈ R | x ∈ X ′}.
− A trace overX of length n ∈ N is a function σ : {1, . . . , n} → X. For |σ| = 0, we
write σ = ϵ and for |σ| > 0, we write σ = ⟨x1, . . . , xn⟩. The set of all finite traces
over X is denoted by X∗. We write x ∈ σ for x ∈ X, if ∃i∈{1,...,|σ|} x = σ(i).
− A multiset (or bag) m over X is a function m : X → N, i.e., m(x) ∈ N
or xm(x) for x ∈ X denotes the number of times x appears in m. For x /∈ X,
we define m(x) = 0. B(X) denotes the set of all finite multisets over X. The
support of multiset m ∈ B(X) is defined by supp(m) = {x ∈ X | m(x) > 0}, i.e.,
the support is the set of distinct elements that appear in m at least once. We

also write m = [x
m(x1)
1 , . . . , x

m(xn)
n] for supp(m) = {x1, . . . , xn}. Set operations

(subset, addition, subtraction) are lifted to multisets in the standard way [3].
− Let Λ be a finite set of activity labels, where Λ{τ} = Λ ∪ τ for τ /∈ Λ the silent
activity [9]. A labelled Petri net is a 5-tuple N = (P, T, F, l, Λ{τ}), where P is the
set of places, T is the set of transitions with P ∩ T = ∅, F ⊆ ((P ×T)∪(T ×P))
is the flow relation, and l : T → Λ{τ} is the transition labelling function. We
define the preset of x ∈ P ∪ T by •x = {y | (y, x) ∈ F} and the postset of
x by x• = {y | (x, y) ∈ F}. A multiset m ∈ B(P) is called a marking. Given
a marking m, m(p) specifies the number of tokens in place p. The transition
enabling (N,m)[t⟩ for t ∈ T is defined by (N,m)[t⟩ iff m(p) ≥ 1 for all p ∈ •t. An
enabled transition (N,m)[t⟩ can fire, denoted by (N,m)[l(t)⟩(N,m′), resulting
in a new marking m′ defined by m′ + •t = m + t•. A marking m′ is reachable
from (N,m) iff a trace of transition firings exists that starts in (N,m) and ends
in (N,m′). N is a workflow net (WF-net) iff (i) there exists a single source place
i ∈ P : •i = ∅; (ii) there exists a single sink place o ∈ P : o• = ∅; and (iii) every
node x ∈ P ∪ T is on a directed path from i to o. The initial marking of N is [i]
and the final marking is [o].

3 Collaboration Petri Nets

This section introduces collaboration Petri nets (cPN). We conceptualize the or-
ganizations/departments, agents, and services that collaborate in a collaboration
process by a set of collaboration concepts C. Each concept’s dynamic behavior is
a process orchestration. Hence, a workflow collection lists the disjunct WF-nets
of each collaboration concept in a collaboration process:

Definition 1 (Workflow Collection). Let C be the set of collaboration con-
cepts in a collaboration process. A workflow collection is a tuple WC = (Nc)c∈C
of WF-nets Nc = (Pc, Tc, Fc, lc, Λ{τ}) with disjunct place and transition names,
i.e., ∀c,c′∈C if c ̸= c′, then (Pc ∪ Tc)∩ (Pc′ ∪ Tc′) = ∅. We define:

4 J.-V. Benzin and S. Rinderle-Ma

Message
channel
Resource
type

Handover-
of-work

Message
exchange

Resource
sharing

Activity
Execution

c1N

c2N

tt

t
t

sc
i

p
p

p
ac, pac,

1

1

1

1 t
1

,1p3
3 t5

p5

p6

o

o oo
2 222

2

t 44 t6i
i i

pr

p

a

b

c

d

e

f
g

t

Fig. 1. Collaboration Petri net cPN with all four collaboration types.

– Tu =
⋃

c∈C Tc, P
u =

⋃
c∈C Pc, F

u =
⋃

c∈C Fc, the sets of transitions, places,
and arcs of the workflow collection respectively,

– lu : Tu → Λ{τ}, l
u(t) = lc(t) for t ∈ Tc.

In Fig. 1, a cPN is depicted. Two agents “c1” and “c2” collaborate in this
section’s running example. C equals the two agent names. Each agent’s process
orchestration is modelled as a WF-net (denoted in blue in Fig. 1) without col-
laborations. We refer to the process orchestrations in a collaboration process as
the “intra-process” behavior of the collaboration process.

There exist four collaboration types υ ∈ Υ : Message exchange (υm), handover-
of-work (υh), resource sharing (υr), and activity execution (υs) [21,11]. υm, υh,
and υr are asynchronous and υs is synchronous. Following existing CPD tech-
niques [21,30], handover-of-work is a special case of message exchange. For in-
stance, “c2” hands the work over to “c1” as represented by pac,1 in Fig. 1. In
contrast, message exchange via asynchronous collaboration places pac can occur
for any transition of a WF-net, e.g., pac,2. Further collaborations in Fig. 1 are:
Resource sharing of resource type pr,1 and an activity execution tsc of activ-
ity “g” between “c1” and “c2”. All collaborations between WF-nets of the four
types are defined by a collaboration pattern:

Definition 2 (Collaboration Pattern). Let WC = (Nc)c∈C be a workflow
collection. A collaboration pattern is a tuple CPWC = (PAC , PRS , ra, AC,ET),
where:

1. PAC is the set of asynchronous collaboration places that do not intersect with
existing names, i.e., PAC ∩ (Pu ∪ Tu) = ∅ (cf. Def. 1),

2. PRS ⊆ PAC is the set of shared resource collaboration places,
3. ra : PRS → N+ is the resource allocation function, i.e., for shared resource

type pr ∈ PRS, there exist ra(pr) shared resources,
4. AC = {(pac, Ts, Tr) ∈ PAC × P+(Tu) × P+(Tu) | ∀t∈Ts,t′∈Tr l

u(t) ̸= τ ∧
lu(t′) ̸= τ} is the asynchronous collaboration relation, i.e., (pac, Ts, Tr) with
pac ̸∈ PRS denotes that transitions t ∈ Ts send a message and transitions
t′ ∈ Tr receive a message of type pac via channel pac,

5. for every pr ∈ PRS there exists (pr, T1, T2) ∈ AC such that T1 = T2, i.e.,
resource types are used and released in transitions t ∈ T1, and

6. ET = {(tsc, Tsc) ∈ Tu × P+(Tu) | tsc ∈ Tsc ∧ lu(tsc) ̸= τ ∧ ∀t,t′∈Tsc
lu(t) =

lu(t′)} is the relation of synchronous collaborations induced by equally-labelled
transitions.

Collaboration Miner: Discovering Collaboration Petri Nets 5

Observe that all three asynchronuous collaboration types are encoded by
relation AC (4). Distinctions are made for resource sharing through PRS (2),
the resource allocation ra (3), and the self-loop requirement in (5). Handover-
of-work is not explicitly differentiated, since its only difference is the “location”
of its receiving transitions Tr within the receiving WF-nets. Formally, handover-
of-work is determined by the condition: given some collaboration concept c ∈ C,
a transition t ∈ ic• in the postset of source place ic in WF-net Nc has an
asynchronous collaboration place pac ∈ PAC in its preset pac ∈ •t [32]. Inducing
synchronous collaboration by equally-labelled transitions (6) follows all existing
CPD techniques [24,33,28,6,23,21,9] with synchronous collaboration.

Note that our collaboration pattern builds on existing techniques with respect
to collaboration type modeling. The main difference is that we take a global
view and we generalize the collaboration types and the message communication
models of existing techniques (cf. Sect. 6). First, our definition provides a global
view on the collaborations in a collaboration process, as all collaborations of
the collaboration process are defined in a single collaboration pattern. Because
the collaboration pattern is separated from the intra-process behavior of the
collaboration process, our global view avoids redundancies and simplifies the
discovery of collaboration processes in Sect. 4. In contrast, the local view of
existing techniques (e.g., [21]) represents the collaborations in each concept’s
process orchestration, i.e., the “inter-process” collaboration behavior is included
in the “intra-process” behavior. Hence, a single collaboration is included multiple
times in different process orchestrations such that the collaboration has to be
discovered multiple times. Second, our definition generalizes the point-to-point
communication model of [12] to multiple sender and receivers per message type.
Similar to [23], our model allows for different sending transitions and receiving
transitions per collaboration concept and message type pac.

Given a workflow collection WC and collaboration pattern CPWC , a collab-
oration Petri net is the result of merging the WF-nets in WC as specified by the
collaboration pattern in a similar, yet generalized manner to [4].

Definition 3 (Collaboration Petri Net (cPN)). Let CPWC = (PAC , PRS ,
ra,AC,ET) be a collaboration pattern with WC = (Nc)c∈C a workflow col-

lection. A Collaboration Petri Net is a marked Petri net cPN =
⊎CP

c∈C Nc =
((P, T, F, l, Λ{τ}),m0) defined as:

1. P = Pu ∪ PAC ∪ {i, o} (cf. Def. 1),
2. T = r (Tu)∪{ti, to}, with r a renaming function: r(x) = tsc if there exists a

(tsc, Tsc) ∈ ET such that t ∈ Tsc, otherwise r(x) = x,
3. {i, o, ti, to} ∩ (Pu ∪ Tu ∪ PAC) = ∅,
4. F ′ = Fu ∪

{(t, p) ∈ Tu × PAC | (p, x, y) ∈ AC ∧ t ∈ x} ∪
{(p, t) ∈ PAC × Tu |(p, x, y) ∈ AC ∧ t ∈ y} ∪ {(i, ti) , (to, o)} ∪ {(ti, ic) |
c ∈ C} ∪ {(oc, to) | c ∈ C},

5. F = {(r(x), r(y)) | (x, y) ∈ F ′},
6. l(t) = lu(t) if t ∈ Tu, l(t) = τ otherwise,

6 J.-V. Benzin and S. Rinderle-Ma

7. m0(p) = 1 if p = i, m0(p) = ra(p) if p ∈ PRS and m0(p) = 0 otherwise.

Observe that the example in Fig. 2 is a cPN =
⊎CP

c∈C Nc. The collaboration
pattern CP “consists of” the two asynchronous message places pac,1, pac,2, the
asynchronous resource place pr,1, and the synchronous activity execution tran-
sition tsc. The collaboration process starts by instantiating a collaborating case
as modelled by m0(i) = 1. The collaborating case corresponds to a case for
“c1” and to a case for “c2”. The collaborating case ends after all agent’s pro-
cess orchestrations ended, i.e., the following final marking is reached m(o) = 1,
m(p) = ra(p) if p ∈ PRS , and m(p) = 0 otherwise.

Note that resource places do not change the semantics in an untimed setting,
but cPNs extended with time delays for transitions firings would be sensitive
to resource places, i.e., discovering resource places supports subsequent analysis.
Also note that the collaboration concepts in a collaboration process interact
one-to-one, i.e., there exists a single instance of each collaboration concept for
execution. Hence, collaboration processes only intersect with artifact- or object-
centric processes [6] with respect to synchronous collaboration in a one-to-one
relationship. Hence, CPD techniques cannot be generally applied in an object-
centric setting. Next, we show how CM discovers cPNs from event logs.

4 Collaboration Miner

CM is a technique to discover a cPN from event log L. The next section intro-
duces requirements on event logs L such that CM can be applied. In Sect. 4.2,
CM with log projection π and collaboration discovery cdisc is defined in detail.

4.1 Event Log Requirements

CM takes an event log as input. Event logs are either generated by some collab-
oration process model, e.g., a cPN , or are extracted from information systems
that support the process execution [14]. We apply the same conceptualization
of interleaving semantics and totally-ordered traces of events to model business
processes as the majority of discovery techniques, i.e., POD [8] and CPD [11].

Table 1. Five events (represented by rows) of real-world event log LEM [21].

Event case act (activity) timestamp c (concept) rs (resource) s (send msg) r (receive msg)

e1 t1 register 2019-12-28T00:20:21 {Emergency} ∅ ∅ ∅
e2 t1 rescue 2019-12-28T01:20:21 {Emergency} {charging system} ∅
e3 t1 reserve 2019-12-28T10:20:21 {X ray} {charging system} {acceptance notice} {reservation form}
e4 t1 plan imaging 2019-12-28T11:20:21 {Surgical} ∅ {photo form} {acceptance notice}
e5 t1 consult 2019-12-28T23:20:21 {Surgical, Cardiovascular} {diagnosis room} ∅ ∅

Definition 4 (Event Log). Let A and V be universes of attribute names and
values respectively. An event is a function e : A → V. We denote the universe
of events with E. An event log is a multiset of event traces L ⊆ B(E∗).

Collaboration Miner: Discovering Collaboration Petri Nets 7

Table 1 depicts five events e1, . . . , e5 as rows with mappings e1(case) = t1,
e2(act) = rescue, e3(c) = {X ray}, e5(rs) = {diagnosis room} , e4(s) = {photo
form}, and e4(r) = {acceptance notice}. All five events e1, . . . , e5 ∈ σ are in the
same trace σ ∈ LEM. LEM is recorded from executing a healthcare collaboration
process in which hospital departments collaborate to treat patients [21].

We distinguish two requirements on event logs. Note that we assume a single
event log of the collaboration process to be extracted, merged, and correlated
already (cf. Sect. 1).

R1 ∀σ∈L ∀e∈σ e(act) ̸= ⊥, i.e., all events of L have a defined activity.
R2 ∀σ∈L ∀e∈σ e(c) ⊆ C ∧ (∃e′∈σ|e′(c)| ≥ 1 ∨ (∃σ1,σ2∈L, e1∈σ1, e2∈σ2

e1(rs) ∩
e2(rs) ̸= ∅ ∨ e1(s) ∩ e2(r) ̸= ∅)), i.e., all events in the event log L record a
set of concepts in the “c” (concept) attribute and each trace records at least
a synchronous collaboration, two traces share a resource, or share a message
type.

POD techniques disc can be applied on event logs that satisfy requirement
R1. In contrast, CM can only be applied on event logs that satisfy both re-
quirement R1 and R2. R2 states that each event contains information on the
involved collaboration concepts (attribute “c”). Additionally, each trace contains
a synchronous collaboration, i.e., multiple concepts in the “c” attribute, or has
at least one shared resource or message type in common with another trace. For
instance, e4(s) = {photo form} in Tab. 1 means that during execution of activity
“plan imaging” a message of type “photo form” is sent. If neither synchronous
collaboration, resource sharing, nor message exchanges are recorded, the event
log cannot be qualified as recording process executions from collaboration pro-
cesses. We assume a first-in-first-out message channel per message type with a
one-to-one relation between message types and channels similar to [33,21]. Thus,
message instance identifiers are not required.

The “c” attribute enables applying CPD techniques in general, as otherwise
the information on what concept has executed what activity is missing. Also,
the “c” attribute enables to discover synchronous collaboration υs, the “rs”
attributes enables discovery of resource sharing υr, and the “s” & “r” attributes
enable discovery of message exchange υm and handover-of-work υh collaboration
(cf. Sect. 3). Note that an event log recorded from a collaboration process whose
collaboration concepts communicate via a Pub/Sub [12] communication model
only meets requirements R1 and R2, if the concepts communicate via messages
or another collaboration type, too (cf. Sect. 7). Also, an event log L that satisfies
both requirements can either be serialized into the eXtensible Event Stream
(XES) log format [1] or into the Object-Centric Event Log (OCEL) format [6].
Given L, we can apply CM as proposed in the next section.

4.2 CM Algorithm

We start with introducing the log projection π to project event log L on a
collaboration concept c ∈ C:

8 J.-V. Benzin and S. Rinderle-Ma

Definition 5 (Log Projection). Let L ⊆ B(E∗) be an event log that satis-
fies requirements R1 and R2. Log projection on collaboration concept c ∈ C is

defined by πc(L) = [σ
L(σ1)
1,c , . . . , σ

L(σn)
n,c] for supp(L) = {σ1, . . . , σn} and σi,c =

σi |{e∈A→V | c∈ e(c)}
2 with i ∈ {1, . . . , n}.

For example, π“Emergency”(LEM) results in trace σ1 to only contain the first
two events of the five events depicted in Tab. 1. In the following, we define the
Collaboration Miner (CM) and illustrate with example event log LEM.

Step 1. Given event log L, the first step determines five sets and three func-
tions by extracting attribute information from each event: The set of collabo-
ration concepts C =

⋃
σ ∈L, e∈σ e(c), the set of asynchronous message places

PM =
⋃

σ ∈L, e∈σ e(s) ∪ e(r), the set of asynchronous resource sharing places
PRS =

⋃
σ ∈L, e∈σ e(rs), and the set of activities ΛL =

⋃
σ∈L, e∈σ e(act.). The

function Λs(x) returns the set of activities that sent message x ∈ PM , Λr(x)
returns the set of activities that received message x ∈ PM , and Λrs(x) returns
the set of activities that shared resource x ∈ PRS . All three functions are de-
termined by Λy(x) =

⋃
σ ∈L, e∈σ,e(y)=x e(act.) for y ∈ {s, r, rs} with x ∈ PM if

y ̸= rs and x ∈ PRS otherwise.
Example: For Tab. 1, we have collaboration concepts C ={Emergency, X-Ray,
Surgical, Cardiov.}, asynchronous message places PM = {photo form, res. form,
accept. notice, . . .}, asynchronous resource sharing places PRS = {charg. sys-
tem, diagn. room }, the set of activities ΛL = { register, . . .}, the function re-
turning sending activities per message Λs(x) = {(photo form, {plan imaging}),
. . .}, the function returning receiving activities per message Λr(x) = {(res.
form, {reserve}), (accept. notice, {plan imaging}), . . .}, and the function return-
ing resource sharing activities per resource Λrs(x) = {(charg. system, {rescue,
reserve}), . . .}.
Step 2. Project L on collection of event logs Lc1 , . . . , Lcn with πci(L) = Lci

for i ∈ {1, . . . , |C|}. Apply POD technique disc on each projected event log Lci

resulting in a collection of WF-nets Nc1 , . . . , Ncn . Any POD technique disc can
be applied, as long as it discovers WF-nets. Check if a valid WF-net is discovered
on each projected event log. Note that if disc discovers duplicate labels [8], the
respective transitions will be fused as if they represent synchronous collabora-
tion υs without an additional label renaming. Construct a workflow collection
WC = (Nc)c∈C with Nc = (Pc, Tc, Fc, lc, ΛL,{τ}) by renaming place and transi-
tion names to avoid name clashes.
Example: For Tab. 1, we have Lc1 = {e1, e2, . . .}, Lc2 = {e3, . . .}, Lc3 =
{e4, e5, . . .}, and Lc4 = {e5, . . .}. We apply Inductive Miner [19] as disc, resulting
in four valid WF-nets Nc1 , . . . , Nc4 as highlighted with blue-dotted rectangles on
the left in Fig. 2 (overlapping transitions t15, t17 are to be split). Note that the
place and transition names are already renamed such that WCex = (Nc)c∈C is
a workflow collection.

2 We inductively define the projection of a trace on a set Y by ϵ|Y = ϵ, (⟨x⟩ · σ)|Y =
⟨x⟩ · σ|Y if x ∈ Y and (⟨x⟩ · σ)|Y = σ|Y otherwise.

Collaboration Miner: Discovering Collaboration Petri Nets 9

Step 3. Apply collaboration discovery cdisc to mine collaboration pattern CP as
defined in the following. Compute sending transitions Ts(x) = {t ∈ Tu | lu(t) ∈
Λs(x)} (cf. Def. 1), receiving transitions Tr(x) = {t ∈ Tu | lu(t) ∈ Λr(x)}, re-
source sharing transitions Trs(x) = {t ∈ Tu | lu(t) ∈ Λrs(x)}, message exchanges
AC ′ = {(pac, Ts(pac), Tr(pac)) | pac ∈ PM ∧ Ts(pac) ̸= ∅ ∧ Tr(pac) ̸= ∅}, and
resource sharing AC ′′ = {(pac, Trs(pac), Trs(pac)) | pac ∈ PRS ∧ Trs(pac) ̸= ∅}.
If events in L do not contain information on lifecycles [8], set ra(pr) = 1 for
pr ∈ PRS , else determine maxpr (L) the maximum of concurrently running
activities sharing pr and set ra(pr) = maxpr (L). Then, collaboration pattern
CP = (PRS ∪ PM , PRS , ra, AC ′ ∪ AC ′′, ET), where ET is induced by equally-
labelled transition subsets of all transitions in WC (cf. Def. 2).
Example: For WCex (cf. Fig. 2), we have sending transitions Ts(x) =
{(accept. not., {t9}), . . .}, receiving transitions Tr(x) = {(res. form, {t9}), . . .},
resource sharing transitions Trs(x) = {(charg. system, {t4, t9}), . . .}, message
exchanges AC ′ = {(res. form, {t12}, {t9}), . . .}, and resource sharing AC ′′ =
{(charg. system, {t4, t9}, {t4, t9}), . . .}. ra is a constant function at value 1, be-
cause LEM does not record lifecycles. Then, CP = (PRS ∪ PM , PRS , ra, AC ′ ∪
AC ′′, {(t15, {t15, t16}) . . .}).
Step 4. Return cPN = ((P, T, F, l, ΛL,{τ}),m0) =

⊎CP
c∈C Nc.

Example: The cPN is depicted on the left in Fig. 2.

Surgical Cardiov.X-RayEmergency

register image

reserve

discharge

pay fees

rescue

give prescript.

Message
channel

Legend CM CCHP

Note that both models are reduced in size and
visually transformed for presentation purposes.

Resource
type

consultstart image

register

charg.
system

medicine
history

reservation
form

acceptance
notice

photo
form

diagn.
room

i

o

iEmergeny

iX-Ray

ti

t2

t3

p8

p9

p10

p11

p12

p13

p14

p2 admit

plan imaging

apply for reserv.

diagnose

p15

p3

p6 p7

oEmergency
oX-Ray oSurgical

oCardiov.

iSurgical
iCardiov.

t9

t9

t10

t o

t11

t12

t13

t14

t15

t17

pre-examine

perform triage

t4 p4
p5 t5
t6

t7

Surgical Cardiov.X-RayEmergency

register image

reserve

discharge

pay fees

rescue

give prescr.give prescr.

consult consultstart image

register

charg.
system

charg. '
system

medicine
history

reservation
form

acceptance
notice

photo
form

diagn.
room

diagn.
room

iEmergeny

iX-Ray

t2

t3

p8

p9

p10

p11

p12

p13

p14

p2 admit

plan imaging

apply for reserv.

diagnose

p15

p3

p6 p7

oEmergency
oX-Ray

oSurgical oCardiov.

iSurgical
iCardiov.

t9

t9

t10

t11

t12

t13

t14

t15 t16

t17 t18

pre-examine

perform triage

t4 p4
p5 t5
t6

t7

'

Fig. 2. cPN discovered by CM and the composed RM WF net discovered by CCHP
on log EM.

The parameters of CM are inherited from the respective POD technique
disc, i.e., no new parameters are added to the algorithm. Similar to existing
CPD techniques, CM applies a divide-and-conquer approach on the collaboration
concept in the event log and POD technique disc on projected event logs (cf.
Step 2), since a collaboration process is a composition of WF-nets. Conceptually,
CM comes with a general formulation of collaboration concepts, domain-agnostic
event log requirements, no assumptions on the interaction patterns for message
exchanges, and supports all four collaboration types (cf. CP in Step 3 and

10 J.-V. Benzin and S. Rinderle-Ma

Sect. 5 for details). Consequently, resulting cPNs are not specialized on certain
collaboration processes.

Since CM builds on a Petri net theory with activity labels, CM supports
all disc that discover duplicate (l(t) = l(t′)) and silent activities (l(t) = τ).
In particular, silent activities are crucial for many control-flow patterns. Both
activities are not fused in Step 4 (cf. Step 2 and Def. 2). Note that π projects to
the empty trace ϵ for some c ∈ C in Step 2, if a trace does not contain any event
with activities executed by c. The design ensures a fitting cPN , as without the
ability to “skip” a WF-net corresponding traces cannot be perfectly replayed.
Thus, this projection conforms to the design goals of CM.

Also, CM still returns a valid cPN in case some parts of the event logs’
requirement R2 are not satisfied: Missing “rs” attribute results in PRS to be
empty, missing “s” with a “r” for some message type or vice versa results in
the type not to be included (cf. non-empty sets in Step 3), and no “s” and “r”
attributes results in PM to be empty. However, if the “c” attribute is missing, C
is undefined and Step 2 cannot be applied, i.e., collaboration concepts must be
recorded for every event such that CM discovers a valid cPN .

4.3 Tool Support

The CM implementation is publicly available at https://gitlab.com/janikbenzin/
cm in Python and builds on the PM4PY3 library, i.e., all POD techniques that
discover WF-nets in PM4PY can be applied for disc in CM. For the empirical
evaluation in the next section, the implementation comes with an automated
evaluation pipeline that supports event logs conforming to the XES extensions
as defined in [23] for multi-agent systems, in [13] for BPMN collaborations, and
in [21] for healthcare collaboration processes. Each of these XES event logs can
be automatically converted to the respective event log format required by one
of the CPD techniques in Tab. 3, e.g., XES logs are also converted to equivalent
OCEL logs. CM is implemented on the XES extension as defined in [13]. From
the 14 CPD techniques in Tab. 2, three publicly available CPD technique imple-
mentations are packaged with our CM implementation to facilitate reproducing
the empirical evaluation automatically. While object-centric process discovery
(OCPD) [6] is implemented in PM4PY, the CCHP [21] and Colliery [13] CPD
techniques were originally available with a graphical user interface only. Hence,
we have automated both the implementation of CCHP and Colliery such that
both CPD techniques are callable via the command line.

5 Experimental Evaluation

The 15 CPD techniques depicted in Tab. 2 discover different Petri net classes
or BPMN diagrams to model collaboration processes from heterogeneous do-
mains with different collaboration types. From the 15 CPD techniques, only

3 https://github.com/pm4py/pm4py-core

https://gitlab.com/janikbenzin/cm
https://gitlab.com/janikbenzin/cm
https://github.com/pm4py/pm4py-core

Collaboration Miner: Discovering Collaboration Petri Nets 11

CCHP [20,21], Colliery [13,12], OCPD [6], and Agent Miner [30] have publicly
available implementations and can be applied in our evaluation. Nevertheless,
Agent Miner is excluded from the evaluation for three reasons. First, the sup-
ported collaboration type υh together with the assumption that only a single
concept can execute an activity simultaneously (cf. Def. 4.1 in [30]) means that
the Agent Miner cannot be applied to event logs with synchronous collaboration.
Second, Agent Miner assumes that every directly-follows pair of events (e1, e2)
with different concept attributes implies a handover-of-work message between
the respective concepts in a trace (cf. Def. 4.2 in [30]), which is violated in every
of the 26 event logs. Third, we still tried to apply Agent Miner on the logs, but
were unable to get an output.

Table 2. Overview of existing CPD techniques.

CPD Year Model Υ Domains

[16] 2008 WF-nets υm Web service
[33] 2013 Integrated RM WF nets υm, υs, υr Logistics, Healthcare
[24,28] 2013/15 Artifact-centric models υs Accounting
[29] 2019 Communication nets υm Web service
[6] 2020 Object-centric Petri nets υs Commerce
[31] 2020 Top-level process model υm Logistics
[17] 2021 BPMN Choreography υm Commerce
[15] 2022 System net υs, υm, υh Retail
[18] 2022 Industry net υm Theoretical
[9] 2023 Typed Jackson nets υs Commerce
[23] 2023 Generalized WF-nets υs, υm Multi-agent systems
[30] 2023 Multi-agent system net υh Healthcare & other
[25] 2023 BPMN collab. diagram υm, υh Commerce
[20,21] 2023 Composed RM WF nets Υ Healthcare
[13,12] 2024 BPMN collab. diagram υm, υh Healthcare & other

As generation/extraction is out of scope for this paper, event logs from lit-
erature are selected. The selection criterion of meeting requirements R1 and R2
yields 26 event logs4: 12 artificial event logs from multi-agent systems [22,23],
10 artificial event logs from BPMN collaborations [13], and 4 real-world event
logs from healthcare collaboration processes [21]. For 17/22 artificial event logs
(1-A5 in Tab. 3), the true process models that generated the respective event
log are available or convertible by PM4PY’s “BPMN to Petri net” (see True in
Tab. 3). For the five artificial event logs R1-R5 conversion with PM4PY is not
possible due to the BPMN model structure, so their true process models are not
available. Also, true process models are not available for real-world event logs.
Descriptive statistics of the 26 event logs are reported in Tab. 3. The event logs
vary along the dimensions: # of events, average trace length, # of collaboration
concepts, collaboration types υ, and properties describing the respective inter-
action pattern of message exchanges υm [10]. Interaction patterns vary along the

4 Note that the smart agriculture event log in [12] only contains signalling between
concepts (Pub/Sub) and does not meet the requirements (cf. Sect. 4.1).

12 J.-V. Benzin and S. Rinderle-Ma

maximum number of collaboration concepts interacting through a message type,
i.e., one-way and two-way bilateral or multi lateral interactions, the maximum
number of transmissions per type, i.e., single or multi, and the relation between
activities sending/receiving messages per type, i.e., point-to-point (denoted by
1:1 in Tab. 3), one-to-many (1:n), and many-to-many interaction (m:n).

Each of the 26 event logs is converted to the respective CPD technique’s event
log input format. We apply CM, CCHP, Colliery, and OCPD on each converted
event log with the Inductive Miner [19] for POD disc to ensure result differences
being caused by the CPD techniques properties, e.g., supported collaboration
types, and design choices, e.g., assumptions on the interaction pattern. Inductive
Miner is chosen for its formal guarantee to discover perfectly fitting WF-nets
such that this design goal can be achieved. We report the model size as the sum
of the # of places and # of transitions in Tab. 3. We apply alignment-based
fitness and precision [5,7] to measure model quality with PM4PY except for
logs ID to SD in Tab. 3 for which we manually computed fitness and precision
(annotated with ∗) using the more efficient ProM plugin with similar parameters,
as PM4PY exceeds a space limit of >58GB on a Fedora machine with 14-core
Intel i5-13500T (13th Gen) CPU and 64 GB RAM.

[26,27] propose monotone alternatives to both alignment-based metrics. How-
ever, neither version of the monotone alternatives is suitable for our evaluation.
First, the perfectly-fitting version results in metrics equal to zero as soon as
no trace in the event log can be replayed by the discovered model. If a CPD
technique does not support synchronous collaboration υs, e.g., Colliery, it dis-
covers a model with duplicate labels for synchronous collaboration υs due to
projection. As logs may contain only traces with υs, metrics are zero and too
low. For example, 7/8 logs with υs contain only traces with υs (9-11 and EM-
SD in Tab. 3). Second, the partially-fitting version often exceeds a heap space
limit of 58GB (>3x the space of [8]). Third, alignments allow arbitrary final
markings. In contrast, the monotone metrics do not take the final marking as
input5, but compute it based on the assumption that places in the final mark-
ing are sink places. CCHP requires a final marking for resource places that are
neither a sink place nor self-loops [21], so resource places cannot be removed
(cf. Sect. 3) and monotone metrics cannot be computed for CCHP models with
resource sharing. Altogether, alignment-based metrics are more suitable, as they
can handle partially-fitting traces, are more efficient in terms of heap space, and
more flexible in terms of final markings.

We illustrate differences of CM and CCHP with their Petri nets discovered
on LEM. CCHP is “closest” to CM, as CCHP similarly claims to discover all four
collaboration types (cf. Tab. 2) and applies a comparable approach to discovery.
Hence, the illustration supports understanding the following different results. In
Fig. 2, the cPN discovered by CM (CM’s model) and on the right the com-
posed RM WF net (CCHP’s model) is depicted. While CM’s model has a global
source and sink place, CCHP does not. Hence, CM’s model has the notion that a
token in i represents a collaborating case. Most parts of the two models are sim-

5 https://github.com/jbpt/codebase/tree/master/jbpt-pm/entropia

https://github.com/jbpt/codebase/tree/master/jbpt-pm/entropia

Collaboration Miner: Discovering Collaboration Petri Nets 13

ilar, as CCHP is proposed using LEM, i.e., LEM does not violate any assumptions
by CCHP. CCHP’s model has two problems. First, it does not discover υs as
claimed, since it discovers duplicate activities for “consult” and “give prescrip-
tion”. Second, it does not discover self-loop places for resources and no resource
allocation such that “Surgical” and “Cardiov.” can never reach their sink place.
With marked resource places, CCHP’s model would force either “Surgical” or
“Cardiov.” to execute “consult”.

Considering fitness, CM is the only CPD technique that always discovers a
cPN that perfectly fits event log L (cf. Tab. 3). CCHP discovers Petri nets whose
final markings are unreachable for event logs 1, 2, and 4-11, as CCHP implicitly
assumes a point-to-point (1:1) activity relation, but still adds an interaction
for each unique activity pair, e.g., a 2:2 relation yields four activity pairs. As
resource places are not discovered as self-loop places by CCHP (cf. Fig. 2), the
only log EM with resource sharing results in a Petri net with unreachable final
marking. Since support for synchronous collaboration υs is not implemented in
CCHP, Petri nets discovered on event logs with υs have a lower fitness similar
to Colliery that does not support υs by design. Because OCPD only supports
υs (cf. Tab. 2), discovered Petri nets correspond to the parallel execution of all
collaboration concept WF-nets for event logs without υs. If υs is contained in
an event log, the parallel branches that correspond to a collaboration concept
WF-net are synchronized by synchronous collaborations. Instead of projecting
logs, OCPD flattens [6] the log such that the empty trace ϵ can never be in a
flattened event log. Consequently, a concept’s WF-net can never be skipped, but
skipping is required for logs A5, R3, and R5. Therefore, fitness is not perfect for
these logs. Also, CCHP and Colliery do not allow ϵ in projected event logs such
that CM is the only technique that achieves perfect fitness on logs A5, R3, and
R5.

Considering precision, CM and Colliery discover the most precise models for
15/26 and 12/26 event logs respectively, i.e., either CM or Colliery discover the
most precise model with the exception of CCHP for R3 and R4. In particular,
the most precise model is in the same range as the true model’s precision. CM
can discover most precise models across all three different event log groups and,
thus, across multi-agent systems, inter-organizational processes and healthcare
collaboration processes. In particular, CM discovers most precise models for the
four real-world event logs EM-SD that contain all or the majority of collaboration
types. Colliery does not discover precise Petri nets for the four real-world event
logs, because these event logs record many collaborations that are not supported
by Colliery. Considering subpar precision metrics of CM, results are often close
to the best precision, e.g., event log 1 with 0.736 vs. 0.738 or 5 with 0.586 vs.
0.598 . CCHP discovers the most precise model for 9/26 event logs due to the
final marking being unreachable for 11/26 event logs. OCPD usually discovers
the least precise model due to the low precision of parallelly executed WF-nets
without any message exchange.

Considering size, OCPD regularly discovers the smallest model, since it does
not discover asynchronous places. CCHP, Colliery, and CM are typically in the

14 J.-V. Benzin and S. Rinderle-Ma

Table 3. Model quality metrics of the true model, if available, and discovered by CM,
CCHP [21], Colliery [13], and OCPD [6] based on artificial event logs 1-12 [22,23],
A1-A5 & R1-R5 [13], and real-world event logs EM-SD [21], where Υσ = {υx | x ∈ σ}.

Event log L 1 2 3 4 5 6 7 8 9 10 11 12 A1

Events 95052 149988 92668 102404 182452 123322 88068 157098 115000 102548 160000 88089 100
Avg. trace length 19 30 19 20 36 25 18 31 23 21 32 18 8
Col. concepts 2 2 2 2 2 2 2 3 2 2 2 2 2
Col. types υ υm υm υm υm υm υm υm υm Υ⟨m,s⟩ Υ⟨m,s⟩ Υ⟨m,s⟩ Υ⟨m,s⟩ υm

υm: Max. col. con. one one one two two two two multi two two two two one
υm: Max. trans. single single single single single single multi multi single single single single single
υm: Activity rel. 1:n m:n 1:1 m:n 1:n 1:n m:n m:n m:n m:n 1:n 1:n 1:1

True
Precision 0.716 0.401 0.754 0.759 0.39 0.564 0.817 0.481 0.714 0.793 0.495 0.766 0.972
Size 66 100 88 76 109 113 61 128 105 78 94 86 22

CM
Fitness 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Precision 0.736 0.351 0.765 0.792 0.208 0.586 0.817 0.504 0.716 0.781 0.433 0.758 0.972
Size 75 125 103 92 167 132 77 148 120 88 125 95 26

CCHP
Fitness ex ex 1.0 ex ex ex ex ex ex ex ex 0.384 1.0
Precision ex ex 0.765 ex ex ex ex ex ex ex ex 0.583 0.972
Size 78 127 95 92 165 135 78 150 121 94 128 99 26

Colliery
Fitness 0.867 0.966 1.0 0.71 0.964 0.924 0.667 0.699 0.641 0.707 0.93 0.893 1.0
Precision 0.738 0.426 0.765 0.747 0.26 0.598 0.686 0.306 0.5 0.67 0.465 0.697 0.972
Size 79 131 103 94 169 136 77 295 130 96 128 104 26

OCPD
Fitness 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Precision 0.714 0.341 0.719 0.701 0.136 0.545 0.594 0.387 0.677 0.726 0.185 0.717 0.753
Size 74 123 101 90 121 128 74 142 118 86 106 93 24

Event log L A2 A3 A4 A5 R1 R2 R3 R4 R5 EM ID FP SD

Events 100 100 100 100 22 100 100 100 100 18909 50427 37816 4320
Avg. trace length 18 23 6 24 7 15 18 18 13 32 25 25 23
Col. concepts 2 3 2 4 2 2 3 3 3 6 6 4 4
Col. types υ υm Υ⟨m,h⟩ υm Υ⟨m,h⟩ υm υm Υ⟨m,h⟩ Υ⟨m,h⟩ Υ⟨m,h⟩ Υ Υ⟨m,s,h⟩ Υ⟨m,s,h⟩ Υ⟨m,s,h⟩
υm: Max. col. con. two one two two two two two two two two two two two
υm: Max. trans. single single single single single multi multi single single single single single single
υm: Activity rel. 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

True
Precision 0.648 0.645 0.998 0.646 n/a n/a n/a n/a n/a n/a n/a n/a n/a
Size 47 59 18 63 n/a n/a n/a n/a n/a n/a n/a n/a n/a

CM
Fitness 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Precision 0.606 0.435 0.998 0.44 0.538 0.419 0.293 0.649 0.945 0.986 0.797∗ 0.789∗ 0.845∗

Size 50 64 22 75 20 42 80 54 71 95 74 74 65

CCHP
Fitness 0.935 0.958 1.0 0.905 1.0 0.894 0.974 0.889 0.844 ex 1.0 0.943 0.979
Precision 0.648 0.467 0.998 0.471 0.538 0.422 0.369 0.758 0.945 ex 0.797∗ 0.615∗ 0.777∗

Size 51 65 22 71 20 41 84 55 61 105 74 76 66

Colliery
Fitness 0.935 0.935 1.0 0.888 0.6 0.894 0.846 0.757 0.785 0.918 0.865 0.88 0.857
Precision 0.648 0.645 0.998 0.646 0.333 0.439 0.333 0.638 0.814 0.253 0.233 0.176 0.229
Size 51 63 22 67 12 43 82 48 61 81 62 67 51

OCPD
Fitness 1.0 1.0 1.0 0.971 1.0 1.0 0.995 1.0 0.868 1.0 1.0 1.0 1.0
Precision 0.598 0.399 0.703 0.314 0.538 0.253 0.193 0.201 0.251 0.148 0.409∗ 0.530∗ 0.509∗

Size 48 60 20 65 20 30 66 41 59 76 68 66 58

Collaboration Miner: Discovering Collaboration Petri Nets 15

same range of size. An exception is the event log 1 for which Colliery discovers
a model of twice the size discovered by other CPD techniques. Overall, the sizes
of discovered models are close to each other and usually in the range of 1.2x the
true model size.

To sum up, the results show that support for synchronous collaboration in-
creases fitness, support for asynchronous collaboration increases precision, and
violated assumptions on interaction patterns significantly decrease fitness and
precision and can lead to models in which the final marking is not reachable. The
experimental evaluation with 26 artificial and real-world event logs with a di-
verse set of collaboration processes, collaboration types, and interaction patterns
shows that CM achieves its design goals of precise and fitting process models
without assumptions on concepts, types or patterns.

6 Related Work

To start with, we elaborate on our differences in detail to CCHP [20,21] that
is the CPD technique closest to CM. CCHP [20,21] shows multiple inconsis-
tencies between paper and implementation; hence we use CCHP sources https:
//github.com/promworkbench/ShandongPM/ as substitute for parts that are
undefined, e.g., cdisc. While CCHP has a similar divide-and-conquer approach
and modelling of collaboration types, it differs in several aspects in which CM
improves CCHP as shown in Sect. 5. CCHP does not allow empty traces in
projected logs, which lead to reduced fitness. It assumes a one-to-one activity
relation per message channel, resulting in unreachable final markings. υs is only
theoretically discovered and υr is practically not discovered as self-loop places.
CCHP does not discover resource allocations and does not specify event log re-
quirements, which leaves an early decision of applicability to the user. Lastly,
CCHP is not defined with activity labels such that duplicate and silent activities
are always fused. Hence, POD techniques such as the Inductive Miner lead to
undesirable results. Overall, CM generalizes, improves, and extends CCHP.

Regarding collaboration types, this work provides a global view on the collab-
oration process to reduce redundancies and separates the process orchestrations
(intra-process) from the collaborations (inter-process) to simplify the discov-
ery of collaboration processes. Not separating intra-process from inter-process
behavior as done in the RM WF nets [33] requires to simultaneously discover
both behaviors for each collaboration concept. As collaborations are nonetheless
discovered, collaborations are discovered multiple times.

In the following, we give a quick overview on a selection of the remain-
ing 14 CPD techniques (cf. Tab. 2). [16] discover web service compositions by
conceptualizing each message exchange as a single activity. [33] discover inter-
organizational processes without choices. [29] propose to discover hierarchically
structured services that collaborate via message exchanges. [31] discover top-level
process models in which the inter-process level is discovered and, subsequently,
refined with local process models. [17] discover process choreographies with a
focus on issues during merging of distributed event logs. [12,13] discover BPMN

https://github.com/promworkbench/ShandongPM/
https://github.com/promworkbench/ShandongPM/

16 J.-V. Benzin and S. Rinderle-Ma

collaboration diagrams that are the result of converting discovered WF-nets Nc

for each partner to BPMN and connecting activities with message flows. [12] is
the only CPD technique that supports a Pub/Sub communication model in which
the collaboration concepts communicate via signals and a sent signal can be re-
ceived multiple times by different concepts. [18] formally analyse the extent to
which POD techniques disc can be applied to discover models of asynchronously
collaborating systems. [23] propose to discover a generalized WF-net (WF-nets
that have multiple source and sink places) for each agent that collaborate via
message exchanges and synchronous activity execution with each other using
a soundness-guaranteeing PD technique disc such as the Inductive Miner [19].
Next, [30] propose to discover a multi-agent system net (MAS) net, which is a
WF-net with labels that include the activity label and the agent executing the
activity. The agents in a MAS net collaborate via handover-of-work. In general,
CM advances CPD techniques in the direction of a generalized formulation, fewer
assumptions, discovery of resource allocations, support of all four collaboration
types, of silent activities, and of more POD techniques disc.

Due to CM’s goal to discover models of collaboration processes and their one-
to-one correspondence between process instances of collaboration concepts, it
cannot be equally applied to event logs with one-to-many or many-to-many rela-
tionship between process instances of collaboration concepts or more specifically
object types. Consequently, CM is only related to CPD techniques [24,28,6,15,9]
on event logs satisfying requirements R1, R2, and no multiplicities between col-
laboration concept identifiers exist. These CPD techniques aim to integrate the
control-flow and data perspective and have, thus, a different goal. Due to the
intersection on certain event logs, we still subsume [24,28,6,15,9] under CPD
techniques in this paper despite their different goal. [24,28] discover artifact-
centric process models consisting of multiple artifact lifecycle models discovered
from Enterprise Resource Planning systems. [15] delineate a discovery framework
with true concurrent semantics that does not require a total order on events in
the event log. [9] propose a framework for (re-)discovering typed Jackson nets
that are a block-structured, sound-by-design subclass of typed Petri nets with
identifiers.

7 Conclusion and Outlook

We propose Collaboration Miner (CM) to discover fitting and precise process
models of collaboration processes. Among the heterogeneous set of existing tar-
get model classes proposed to model collaboration processes, CM proposes col-
laboration Petri nets (cPN). The cPN target class along with the CM’s divide-
and-conquer approach on the event log and custom collaboration discovery cdisc
lowers the representational bias between discovered models and the true collabo-
ration process. More specifically, CM generalizes over domains and their collab-
oration processes through collaboration concepts, types, and event log require-
ments. In addition, cdisc eliminates assumptions of existing techniques on the
interaction patterns in the event log. CM’s ability to discover high-quality mod-

Collaboration Miner: Discovering Collaboration Petri Nets 17

els across domains and interaction patterns is empirically shown on 26 artificial
and real-world event logs. Future directions are towards providing soundness
guarantees, discovering multiplicities between collaboration concept instances,
and supporting the Pub/Sub communication model for collaboration type υm.
Extending CM to also discover process models that can represent multiplicities
between collaboration concept instances necessitates an extension to cPNs that
would bring collaboration and object-centric process mining closer together.

References

1. eXtensible Event Stream (XES). IEEE Std 1849-2016 pp. 1–50 (Nov 2016)
2. van der Aalst, W.M.P.: On the Representational Bias in Process Mining. In: 2011

IEEE WETICE. pp. 2–7 (Jun 2011)
3. van der Aalst, W.M.P., et al.: Soundness of workflow nets: classification, decidabil-

ity, and analysis. Form. Asp. Comput. 23(3), 333–363 (2011)
4. van der Aalst, W.M.P.: Modeling and analyzing interorganizational workflows. In:

Proceedings 1998 ACSD. pp. 262–272 (1998)
5. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on

process models for conformance checking and performance analysis. WIREs Data
Mining and Knowledge Discovery 2(2), 182–192 (2012)

6. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Funda-
menta informaticae 175(1-4), 1–40 (2020)

7. Adriansyah, A., Munoz-Gama, J., Carmona, J., Van Dongen, B.F., Van Der Aalst,
W.M.: Measuring precision of modeled behavior. Inf Syst E-Bus Manag 13(1),
37–67 (2015)

8. Augusto, A., et al.: Automated Discovery of Process Models from Event Logs:
Review and Benchmark. IEEE Trans Knowl Data Eng 31(4), 686–705 (2019)

9. Barenholz, D., Montali, M., Polyvyanyy, A., Reijers et al., H.A.: There and Back
Again. In: PETRI NETS 2023. pp. 37–58 (2023)

10. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In:
BPM. pp. 302–318 (2005)

11. Benzin, J.V., Rinderle-Ma, S.: Petri Net Classes for Collaboration Mining: Assess-
ment and Design Guidelines. In: Process Mining Workshops (2024)

12. Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F.: A technique for discovering
BPMN collaboration diagrams. SoSyM (2024)

13. Corradini, F., Re, B., Rossi, L., Tiezzi, F.: A Technique for Collaboration Discov-
ery. In: Enterprise, Business-Process and Inf, Syst. Modeling. pp. 63–78 (2022)

14. Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and ab-
straction of event data for process mining. Data Mining and Knowl. Disc. 10(3)
(2020)

15. Fettke, P., Reisig, W.: Systems Mining with Heraklit: The Next Step (2022),
arXiv:2202.01289 [cs]

16. Gaaloul, W., Bäına, K., Godart, C.: Log-based mining techniques applied to Web
service composition reengineering. Serv. Oriented Comp. Appl. 2(2), 93–110 (2008)

17. Hernandez-Resendiz, J.D., Tello-Leal, E., Marin-Castro, H.M., Ramirez-Alcocer,
U.M., Mata-Torres, J.A.: Merging Event Logs for Inter-organizational Process Min-
ing. In: New Perspectives on Enterprise Decision-Making Applying Artificial Intel-
ligence Techniques, pp. 3–26. Springer (2021)

http://arxiv.org/abs/2202.01289

18 J.-V. Benzin and S. Rinderle-Ma

18. Kwantes, P., Kleijn, J.: Distributed Synthesis of Asynchronously Communicating
Distributed Process Models. In: ToPNoC, pp. 49–72 (2022)

19. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Event Logs - A Constructive Approach. In: PETRI NETS
2013. pp. 311–329 (2013)

20. Liu, C., Li, H., Zeng, Q., Lu et al., T.: Cross-Organization Emergency Response
Process Mining: An Approach Based on Petri Nets. Math. Probl. Eng. 2020,
e8836007 (2020)

21. Liu, C., Li, H., Zhang, S., Cheng, L., Zeng, Q.: Cross-Department Collaborative
Healthcare Process Model Discovery From Event Logs. IEEE Trans. Autom. Sci.
Eng. 20(3), 2115–2125 (2023)

22. Nesterov, R.: Compositional discovery of architecture-aware and sound process
models from event logs of multi-agent systems: experimental data. (May 2021)

23. Nesterov, R., Bernardinello, L., Lomazova, I., Pomello, L.: Discovering
architecture-aware and sound process models of multi-agent systems: a compo-
sitional approach. SoSyM (1), 351–375 (2023)

24. Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic Discovery of Data-
Centric and Artifact-Centric Processes. In: BPM Workshops. pp. 316–327 (2013)

25. Peña, L., Andrade, D., Delgado, A., Calegari, D.: An Approach for Discovering
Inter-organizational Collaborative Business Processes in BPMN 2.0. In: PM Work-
shops. pp. 487–498. Springer (2024)

26. Polyvyanyy, A., Kalenkova, A.: Monotone Conformance Checking for Partially
Matching Designed and Observed Processes. In: ICPM. pp. 81–88 (2019)

27. Polyvyanyy, A., Solti, A., Weidlich, M., Ciccio et al., C.D.: Monotone Precision
and Recall Measures for Comparing Executions and Specifications of Dynamic
Systems. ACM Trans. Softw. Eng. Methodol. 29(3), 17:1–17:41 (2020)

28. Popova, V., Fahland, D., Dumas, M.: Artifact Lifecycle Discovery. Int. J. Coop.
Inf. Syst. 24(01), 1550001 (2015)

29. Stroiński, A., Dwornikowski, D., Brzeziński, J.: A Distributed Discovery of Com-
municating Resource Systems Models. Trans. Serv. Comput. 12(2), 172–185 (2019)

30. Tour, A., Polyvyanyy, A., Kalenkova, A., Senderovich, A.: Agent Miner: An Al-
gorithm for Discovering Agent Systems from Event Data. In: BPM. pp. 284–302
(2023)

31. Zeng, Q., Duan, H., Liu, C.: Top-Down Process Mining From Multi-Source Run-
ning Logs Based on Refinement of Petri Nets. IEEE Access 8, 61355–61369 (2020)

32. Zeng, Q., Lu, F., Liu, C., Duan et al., H.: Modeling and Verification for Cross-
Department Collaborative Business Processes Using Extended Petri Nets. IEEE
Trans. Syst. Man Cybern.: Syst. 45(2), 349–362 (Feb 2015)

33. Zeng, Q., Sun, S., Duan, H., Liu et al., C.: Cross-organizational collaborative work-
flow mining from a multi-source log. Decis Support Syst 54, 1280–1301 (Feb 2013)

	Collaboration Miner: Discovering Collaboration Petri Nets (Extended Version)

