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a  b  s  t  r  a  c  t

Interactive  Process  Automation  refers  to the  idea  of  supporting  the  interaction  of  humans  in processes
through  physical  objects.  This is particularly  promising  for  human/cobot  collaboration  tasks  where  the
communication  is  fuzzy.  A typical example  is a picking  and  placing  scenario.  Here,  a  “picking  area”  can
serve  as  a user  interface,  i.e.,  objects  are  freely  placed  in  a defined  area,  and  then  identified  and  transferred
to  specific  positions,  where  deterministic  processes  can  use  them.  If,  for example,  object  A  is  placed  at
position  posA by the  human,  automatically,  the  robot  is  instructed  to pick  A and  place  it  at position
posB on  a tray.  Realizing  Interactive  Process  Automation  for  picking  and  placing  tasks  in manufacturing
processes  requires  (i)  a lightweight  and  flexible  object  detection  approach  and  (ii)  a human–machine
Synthetic training images
Deep learning
Manufacturing processes

interface design  for Interactive  Process  Automation.  This  work  proposes  (i)  an  object  detection  approach
that  works  solely  based  on synthetic  training  data. The  object  detection  is embedded  into  (ii)  generic
process  models  that  are  implemented  based  on an  existing  manufacturing  orchestration  framework  and
a camera-equipped  cobot.  The  approach  is prototypically  implemented  and  evaluated  based  on several
experiments  including  a  pick  and  place  cobot  station.

©  2021  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC BY  license
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1. Introduction

Assisting human labour and replacing mundane repetitive activ-
ities through collaborative robots (cobots) is gaining increasing
interest in the manufacturing domain (Weckenborg et al., 2019).
Contrary to the widespread fear and belief that autonomous robots
are replacing human workers (Wewerka et al., 2020), research is
focusing on collaborative human–robot solutions that free human
workers for tasks robots cannot perform autonomously in the near
future. With the gained free time, human workers can make a tran-
sition into, e.g., a supervisory and maintenance oriented role, and
are enabled to engage into creative and purposeful/value-added
activities that are beneficial to enterprises (Syed et al., 2020).

The idea of automating business processes by delegating work

to machines is not new. In manufacturing repetitive and struc-
tured activities have been automated with the help of industrial
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obots over the past decades. Well-known examples include vehi-
le assemblies, palletization and filling and packaging of goods.

The focus of this paper lies on the human–cobot collaboration
or a picking and placing scenario, where the nature of the commu-
ication between these collaborators is fuzzy. An interface for such
ollaborations in manufacturing that resides between humans and
obots, is the loading station (see Fig. 1a). The purpose of the load-
ng station is to bridge the communication gap between humans
nd robots to empower robots to work with semi-structured/fuzzy
nstructions provided by the human. We  refer to this way  of col-
aboration as Interactive Process Automation.

Interacting with a cobot from the human perspective in the
ealm of a picking and placing scenario can be illustrated based
n the following request: “Take objects a1, . . .,  an and produce item
. Once done, place the A at position posA.”. This set of instructions
esembles the interaction humans would use when engaging with
ther humans. In our scenario the role of the human worker is to
rovide the necessary objects (e.g., raw materials or tools), while
he task of the cobot is to recognize and process the objects based

n the human input (i.e., objects provided by the human). The pro-
isioning and recognition of objects mark the fundamental steps
hat initiate an activity or series of activities of a business process.
ig. 1b provides an overview of the components and participants

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Loading station (a) a

that together constitute a loading station. The fundamental piece of
the communication interface is the picking area (6). Here a human
worker (5) interacts with the cobot (1) by providing the objects
(4). Note that the placement of objects in the picking area may  be
arbitrary, similar to the way humans would hand over objects to
other humans, e.g., on the cashier counter. The cobot participates
in this interaction by using the attached camera (3) to recognize
and interpret the objects on the picking area to derive its next task.
Using the gripper (2) the cobot can grab objects and place them in
the structured area (7) for further automated processing.

Collaborative human–robot solutions have gained huge interest
lately1 due to the availability of affordable and programmable col-
laborative robots (Ranz et al., 2018), but also due to the remarkable
advances in the computer vision research. Although this creates an
opportunity for small to medium sized manufacturing enterprises
to benefit from these technological advances, they often do not have
the time and resources, and most significantly lack the knowledge
to implement such solutions. Furthermore the introduction into
the day to day business processes poses a serious challenge with
regards to the human factors (e.g., resentments and rejection due
to the fear of being replaced/losing the job or major changes to
the familiar work habit), but also organizational factors such as
the time to adapt and adjust the manufacturing process without
causing substantial production downtimes.

This calls for solutions that are (a) affordable, (b) adapt-
able/flexible for ever-changing business requirements, (c) easy to
integrate into the daily business processes, and (d) user friendly. A
key challenge is to design the human–robot interaction similar to
the human-to-human experience, to ensure a seamless collabora-
tion between humans and robots.

Thus, this work investigates the development of a picking and
placing solution – a commonly required step in manufacturing pro-
cesses – in a collaborative and interactive fashion between human
and robots. To address (a) we use a non-commercial, state of the art
deep learning approach, and, automatically generated and labelled
synthetic training images of objects with a low fidelity represen-
tation from 3D model artefacts. Synthetic training data can save
labour costs, as one can limit or completely circumvent data collec-
tion and labelling by humans. We  address (b) and (c) by leveraging a
process engine to flexibly orchestrate activities for the realization
of human–cobot interface, and to enable the possibility to flexi-

bly substitute object detection models to accommodate for new
requirements. This includes the provision of generic process mod-
els in standard BPMN2 notation for fostering a broad applicability.

1 https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-
factories-around-the-globe Last Accessed: 01.03.2021.

2 www.bpmn.org Last Accessed: 09.12.2020.
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man/cobot interaction (b).

inally for (d) we employ a simple interaction between the human
nd cobot by using objects and a loading station as means to deter-
ine and execute the intended task for the cobot.
The main contributions of this paper are as follows:

Firstly, we show how the presented concepts contribute to the
idea of interactive process automation, i.e., leveraging physical
objects such as the loading station as collaborative interfaces
between human and cobot to automatically enact, execute, and
complete manufacturing process tasks.
Secondly, we  investigate the feasibility of synthetic training
images in combination with supervised deep learning approaches
to train object detection models, to locate low-texture objects in
real-world monocular images within a manufacturing context.

The remainder of this paper is structured as follows: Section 2
resents and discusses related work, including efforts of the indus-
ry for vision based cobot solutions. Section 3 presents our approach
or a pick and place scenario using cobots and a process driven
pproach. Section 4 describes the implementation details for our
pproach presented in Section 3.

The evaluation of our approach is presented in Section 5. Finally
ection 6 discusses and summarizes the presented approach and
btained evaluation results, followed by a conclusion in Section 7.

. Related work and industry efforts

Interactive Process Automation can be classified into the field
f “Internet of Things (IoT) meets process technology” (Janiesch
t al., 2020) with a strong focus on the human in the loop. A first
ontribution towards interactive process automation is the auto-
atic task completion and documentation through NFC-equipped

hysical objects such as a toothbrush applied in the care domain
Stertz et al., 2020).

The interactive process automation approach for picking and
lacing in manufacturing processes presented in this work relies
n object detection,  i.e., the ability to locate and classify objects of
nterest in images. Classic approaches to object detection employ a
liding window paradigm in combination with supervised machine
earning techniques. The training data for the machine learning
echniques (e.g., Ada-Boost (Freund and Schapire, 2021) or Sup-
ort Vector Machine (Boser et al., 1992)) is generated using feature
escription techniques, e.g., Haar wavelets (Viola and Jones, 2001),
istogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005) and

cale Invariant Feature Transform (SIFT) (Lowe, 2021). A trained
etection model is then applied to various regions of an image. Later
Felzenszwalb et al., 2008) introduced the framework Deformable
arts Model that utilizes the concept of pictorial structures to model
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ported by interactive process automation is the loading station. The
loading station is the interface responsible for exchanging informa-
tion between the human and its robotic counterpart – the cobot –
A.S. Mangat, J. Mangler and S. Rinderle-Ma 

the appearance of objects as a collection of individual intercon-
nected parts.

However, the above mentioned approaches suffer from their
inherent inability to capture more diverse significant features. Also
these approaches require upfront expert knowledge to identify
key features and special techniques to extract them. A solution
that addresses both these issues are convolutional neural networks
(ConvNet). First demonstrated for handwritten cypher recogni-
tion (Lecun et al., 2021), ConvNets have been shown to perform
exceptionally well as feature extractors for multi-object object clas-
sification (Krizhevsky et al., 2021; Simonyan and Zisserman, 2021;
Szegedy et al., 2021; He et al., 2016). This has led to the adop-
tion of ConvNets also for the more challenging object detection use
cases. Earlier approaches focused on multi-stage detectors, which
use two separate networks, one to propose regions containing
the object, and another network to detect and refine the bound-
ing boxes (Sermanet et al., 2021; Girshick et al., 2014; Girshick,
2015). In contrast, single-stage detectors utilize one unified net-
work architecture for predicting bounding boxes directly from a
feature extraction network (Liu et al., 2016; Redmon et al., 2016;
Redmon and Farhadi, 2017). To deal with objects occurring at
multiple scales, predictions are done at various layers of feature
extraction network (Lin et al., 2021; Redmon and Farhadi, 2021). In
our approach we utilize the general purpose deep learning object
detection architecture YOLOv3 (Redmon and Farhadi, 2021) that
provides a good balance between object detection and inference
speed.

Synthetic training data. Well-labelled and sufficiently avail-
able training data is a fundamental requirement for supervised
machine learning algorithms. However, the availability of train-
ing data cannot always be guaranteed, e.g., due to legal obligations
(data privacy), unavailability of human resources, cost of label-
ing, etc. An approach to overcome the lack of sufficient real-world
training data is to supplement training data with synthetic training
data.

A common practice for training images is data augmentation
that pursues the goal of transforming available labelled images into
different variations of the original images. Transformations include
operation such as cropping, distortions, colour manipulation, etc.
(Dodge and Karam, 2016). In Cubuk et al. (2021) a ConvNet based
solution is proposed, capable of inferring performance improving
data augmentations strategies.

Another prominent technique is image composition. The goal
here is to compose new images from existing labelled images, e.g.,
by placing crops of objects onto arbitrary backgrounds. Instead of
random image compositions, Gupta et al. (2016) proposes a geom-
etry aware integration technique to place texts onto natural scenes
such that they align realistically with their background. Generative
Adversarial Networks (GAN) (Goodfellow et al., 2021) represent a
special class of neural networks that learn a generative model to
produce synthetic outputs of a target domain. Shrivastava et al.
(2017) have proposed a GAN that refines synthetic images into
more realistic images.

The above mentioned approaches assume availability of labelled
(real-world) training images. The alternative approach is to substi-
tute real-world training images entirely with synthetic images. To
represent objects, 3D models are used. A natural choice is to gener-
ate images with photorealistic rendering (Proenca and Gao, 2021;
Movshovitz-Attias et al., 2016) to acquire training images with high
resemblance to their real-world counterparts. However, achieving
high photorealism requires advanced skills and experience, and
thus can be challenging. Hence, alternative approaches have been

proposed that attempt to use less-photorealistic, low-fidelity rep-
resentations of objects in training images (Sun and Saenko, 2021;
Peng et al., 2015; Tremblay et al., 2018; Hinterstoisser et al., 2018) in
combination with random image composition. In Tobin et al. (2017)

a

3
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he authors take a slightly different approach to synthetic image
eneration by proposing to entirely randomize the appearance of
bjects. They argue that a broad randomized diversification of the
bject appearances and backgrounds can compensate for the lack of
hotorealism in the generated synthetic images. For the approach
resented in this paper we  employ low-fidelity synthetic training

mages comparable to Tobin et al. (2017), which we  generate from
eadily available 3D models of objects.

Industry efforts. Enabling robots and humans to work alongside
n a shared workspace has been the target of several robot manu-
acturers in the recent years. Major contributors include Universal
obots and Rethink Robotics that offer collaborative robots (cobots)
see Table 1). The key difference between traditional industrial
obots and the cobots is the focus of cobots on human safety that
ermits humans to work while cobots are operating. The cobots are
uilt to cease operation in case of accidental collisions with humans
o prevent injuries.

This paper has a particular focus on cobots with the ability to
etect objects from images using a vision based system to drive
rocesses through human–cobot interaction. Thus, we investigated
olutions offered by cobot manufacturers. The cobot manufactur-
rs have been determined using the Google search engine and the
earch terms “cobot manufacturer OR collaborative robot manufac-
urer”. We searched3 the first 30 results for manufacturers that (a)
ave a company website (b) offer cobot solutions and (c) currently
xist. Then we  scrutinized the websites of the cobot manufac-
urers to determine if a vision based object detection solution
s offered and whether it provides the possibility to learn new
bjects for detection and utilizes synthetic training images. We  also
onsidered manufacturers that utilize third-party object detection
olutions. The results of our findings are presented in Table 1 in
lphabetical order.

Overall the approaches employed by the cobot manufactur-
rs and third-party vendors of vision systems for cobots can be
istinguished in 2D image and 2.5–3D depth image based object
etection. Based on our findings above, the state-of-the-art vision
ystem approaches, for instance by Cognex and ABB, apply a user-
uided learning mechanism for object detection, which requires
uman operators. The training images are collected by an operator
sing the provided vision system’s training software and camera
hat is attached to the cobot. During the image collection pro-
ess the images are manually labelled in the software. In contrast,
.5–3D image based approaches, which includes the solution by
cape, requires 3D models of objects that require a virtual 3D rep-
esentation of real world objects. The detection then focuses on
ligning 3D models with real-world objects. Overall the learning
pproach is similar to the 2D image approaches with regards to the
raining data collection. It also requires a human operator to train
obots in place.

The approach presented in this paper differs from the vision
ystems employed by industrial approaches as follows: It employs
on-commercial learning techniques and uses synthetic training

mages generated from readily available 3D models. Therefore, the
resented approach does not require manual labelling of objects.

. Interactive Process Automation: interface design

The key piece in the human–cobot collaboration scenario sup-
nd for initiating the next task for the cobot. Fig. 2 represents our

3 Search Date: 15.03.2021.
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Table  1
Cobot manufacturers and the supported vision systems.

Cobot manufacturer Object detection solution Learning solution Synthetic training images Description vision system

ABB
√ √ × Integrated Vision

Doosan × n.a. n.a. n.a.
Kassow Robots × n.a. n.a. n.a.
Kuka  Robotics × n.a. n.a. n.a.
Rethink Robotics

√ √ × Cognex
Techman Robot

√
n.a. n.a. n.a.

Universal Robots
√ √ × Scape, Dalsa Vision, Keyence

Yaskawa × n.a. n.a. n.a.
Yuanda × n.a. n.a. n.a.

√
= applies, × = does not apply, n.a. = data not available.
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Fig. 2. Automatic task initiation dr

conceptual approach for the realization of the interactive process
automation for the human–cobot interaction using a process driven
approach.

The interface is designed through a set of process models that
realize the interaction of human, cobot, and system, i.e., the process
engine. Figs. 2–4 provide these process models in a generic man-
ner using the standard Business Process Modeling and Notation
(BPMN1) in order to foster a broad applicability and interop-
erability. The process model at the top of Fig. 2 describes the
fundamental activities/sub processes and flow of control to drive
the human–cobot collaboration and automatic task initiation in
terms of a super process that employs several sub processes. Activ-
ities Detect Objects in Picking Area (A) and Determine Next Task for
Object Constellation (B) constitute the interactive process automa-
tion interface. (A) is responsible for observing changes to the
picking area, i.e., locating and identifying objects a human worker
has placed on the picking area. After objects on the picking area
have been noticed, (B) is triggered to determine if a task for the cur-
rent object constellation on the loading has been defined. If a task
for the constellation can be determined, it is carried out by activity
Execute Determined Task (C). After the completion of a task or if no
task can be determined the process terminates. Subsequently the
entire process is repeated.

A detailed description of activity Detect Objects in Picking Area
(A) is presented in Fig. 3. At first, activity Bring Camera into Position
positions the camera attached to the cobot in order to capture the

picking area from the desired perspective. Then, sub process Detect
Objects locates objects on the picking area. The object detection
approach is described at the end of this section. This step involves

d
F

4

y human–machine collaboration.

aking an image of the picking area and then determining if objects
f interest are present in the image. The process of locating objects
s repeated until objects of interest are detected in the picking area.

To give human collaborators sufficient time to place items in
he picking area and to avoid acting prematurely, a mechanism is
equired to ensure the intended task(s) for the provided object is
arried out. We  propose a time based approach, as this does not
equire any additional impulse from the human in form of a physi-
al confirmation (e.g., pressing a button) or a complex vision/sensor
ased confirmation (e.g., human is not in the proximity of the load-

ng station). Alternative approaches are further discussed in Section
. Therefore an arbitrarily configurable delay X in seconds is intro-
uced (represented by the time event) to give sufficient time for
bject placement or removal. After the delay the objects in the pick-
ng area (activity Detect Objects) are determined again. If changes
n the object constellation are observed with regards to the previ-
us object detection results, the process of waiting and checking
or changes in the object constellation is repeated.

If no change in objects in the picking area is observed, the over-
ll process transitions to activity (B) to determine the next task the
obot needs to carry out based on the current object constellation.
f a task is found that has been defined for the current object con-
tellation, then the task is executed as indicated by activity (C) in
ig. 2. The determination of the objects in the picking area and the
ook-up of a corresponding task represent the fundamental pre-
equisites for the realization of interactive process automation. A

etailed and generic representation for activity (C) is depicted in
ig. 4.
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Fig. 3. Sub process detect objects in picking area fo
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class and pose labels of objects in an image. For our object detectors
we employ the state-of-the-art YOLOv3 architecture (Redmon and
Farhadi, 2021) with spatial pyramid pooling. YOLOv3 is a single-
Fig. 4. Sub process execute determined task.

Depending on the object constellation and task look-up a match-
ing branch with regards to the determined task is executed. If no
match is found for an object constellation or a determined task has
been completed, the process terminates.

4. Object detection using synthetic images

This section details the proposed synthetic image generation
tool chain and the object detection solution used to realize the
interactive process automation interface (Fig. 3).

The common language of our participants (human and cobot)
are the objects. The cobot having no natural means of communi-
cation with human, receives its real-world input from a camera.
To interpret the visual cues in the images provided by the cam-
era, the cobot is supported by an object detection model that can
detect the object class and the location of objects in the image. In
this work we rely on a deep learning model trained with synthetic
training images with supervised-learning. The input of this model
are coloured images. The output of the model are coordinates of
bounding boxes for located objects and class labels. We  rely on
synthetic training images to circumvent time-consuming manual
collection and labelling of training images.

4.1. Synthetic image synthesis

We  use non-photorealistic rendered training images and syn-
thetic images generated from cropped real-world object images,
i.e., object images with transparent background. In Sun and Saenko
(2021), Peng et al. (2015) and Tobin et al. (2017) the authors report

synthetic training data to deliver competitive performance in com-
parison to real world training images for object detection tasks.

For the generation of purely synthetic training images we
implemented a small library in the Python programming language

5

r enabling interactive process automation.

round the graphics rendering engine Povray4 and by using 3D
odels to represent the real-world objects. An overview of our

pproach is presented in Fig. 5. Povray is capable of generating
ow-fidelity to photo-realistic three-dimensional graphics. The ren-
ering engine provides a declarative scene description language
o specify the visible space and user perspective, the illumination,
ackgrounds, objects, and the appearance of the objects. We  use a
ustom configuration file to describe a Povray scene, which we then
se to generate the synthetic images with our library. The details
or the scene configurations are covered in Section 5.2.1.

For the objects we used 3D models in the STL format that needed
o be converted into Povray’s format. Although the generation of
ynthetic training data in general is cheap, being able to elimi-
ate cases which are unlikely to occur (i.e., poses of objects) can
a) reduce the time to generate images, (b) shorten the training
ime when using deep learning approaches and (c) limit the com-
lexity of the detection model. In our scenario we focus on objects
hat are placed on a flat surface. Thus, we  can safely ignore cer-
ain object poses and only consider physically realistic poses that
e define using the Extensible Markup Language (XML).5 We  refer

o our description language as Object Pose Description XML  (see
ig. 5), which defines relevant poses as rotations around the origin
n 3D-space with respect to the initial pose of the object in the STL

odel.
To automatically obtain the labels for the bounding boxes for

ach rendered image, we generated additional images as PNGs
ith transparent backgrounds that only contain the object. The

ounding box coordinates are computed considering the minimal
nd maximal non-transparent pixels in the vertical and horizontal
irection of the image.

For creating synthetic images from real-world background
mages and real-world objects we  also implemented an image com-
osition tool in Python with automatic labelling capabilities. The
ool randomly rotates and pastes the object images onto the back-
round images. The objects are expected as PNG images with the
ackground pixels set to transparent in the alpha channel. The
ounding boxes can be computed from the silhouette represented
y the alpha channel of the PNG images.

.2. Object detector

Before we  can grip an object we require the location, and the
4 http://povray.org Last Accessed: 09.12.2020
5 https://www.w3.org/TR/xml11 Last Accessed: 09.12.2020.

http://povray.org
http://povray.org
http://povray.org
https://www.w3.org/TR/xml11
https://www.w3.org/TR/xml11
https://www.w3.org/TR/xml11
https://www.w3.org/TR/xml11
https://www.w3.org/TR/xml11
https://www.w3.org/TR/xml11
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Fig. 5. Synthetic training image generation for supervised object detection model training.

 station setup for the evaluation.

w
m
h
t
o
i

i
the open source process engine Cloud Process Execution Engine
(CPEE).6
Fig. 6. Experimental loading

stage-detector that comprises of a feature extraction component
and a regression component which predicts the bounding boxes
and class labels for objects in an input image. The feature extraction
backbone uses a deep architecture with 52 convolution operations.
The regression component applies a mixture of convolution and
upsampling operations to feature maps, i.e., at different stages of
the network the feature maps are condensed and enlarged. To
increase the overall exposure to features for additional informa-
tion, YOLOv3 also concatenates earlier fine-grained feature maps
with upsampled maps of later stages. The regression component of
this network predicts at three different scales, to enable the detec-
tion of small and large objects. For the implementation of YOLOv3
we used the library Darknet (Redmon, 2021).

5. Experiments

5.1. Experimental setup

The experimental setup closely resembles a loading station in
a manufacturing environment. The loading station consists of a
Universal Robot 10 (UR10) cobot equipped with an Intel Realsense
D415 camera that produces images of 1920 × 1080 resolution and
a gripper with two fingers (see Fig. 6a), a picking area (see Fig. 6b)
for the realization of the human–cobot interface for picking and
preparing, and, a structured area for the placing and processing
of objects by the cobot. We  chose a matte black background to
eliminate shadow and background reflections.
To demonstrate the detection of objects placed by humans on
the picking area, we use steel cylinders depicted in Fig. 7. We  con-
sider both the upright and lying pose of the cylinder. In addition we
also expect to detect the objects at different scales. Using the soft-

6

Fig. 7. Steel cylinders in the lying and upright pose.

are of the UR10, the cobot has been programmed to allow us to
ove in the birds-eye view to capture the picking area from above,

over to a specific location above the picking area when provided
he coordinates of an object’s location in the image, and to grab
bjects vertically from above and place them to a specific location
n the structured area as show in Fig. 6.

All three operations are available as REST services. They can be
nvoked by the process depicted in Fig. 2 that is implemented using
6 https://cpee.org Last Accessed: 09.10.2020.

https://cpee.org
https://cpee.org
https://cpee.org
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Fig. 8. Synthetically generated and composed training an

We  opted for the CPEE as it provides a process modelling and
execution environment, and among others supports the invocation
of HTTP based web services. Thus, the CPEE allows orchestrating
the execution of the Interactive Process Automation activities that
include taking images with the camera, invoking the object detec-
tion model, determining the task based on the detected object
constellation, and running the determined task which invokes a
particular program of the cobot.

5.2. Object detection

Recall that the purpose of the object detection step is to detect
the object and its pose. This section evaluates the feasibility of
the proposed object detection solution that we  trained solely
with synthetic training data for the realization of the interactive
human–cobot interplay.

5.2.1. Synthetic training datasets
In total we generated three synthetic data sets Syn-A,  Syn-B and

Syn-C for training, using our image generation approach presented
in 4. All data sets comprise of three thousand RGB images for each
object-pose. Each image contains a single object. We  use a birds-eye
perspective that resembles our experimental setup with a distance
of 45cm between the camera and the table. The visible scene for the
detection models is limited to the human–cobot interaction zone
(see Fig. 8).

• Syn-A.  This dataset consists of purely synthetically created
images. Objects have been rendered on a randomized single
colour background. This approach is inspired by the domain ran-
domization approach introduced in Tobin et al. (2017). However,
we limit the range to colours that matches our experimental
setup, i.e., the objects and the background are randomly assigned
colours from the pool of gray shades to reflect the natural appear-
ance. In addition we apply randomized phong effects to the object
to vary the object finish from a matte, to a reflective and shiny
appearance. We  applied constant daylight illumination directed
at the centre of the visible scene vertically from above.
• Syn-B. In contrast to a purely synthetically rendered image set, we
apply a mixed approach using synthetically generated objects and
real-world images of backgrounds. We  use image composition by
randomly pasting rendered object onto real-world image back-

t
u
e

7

images for the detection of objects in real-world images.

grounds. The object appearance and illumination is kept similar
to the approach for Syn-A.
Syn-C.  For insightful comparisons with images using synthet-
ically rendered image elements, we  prepared a third dataset
composed of images using real-world crops of objects with trans-
parent background that are randomly pasted onto real-world
backgrounds.

.2.2. Model training
For each training data set we train an object detection model

sing the YoloV3 network architecture. We  use the Darknet-53
onvNet, pre-trained on the COCO datset, as the feature extraction
ackbone. Fine tuning pre-trained models for custom datasets have
een shown to be a viable approach (Pan and Yang, 2021; Girshick
t al., 2014), if the model has been exposed to a large collection
f diverse images. The COCO dataset is a large image collection,
onsisting of over 200-thousand images with 80 object categories.

We set the network input size to 416 × 416 pixels. We  used batch
radient descent with a batch size of 64. We  trained for six thou-
and iterations. For back-propagation we used stochastic gradient
escent with a learning rate of 2 × 10−3, which we  decreased in
teps, namely after four thousand iterations by 10−1 and after four
housand iterations again by 10−1. Furthermore regularization for
he weights was applied with a decay of 5 × 10−4. Momentum was
et to 0.9. We  kept the network’s ability to dynamically change the
nput size of the network during training enabled, as this step acts
s an additional data augmentation mechanism and enables the
etwork to learn at different scales with regards to the object size.
he change of the input size is carried out randomly.

We also applied standard data augmentation techniques includ-
ng random image flipping and cropping, and image distortions
using the HSL colourspace) by randomly adapting hue, saturation
nd exposure, that are provide by the Darknet library. The satura-
ion and exposure parameters were set to 1.5 and hue to 0.1. The
itter parameter that controls the amount of image cropping during
raining in the Yolo layers (responsible for predicting the bounding
oxes) was set to 0.3.

.2.3. Evaluation methodology

To measure the object detection performance with regards to

he correctness of the class label and bounding box predictions, we
se the widely applied metric average precision (AP) (Everingham
t al., 2021). AP is defined as a probability density function of ranked
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Table 2
Evaluation results on the dataset Eval-Syn.

Model OD-A OD-B OD-C
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recall values. Precision measures the fraction of predictions that are
correct with regards to all prediction results. Recall, or sensitivity,
measures the fraction of ground truth/relevant objects that have
been correctly localized.

We approximate AP as proposed by Everingham et al. (2021)
using the eleven point interpolation scheme

AP = 1
11

∑

r ∈ [0,0.1,...,1]

max
r̃ ≥r

p(r̃), (1)

where r represent recall measures and p(r) the precision as function
of recall.

The AP score is computed for each object class/category individ-
ually. To provide an overall score irrespective of the object class,
we use mean average precision (mAP) similar to Everingham et al.
(2021). The mAP  score is computed by averaging the sum of all class
specific average precision scores.

We apply the Jaccard index, or intersection over union (IoU),
expressed as

IoU = Bgt ∩ Bp

Bgt ∪ Bp
. (2)

to determine the correctness of a bounding box prediction. This
measure computes the overlap of bounding boxes as fraction by
comparing the ground truth set of pixels Bgt against the predicated
set of pixels Bp within the bounding boxes. We  consider bounding
box predictions with an IoU score of greater or equal 0.5 as correct.

5.2.4. Model evaluation results
We use synthetic data to train models, but require the mod-

els to operate with real-world images as input at inference time.
To reliably assess whether the models are capable of bridging the
reality gap between the synthetic and real-world data domain,
measuring the performance with real-world images is essential.
Since one of our goals is to avoid manual labour we  have prepared
a synthetic test set Eval-Syn that comprises of 40 images composed
of real world objects and backgrounds as depicted in Fig. 8. Each
image contains up to six objects that are randomly pasted onto the
background, similar to the approach for the training dataset Syn-C.

We  refer to the object detection models trained on the training
datasets Syn-A,  Syn-B and Syn-C as OD-A, OD-B, and OD-C respec-
tively. Table 2 summarizes the first best mAP  scores obtained with
regards to the number of training iterations for the synthetic real-

world evaluation set Eval-Syn for all the detection models. During
training we saved a checkpoint for every 100th iteration for the first
1000 iterations and after that for every 500th iteration. The devel-
opment of the mAP  during the course of the training is depicted in

s
i
a
7

Fig. 9. Average precision scores for the synthetic evaluation set Eval-Syn over the

8

Iterations 3500 2000 2000
mAP  100% 100% 100%

ig. 9. We can observe that the models of the training sets that
nclude real-world elements (real-world background, object, or
oth) converge faster, whereas the model (OD-A) trained on purely
ynthetic training images requires significantly more training iter-
tions to achieve a similar perfect mAP  score for the Eval-Syn as the
odels OD-B and OD-C. This indicates the dependency of training

ata domain on the run-time data domain.

.3. Interface evaluation

Our experiments above show that synthetic training data can
erform well for synthetic real-world test images. To assess
hether this also applies for our real-world object detection

pplication for our picking area, we  collected 18 images at our
xperimental setup using the camera equipped with the cobot. We
efer to this dataset as Eval-R.  Each image in Eval-R contains at least
wo and at most four objects. To also test whether the detection at

ultiple scales of the cylinder objects works for both the upright
nd lying pose, we also used cylinder objects with a smaller dimen-
ions. We  report the mAP  scores for the models OD-A, OD-B, and
D-C with 3500 training iterations. Fig. 8 depicts a few selected
amples of evaluated images for each object detection model by
ow (Fig. 10).

Since missing out on present objects in an image is critical for
he realization of the interface we report the results as recall, i.e.,
he fraction of present objects identified with regards to all objects
hat are present in the image. Overall OD-A achieves recall score
f 77.5%, OD-B 89.7%, and OD-C 83.6%. All detected objects are
orrectly classified with a precision score of 100%. If further dis-
inguished between the standard cylinders and the small cylinders,
hen all three models achieve recall scores of 100% considering only
he standard sized cylinders, while the recall scores for the small
ylinders are 59.2% for OD-A, 81.4% for OD-B and 70.3% for OD-C
Table 3).

Next we  measure the accuracy of correctly detected object con-

tellations. We  only consider an object constellation as correctly
nterpreted by the object detection models, if all objects in an image
re correctly detected. OD-A achieves an accuracy of 55.5%, OD-B
7.7%, and OD-C scores 72.2%. If only the standard sized cylin-

 course of the model training for the training sets Syn-A, Syn-C and Syn-C.
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Fig. 10. Object detection results as bounding boxes for the cylinder in the lying pose (blu
figure  legend, the reader is referred to the web version of this article.)

Table 3
Interface evaluation results for Eval-R.

Model OD-A OD-B OD-C

F1 Score 87.3% 94.6% 91.1%
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Precision 100% 100% 100%
Recall 77.5% 89.7% 83.6%

ders are considered all three models achieve 100% accuracy for the
object constellation detection. For the small cylinders the models
OD-A, OD-B and OD-C achieve an accuracy score of 27.2%, 54.5%
and 45.5% respectively. The results suggest incorporating different
variants of the object size directly into the training set, may  lead to
better results instead of solely relying on the scaling feature of the
detection model architecture.

6. Discussion

Reliable Interactive Process Automation. A crucial aspect to
reliably ensure the intended process behaviour is to accurately
determine the moment a human has completed the placement of
objects in the picking area. The approach presented in this work
(see Fig. 3) proposes a timer based mechanism, which in regular
intervals checks for a stable object constellation. When a pre-
determined waiting time for changes passes and no changes are
detected, the present object constellation is frozen. Objects placed
after this point in time are not considered. However, depending on
the safety requirements and overall trust in the automatic trigger-
ing of processes through human–machine interactions, approaches
that require manual triggering (e.g., pressing a button, pushing on
a pedal, scanning a card) or require certain conditions to be true
(e.g., absence of a person from a safety zone) might be considered
more appealing.

Multi-object detection.  The approach in this paper focuses on
single object, multi-pose detection. The question that arises is, how
scaleable is the proposed approach for heterogeneous collections
of objects.

State-of-the-art object detection techniques have demonstrated
the ability to detect several dozen objects in real-time from 2D
images (He et al., 2016; Girshick, 2015; Redmon and Farhadi, 2017).
Detecting multiple objects using synthetic training images has also
been successfully demonstrated, as laid out in Section 2. Although
detecting several dozen objects is likely to scale well, detecting par-
tially occluded objects (Wang et al., 2020) and noise in the input

images (Su et al., 2019) still pose a challenge. Since different appli-
cations have varying requirements regarding the robustness of the
detection results and tolerance levels for errors, a viable approach is
to use an ensemble of object detection techniques. This in particular
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e) and upright pose (orange). (For interpretation of the references to colour in this

s facilitated by our process driven approach, as it easily allows to
ncorporate orthogonal object detection approaches in the control
ow of the process model. In order to gain further confidence in the
etection results, for example, material estimation techniques (e.g.,
aterial classification using near-infrared spectroscopy (Tachwali

t al., 2007)) can be applied in addition, to validate image based
etection results. Likewise multiple object detection models can
e applied, where each model focuses on a particular task (e.g.,
etection of colour, shape, texture, size, or material of objects) and
he combination of the detection tasks can be used to achieve more
obust results.

Feasibility of synthetic training images. The interface eval-
ation results demonstrate that purely synthetically generated

ow-fidelity training images can lead to competitive results when
ompared to training images that are generated to closely resem-
le real-world representations of objects. An integral benefit of
pplying synthetic training images is the control it provides over
heir appearance. Although manufacturing sites traditionally have

 static setup, it is possible to future proof detection models by
ncluding random noise to account for unexpected events. In our
ick and place scenario with cobots potential noise may  include, for
xample, unexpected items placed onto the picking area, human
ntervention during an ongoing process (hand gestures over the
icking area), colour and texture changes of processed objects, or
hanges of the surface appearance of the picking area.

However, it is imperative to note that with synthetic train-
ng data in general, there is a trade-off between the feasibility
nd high realism of synthetic data. It is cheap to produce less
ealistic synthetic images, whereas it is expensive to generate pho-
orealistic images for it requires special knowledge and skills. In
his paper, we attempted to maximize the feasibility of synthetic
raining data by leveraging low-fidelity training images using raw
D models as the basis. We  in particular relied on simple object
urface material/texture descriptions that do not require human
nvolvement and are automatable by using pre-existing mate-
ial/texture description libraries. Using our approach also enables
ne to incorporate random noise to enrich training images as
escribed above by using arbitrary pre-existing collections of suit-
ble images. Adding random noise is less feasible for the approach
aken by cobot manufacturers, which requires a human operator
o manually set up scenes for the training images and to collect the
mages with the cobot for training.

A limitation of our approach is the assumption that 3D mod-
ls of objects exist. This might not be the case for all small to

edium sized manufacturers. Also it is not guaranteed that every

ype of object can be successfully detected by only using low-
delity representations of objects as training images. In these two
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cases the manual user-guided approach for creating detection mod-
els employed by the cobot manufacturers seems to be the more
appealing alternative. However, the approach presented in this
paper and the user-guided approach offered by the cobot manu-
facturers are not incompatible. An interesting combination of both
approaches could involve starting out with the detection model
generated using synthetic training data, and then improving the
detection model for wrong detection results by applying the user
guided approach with real-world images. The combined approach
shows the potential to reduce the overall initial setup effort, pro-
vided that 3D models of objects are available.

7. Conclusion

The work presents concepts and a prototypical implementation
of an interactive process automation interface that enables humans
to communicate with cobots solely through the objects presented
on a picking area. The concepts include object detection in combi-
nation with a process engine to automatically initiate appropriate
processes for a picking and placing scenario. With a particular
focus on small to medium sized companies with limited budget
and knowledge, the approach for building object detection mod-
els is kept lightweight by leveraging low-fidelity synthetic training
images generated from 3D models in contrast to using manually
labelled real-world images.

The results of the evaluation clearly suggest that it is feasible to
use synthetic training data for enabling interactive process automa-
tion for human–machine collaboration using object detection. The
process driven characteristics of the approach ensures flexibility
since individual activities, such as the object detection models, can
be substituted in the proposed process models.

Limitations of our experiments include:

• the use of only a single object
• disregarding potential occlusion of objects
• not considering complex shapes of objects with special grabbing

requirements
• focus on static object constellation after a task for the determined

constellation has been initiated.

Thus, an interesting aspect for future work is to investigate
the effects of a dynamic setup when objects are removed or
added from the loading station after a task for a determined
object constellation has been initiated and is still ongoing. Further
promising directions for future work include addressing the above
mentioned limitations with regards to interactive process automa-
tion and investigating lightweight/low-effort, semi-automated
labelling techniques for real-world images that include humans to
leverage expert knowledge for better object detection results.
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