
Verifying Compliance in Process Choreographies:
Foundations, Algorithms, and Implementation
Walid Fdhilaa,∗, David Knupleschb, Stefanie Rinderle-Mac and Manfred Reichertd

aSecurity Business Austria (SBA-research), Vienna, Austria, wfdhila@sba-research.org
balphaQuest GmbH, Ulm, Germany, d.knuplesch@alphaquest.de
cTechnical University of Munich, Department of Informatics, Boltzmannstrasse 3, Garching, Germany, stefanie.rinderle-ma@tum.de
dInstitute of Databases and Information Systems, Ulm University, Ulm, Germany,manfred.reichert@uni-ulm.de

A R T I C L E I N F O
Keywords:
Distributed business processes
Business rules
Compliance management
Process choreography
Business process compliance
Global compliance rules
Rule decomposition

A B S T R A C T
The current push towards interoperability drives companies to collaborate through process chore-
ographies. At the same time, they face a jungle of continuously changing regulations, e.g., due to
the pandemic and developments such as the BREXIT, which strongly affect cross-organizational
collaborations. Think of, for example, supply chains spanning several countries with different
and maybe even conflicting COVID19 travelling restrictions. Hence, providing automatic com-
pliance verification in process choreographies is crucial for any cross-organizational business
process. A particular challenge concerns the restricted visibility of the partner processes at the
presence of global compliance rules (GCR), i.e., rules that span across the process of several
partners. This work deals with the question how to verify global compliance if affected tasks are
not fully visible. Our idea is to decompose GCRs into so called assertions that can be checked
by each affected partner whereby the decomposition is both correct and lossless. The algorithm
exploits transitivity properties of the underlying rule specification, and its correctness and com-
plexity are proven, considering advanced aspects such as loops. The algorithm is implemented
in a proof-of-concept prototype, including a model checker for verifying compliance. The ap-
plicability of the approach is further demonstrated on a real-world manufacturing use case.

1. Introduction
Gartner regards interoperability as “strategic imperative”1 for healthcare. Especially the global push by digitalization
and the current pandemic require the collaboration and integration of (business) partners and organizations. Process
technology serves as enabler for process-oriented collaborations between distributed business partners, realized and
implemented through so-called process choreographies. Applications include healthcare (34), blockchain-based pro-
cesses (47; 46), multi-modal logistics scenarios (7; 10), and supply chains (22).
Digitalization and ongoing changes due to, for example, the pandemic situation or the BREXIT flood enterprises and
organizations with updated or even new regulations at a fast pace. For example, “bank regulations change every 12
minutes”.2 Regulatory frameworks comprise application-independent frameworks such as the GDPR on “data pro-
cessing boundaries of the personal data of European UnionâĂŹs citizens” (65) and the ISO 27001 security standard3
as well as application-specific ones, e.g., the WHO regulations defined in the context of COVID194. As a consequence,
in our globalized world, regulations and their changes affect process collaborations (54) and lead to an increased need
for compliance verification in process choreographies.
1.1. Problem Statement
What are the particular challenges with respect to compliance verification in process choreographies? Let us illustrate
them by an example. Figure 1 depicts the choreography model of a supply chain scenario adapted from (22). It involves
five process partners, i.e., Bulk Buyer, Manufacturer, Middleman, Supplier, and Special Carrier that interact through

∗Corresponding author
wfdhila@sba-research.org (W. Fdhila)

ORCID(s): 0000-0002-5245-6128 (W. Fdhila); 0000-0001-5656-6108 (S. Rinderle-Ma); 0000-0003-2536-4153 (M. Reichert)
1https://gtnr.it/3vGFB7f
2https://thefinanser.com/2017/01/bank-regulations-change-every-12-minutes.html/
3https://www.iso.org/isoiec-27001-information-security.html
4https://www.who.int/teams/regulation-prequalification/covid-19

First Author et al.: Preprint submitted to Elsevier Page 1 of 30

Verifying Compliance in Process Choreographies

message exchanges. First, the Bulk Buyer orders a set of products from the Manufacturer (e.g., an aircraft). The
manufacturing of the product requires several sub-products (intermediates) to be provided by different suppliers. In
this scenario, we assume that only one intermediate is required and provided by the Supplier. After processing the
order, hence, the Manufacturer sends an order for the intermediate (e.g., the fuselage or engines) to the Middleman.
The Middleman forwards the order of the intermediate to the Supplier and sends an order for a special transport to the
Special Carrier. The Special Carrier requests the details on the transport from the Supplier and the Supplier provides
them to the Special Carrier, followed by sending the waybill for the intermediate. The Special Carrier sends a notice
on the arrival of the intermediate to the Manufacturer, which then delivers the product to the Bulk Buyer.

Figure 1: Choreography model for a supply chain – running example with five process partners

Imagine now that the partners and the choreography are subject to the Global Compliance Rules (GCR) depicted in
Fig. 2, which stem from legal regulations and standards such as GDPR or ISO 27001:

C1 After Production a Final test must be performed.
C2 Pack Intermediate is required before Transport Intermediate.
C3 Each Transport intermediate requires Permission of authority. Further on, the transporter must pass a Safety

Check.
Obviously, none of the GCR can be directly verified on basis of the choreography model in Fig. 1 as none of the public
and message exchanging tasks corresponds to any of the tasks referred to in the GCR.

Figure 2: Global Compliance Rules imposed on supply chain choreography

Let us have a look at the public processes of the partners involved in the choreography as shown in Fig. 3. These public
process models contain all public tasks that are visible to the other partners, including the tasks that exchange messages,
but also other visible tasks such as Production at the Manufacturer. Based on the public process models, C1 and C2,
First Author et al.: Preprint submitted to Elsevier Page 2 of 30

Verifying Compliance in Process Choreographies

as depicted in Fig. 2, can be verified: C1 refers to public tasks of the Manufacturer process, which obviously complies
with C1, i.e., public task Production is followed by public task Final Test. C2 can be verified over the Supplier and
Special Carrier processes. The order between tasks Pack Intermediate and Transport Intermediate is determined by
the message exchange between sending and receiving Waybill Intermediate. As opposed to C1 and C2, C3 cannot be
verified based on the public processes of the partners as there are no public tasks for Safety check and Get permission
of authority.

Figure 3: Public processes (collaboration model) – running example with five process partners cooperating in a supply
chain (adapted from (22))

The presumption is that C3 also refers to private tasks of the partners, i.e., tasks that are only present in the private
process models of the partners. In general, private process models of the partners implement and possibly extend
the behavior of the corresponding public models. As opposed to public tasks, private tasks are not visible to the
partners. Figure 4 shows the private process models of partners Special Carrier and Middleman where private tasks
are highlighted in gray color. Although private tasks are usually hidden to other partners, restrictions over them might
exist. In the supply chain, for example, C3 refers to private tasks Safety Check for partner Special Carrier and Get
permission of authority for partner Middleman. If private tasks are affected by a GCR, no information about how and
when these tasks are executed, or how they are connected to other nodes of the corresponding private process model,
becomes visible to the other partners. Usually, this happens when a collaborating partner p1 imposes the execution of
a specific task that must exist in its private process and comply with a given rule involving another partner p2. Partner
p1 should then assure the existence of such task and that it follows the imposed rule.
As can be seen from the example depicted in Figs. 1–4, GCRs constrain actions of multiple partners and/or the inter-
actions between them. Ensuring the compliance of process choreographies with a GCR is crucial and challenging (32)
as a partner “only has the visibility of the portion of the process under its direct control” (48). Reconsider GCR C3 as
an example. It asks for a safety check accomplished by a private task of the Special Carrier. To cope with this issue,
assertions can be used. An assertion (A) corresponds to a commitment of a partner guaranteeing that its private/public
process complies with the imposed rule (22). Figure 5 depicts the two assertions A1 and A2: the Middleman agrees to
get the permission of the authority before ordering the special transport (A1). Moreover, the Special Carrier commits

First Author et al.: Preprint submitted to Elsevier Page 3 of 30

Verifying Compliance in Process Choreographies

Figure 4: Private processes of partners Special Carrier and Middleman, omitting message exchanges (adapted from (22))

to perform a safety check before transporting the intermediate (A2). In combination, assertions A1 and A2 enable
checking GCR C3.

Figure 5: Assertions by partners Middleman and Special Carrier

1.2. Contribution
Overall, this leads to the overarching research question RQ tackled in this work:

RQ: How to verify GCRs in a decentralized setting of a process choreography where no central coordinator with
complete knowledge on the private and public tasks of all partners exists?

In literature, there is a “knowledge gap” when it comes to compliance verification in process choreographies (32).
(48) tackles the problem of checking a GCR on private tasks based on IoT-enabled artifacts. However, not all process
choreography settings with compliance requirements feature IoT-enabled artifacts. Hence, this works aims at providing
a formal approach that is independent of any technology or application. The central idea is to decompose the GCR
into assertions in a lossless way, i.e., the verification of all assertions guarantees the one of the GCR. Note that this
solves the problem as assertions may be checked separately by each of the partners. Hence, infringing the privacy of
any partner is avoided.
The decomposition algorithm presented in this article exploits transitivity properties of the underlying GCR speci-
fication and was originally presented in (23). The decomposition relies on transitivity properties of the underlying
GCR specification. The transitivity properties are shown by the example of a translation to first order predicate logic.
Similarly, for example, (57) presents declarative patterns based on Linear Temporal Logic (LTL).
In our approach, GCRs are specified in a pattern-based and visual way using the eCRG formalism (40). This means
that a GCR may be composed of so called antecedence patterns and consequence patterns. The patterns can be
First Author et al.: Preprint submitted to Elsevier Page 4 of 30

Verifying Compliance in Process Choreographies

connected reflecting pre-/post-conditions of the respective GCR. C1 in Fig. 2, for example, connects antecedence
pattern Production with consequence pattern Final test, demanding that after the production a final test is required.
Note that antecedence and consequence patterns may require occurrence (i.e., something must happen) and absence
(i.e., something must not happen). In (23), we relied on simple rules that consist of single antecedent and multiple
occurrence patterns. Aside the decomposition algorithm itself, (23) provides basic proofs, simple GCR decomposition
scenarios, and the embedding of the approach in the overall digitalized change and compliance management framework
C3Pro.5 This article extends and elaborates the results presented in (23) in several directions:

• We allow for additional and more complex compliance rules with multiple antecedence patterns. This sig-
nificantly increases the complexity of the theoretical considerations as well as the one of the provided GCR
decomposition scenarios. As a result, we obtain new theorems and algorithms.

• The decomposition proofs are extended to cover the additional complexity of the GCR; in particular they now
consider loops as well.

• The decomposition algorithm with extensions is prototypically implemented and integrated with the C3Pro
framework, which deals with both change and compliance in process choreographies.

• A model checker for verifying decomposition correctness is provided.
• A manufacturing use case illustrates the applicability of the approach. Specifically, the use case demonstrates

the applicability of the approach beyond regulatory compliance, i.e., it shows how decomposition can be used
to lift implicit connections to explicit assertions.

• The related work section is significantly extended.
The remainder of the paper is structured as follows: Section 2 provides fundamentals required for understanding this
work, and Section 3 introduces the foundations for GCR decomposition (including transitivity theorems). Section 4
then presents the decomposition algorithm for global compliance rules, whereas Section 5 deals with the automated
verification of the resulting decompositions based on model checking. Sections 6 and 7 cover the evaluation of the
approach, i.e., the implementation and application of the algorithms. Section 8 discusses related work. Section 9
concludes the paper with a summary and an outlook.

2. Fundamentals
This section presents definitions and formal backgrounds for global compliance rules (GCRs) to be obeyed by a process
choreography 𝑦. A choreography includes three types of overlapping models: (i) a private model representing the
executable process and including both private and public activities (see Fig. 4 for examples of private process models),
(ii) a public model (also called the interface of the process) that solely includes the public activities and the interactions
of a given partner (see Fig. 3 for the public process models of our running example), and (iii) a choreography model
providing a global view on the interactions between all partners (see Fig. 1 for the choreography model of our running
example) (21). Compared to (21; 2), this paper assumes that public activities are not necessarily interactions with other
partners, but may additionally represent tasks made visible by the corresponding partners. Therefore, both interactions
and non-interaction public activities of a single partner are described in a public model. The latter serves as public
(restricted) view on the private model of the partner, which “describes the internal logic of a partner including its
private and public activities” (6). For a formal definition of process choreography, we refer to Definition 1.
Definition 1 (Choreography (21)). We define a choreography 𝑦 as a tuple
( , , Π, , 𝜓 , Γ, 𝜉) where

-  is the set of all participating partners.
-  is the choreography model representing the interactions  between partners in  (cf. Fig. 1).
- Π = {𝜋𝑝}𝑝∈ is the set of all private models (cf. Fig. 4)..
-  = {𝑙𝑝}𝑝∈ is the set of all public models (cf. Fig. 3).
- 𝜓 = {𝜓𝑝 ∶ 𝑙𝑝 ↔ 𝜋𝑝}𝑝∈ is a partial mapping function between nodes of the public and private models.

5http://www.wst.univie.ac.at/communities/c3pro

First Author et al.: Preprint submitted to Elsevier Page 5 of 30

Verifying Compliance in Process Choreographies

- Γ: 𝑙 ↔ 𝑙′ is a partial mapping function between nodes of different public models.
- 𝜉 ∶  ↔ 𝑙𝑥𝑙 is a partial mapping function between nodes of the choreography model and the public models.

As depicted in Figures 1, 3 and 4, choreography, public and private models are defined as graphs, where nodes are
either activities (i.e., interaction, public or private activities) or gateways (e.g., sequence, exclusive or parallel), and
arrows are the dependencies between them. As described above, each of these three models use specific type of ac-
tivity nodes (e.g., interaction activities for choreography models). Because the focus of this paper is mainly on GCR
decomposition, we abstract their respective formal definitions, but the reader may refer to (21) for more details.
While function 𝜓 maps the activities of the public models to those of the private models, function Γ determines
the dependencies between the interactions of different public models (e.g., Γ(𝑅𝑒𝑞𝑢𝑒𝑠𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠 (𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟)) =
𝑅𝑒𝑞𝑢𝑒𝑠𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠(𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟)). Finally, function 𝜉 represents the dependencies between the activities in the choreogra-
phy model and those of the public models (e.g., 𝜉(𝑜𝑟𝑑𝑒𝑟) = {𝑜𝑟𝑑𝑒𝑟(𝐵𝑢𝑙𝑘_𝑏𝑢𝑦𝑒𝑟), 𝑜𝑟𝑑𝑒𝑟(𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟)}). Note that
in the examples above, connected interaction activities (i.e., the send and the corresponding receive) of different public
models have the same labels, while in practice, it is possible to have them different.
Based on functions 𝜓 and Γ, certain soundness properties of choreography 𝑦 can be checked, including structural and
behavioral compatibility between public models, and consistency between public and private models (15). Structural
consistency requires that for each public activity of the public model of a partner p, there should be a matching element
in the corresponding private model of p, but not vice versa (21). Structural compatibility states that for each interaction
activity of the public model of a partner p, there should be a matching interaction activity in the public model of another
partner. Note that this is a necessary, but not yet sufficient condition for ensuring compatibility and consistency–the
models’ behaviors (control flow dependencies) should also be compatible and consistent. In this paper, we assume that
the choreography 𝑦 is sound.
In previous work (20), multiple formal languages employed for business process compliance modelling and checking
(e.g., linear temporal logic LTL, event calculus EC, extended compliance rule graph eCRG) were compared. It was
shown that most of these languages can deal with most qualitative time patterns, and can therefore be used to model
the compliance constructs addressed in this paper. Similar results were proven in (30).
In order to specify these constructs as well as transitivity properties required for the GCR decomposition, this work
utilizes the visual eCRG (extended Compliance Rule Graph) language (42; 38; 36). The eCRG language offers a
visual rule notation for expressing compliance rules over process choreographies and is based on first order predicate
logic (cf. Fig. 6). To distinguish between a precondition (i.e. antecedence) and corresponding postconditions (i.e.
consequences), an eCRG can be partitioned into an antecedence pattern and a consequence pattern. The antecedence
pattern specifies when the compliance rule is triggered (i.e., activated), whereas the consequence pattern specifies what
the rule demands. As compliance rules may require the occurrence or absence of certain activities or interactions (i.e.,
message exchanges), the antecedence and consequence patterns are further sub-divided into occurrence and absence
nodes. Sequence conditions between these events can be expressed using directed connectors between the respective
nodes. We use the following notation: 𝐴 : Antecedence occurrence; 𝐴 : Antecedence absence; 𝐴 : Consequence
occurrence; 𝐴 : Consequence absence. Fig. 6 introduces the elements of the eCRG language. For a formal definition
of eCRG, we refer to Def. 2.
Definition 2 (Global Compliance Rule (GCR) structure). Given a process choreography 𝑦 = ( , , Π, , 𝜓 , Γ, 𝜉)
(cf. Def. 1), let  be the set of private and public non-interaction activities and  be the set of interaction activities.
Then: A GCR 𝑟 is defined as tuple 𝑟 = (𝑁 , 𝜌,𝜑, 𝑡𝑦𝑝𝑒, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛) with

• 𝑁 being the set of nodes,

• 𝜌 ∶ 𝑁 →  returning the partner responsible for a node.

• 𝜑 ∶ 𝑁 ×𝑁 → {⤏,→, ∅} returning the sequence flow connector between two nodes, i.e., consequence sequence
and antecedence sequence connectors respectively.

• 𝑡𝑦𝑝𝑒 ∶ 𝑁 →  ∪  mapping each node to an activity or an interaction (i.e., message exchange).

• 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∶ 𝑁 → { 𝐴 , 𝐴 , 𝐶 , 𝐶 }

First Author et al.: Preprint submitted to Elsevier Page 6 of 30

Verifying Compliance in Process Choreographies
O

cc
ur

en
ce

A
bs

en
ce

Antecedence Consequence

 Task

 Task Task

Task

Extended Compliance Rule Graph Language (eCRG)

Process Perspective

Antecedence Consequence Antecedence Consequence

Sender

Receiver Message
Message

Sender

Message

Receiver

Message

Sender

Receiver Message
Message

Sender

Message

Receiver

Message

ReceiveSend

O
cc

ur
en

ce
A

bs
en

ce

Interaction Perspective

Antecedence
Sequence

Connectors

Consequence
Sequence

Figure 6: Elements of the eCRG language

Think of an eCRG as a graph of connected nodes, where each node is assigned to a particular partner (e.g., in C1,
𝜌(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛) = 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟). A node may either be a private, mom-interaction public activity, or an inter-
action (see Figure 6). Given two nodes of an eCRG, function 𝜑 returns the sequence flow connector as depicted
in Figure 6, where a dashed arrow (i.e., consequence connector) connects an antecedence pattern to set of conse-
quence patterns (e.g, 𝐶1: After production a final test is required), and an antecedence connector expresses a relation
between antecedence patterns solely (i.e, the pre-condition). For example, assume that we change 𝐶3 as follows:
𝐺𝑒𝑡_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑜𝑓_𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦→ 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 . Then: if the pre-condition (i.e., execu-
tion of activity 𝐺𝑒𝑡_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑜𝑓_𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦 followed by the one of activity 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘) is met, the post condi-
tion (i.e., activity 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_ 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒) will be triggered. Finally, function pattern evaluates whether a node is an
antecedence or consequence, and whether or not it should occur.

3. Global Compliance Rule Decomposition Theorems
This section introduces the theoretical foundations for the decomposition of global compliance rules (including theo-
rems and proofs) illustrated by a number of examples, which we have extracted from the application scenario introduced
in Section 1. Section 3.1 first describes the basic idea of our approach (i.e., why do we need to decompose a GCR),
followed by the presentation, proofs and illustrations of the theorems in Section 3.2.
3.1. Basic Idea
Our method for the decentralized checking of global compliance rules relies on the decomposition of the original GCR
into a set of assertions that can be checked locally by each partner and collectively reproduce the behavior of the GCR
(cf. Fig. 7). A communication between partners is only required in the setup phase to deduct the assertions. During
runtime, however, no further compliance-related communication becomes necessary for checking the GCR unless a
local assertion becomes violated. The decomposition of a GCR into a set of assertions is based on well-grounded
theorems, which ensure that if a conjunction of hypotheses is true, the conclusion (GCR) is true as well.
3.2. Theorems
In this section, we provide a decomposition method for selected global compliance patterns and show how they can
be applied in a collaborative setting. In particular, we prove a set of theorems required for ensuring the correctness of
our decomposition method. Each theorem represents a possible decomposition of a given compliance pattern.
We illustrate the translation of a GCR into a First Order Logic (FOL) expression using basic equivalences as in Def. 3.
Definition 3 (Basic Equivalences). Based on (41), the following equivalences hold by definition. Predicate 𝑥(𝑡, 𝑡𝑦)
describes that at the point in time 𝑡 an activity (message) of type 𝑡𝑦 was executed (i.e., sent or received).

• 𝐴⤏𝐵 ∶⇔ ∀𝑎 ∶
(
𝑥(𝑎,𝐴) →

(
∃𝑏 ∶ (𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏)

))
⇔ ∀𝑎∃𝑏 ∶

(
𝑥(𝑎,𝐴) → (𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏)

)

First Author et al.: Preprint submitted to Elsevier Page 7 of 30

Verifying Compliance in Process Choreographies

Figure 7: Method Overview

• 𝐴⤏𝐵 ∶⇔ ∀𝑏 ∶
(
𝑥(𝑏,𝐵) →

(
∃𝑎 ∶ (𝑥(𝑎,𝐴) ∧ 𝑎 < 𝑏)

))
⇔ ∀𝑏∃𝑎 ∶

(
𝑥(𝑏,𝐵) → (𝑥(𝑎,𝐴) ∧ 𝑎 < 𝑏)

)

• 𝐴⤏𝐵 ∶⇔ ∀𝑎 ∶(
𝑥(𝑎,𝐴) →

(
∄𝑏 ∶ (𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏)

))
⇔ ∀𝑎, 𝑏 ∶

(
𝑥(𝑎,𝐴) → ¬(𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏)

)
⇔ ∀𝑎, 𝑏 ∶

(
𝑥(𝑎,𝐴) → (¬𝑥(𝑏,𝐵) ∨ 𝑏 ≤ 𝑎))

• 𝐴 ⤏𝐵 ∶⇔ ∀𝑏 ∶(
𝑥(𝑏,𝐵) →

(
∄𝑎 ∶ (𝑥(𝑎,𝐴) ∧ 𝑎 < 𝑏)

))
⇔ ∀𝑏, 𝑎 ∶

(
𝑥(𝑏,𝐵) → ¬(𝑥(𝑎,𝐴) ∧ ¬𝑎 < 𝑏)

)
⇔ ∀𝑎, 𝑏 ∶

(
𝑥(𝑎,𝐴) → (¬𝑥(𝑏,𝐵) ∨ 𝑏 ≤ 𝑎))

For example, GCR Production⤏ Final test is translated into: ∀𝑎 ∶
(
𝑥(𝑎,Production) → ∃𝑏 ∶ 𝑥(𝑏,Final test) ∧

𝑎 < 𝑏
). Thereby, relation < expresses a temporal precedence between points in time 𝑎 and 𝑏. The decomposition

algorithm presented in Section 4 exploits the transitivities for GRC as in Theorem 1. Specifically, by combining
transitive relations, where each relation can be checked locally by a single partner, it becomes possible to reconstruct
the original GCR behavior. Theorem 1 ensures that the behavior of the derived assertions reproduces the behavior of
the GCR, but not vice versa.
Theorem 1 (Transitivities).
Let 𝐴,𝐵, and 𝐶 be three activity or message types. Then:

a. The rightwards transitivity holds:

𝐴⤏𝐵 ∧ 𝐵⤏𝐶 ⇒ 𝐴⤏𝐶

b. The leftwards transitivity holds:

𝐴⤏𝐵 ∧ 𝐵⤏𝐶 ⇒ 𝐴⤏𝐶

In the following, the correctness of Theorem 1 is proven applying Def. 3.
Proof 1 (Rightwards Transitivity).
Let 𝐴,𝐵, and 𝐶 be three activities or interactions. Then 𝐴⤏𝐵 ∧ 𝐵⤏𝐶
∶⇔ ∀𝑎∃𝑏 ∶

�
𝑥(𝑎,𝐴) → (𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏)

�
∧∀𝑏∃𝑐 ∶

�
𝑥(𝑏,𝐵) → (𝑥(𝑐,𝐶) ∧ 𝑏 < 𝑐)

�

⇔ ∀𝑎
�
∃𝑏 ∶

(
𝑥(𝑎,𝐴) → (𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏)

)
∧∀𝑏 ∶ ∃𝑐 ∶

(
𝑥(𝑏,𝐵) → (𝑥(𝑐,𝐶) ∧ 𝑏 < 𝑐)

)�

⇒ ∀𝑎∃𝑏, 𝑐 ∶
�(
𝑥(𝑎,𝐴) → (𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏)

)
∧
(
𝑥(𝑏,𝐵) → (𝑥(𝑐,𝐶) ∧ 𝑏 < 𝑐)

)�

⇒ ∀𝑎
�
∃𝑏, 𝑐 ∶

�(
𝑥(𝑎,𝐴) → 𝑥(𝑏,𝐵) → (𝑥(𝑐,𝐶) ∧𝑎 < 𝑏 < 𝑐)

)��

⇒ ∀𝑎∃𝑐 ∶
�
𝑥(𝑎,𝐴) → (𝑥(𝑐,𝐶) ∧ 𝑎 < 𝑐)

�
⇒ 𝐴⤏𝐶 q.e.d.

First Author et al.: Preprint submitted to Elsevier Page 8 of 30

Verifying Compliance in Process Choreographies

Order
special transport

Safety check

Get permission
of authority

Get permission
of authority

Order
special transport

Produce
intermediate

Get permission
of authority

Process Order

Order
intermediate FWD order

intermediate

Order
intermediate

FWD order
intermediate Get permission

of authority

Prepare
Transport

Waybill for
intermediate

Get permission
of authority
Safety Check

Waybill for
intermediate

Middleman - P1 Manufacturer - P1Special Carrier- P2 Supplier - P2Middleman - P3 Special Carrier - P2Supplier - P1

sync+
A

B

m1
m1

m2

m1

A A

B

B

Example (3)Example (1) Example (2)
Figure 8: Examples 1–3

Leftwards transitivity can be proven similarly by replacing ’<’ with ’>’.
Corollary 1. Let 𝐴,𝐵,𝐶 , and 𝐷 be activities or interactions. Then
𝐴⤏𝐵 ∧ 𝐵⤏𝐶 ∧ 𝐶⤏𝐷 ⇒ 𝐴⤏𝐶 ∧ 𝐶⤏𝐷 ⇒ 𝐴⤏𝐷

In the following, we use Examples (1) - (3) (cf. Fig. 8), which we extracted from our running example (cf. Figs. 3
and 4), in order to illustrate how we use Theorem 1 for decomposing a simple compliance rule of type 𝐴⤏𝐵 that
involves two private tasks 𝐴 and 𝐵 of two different partners 𝑝1 and 𝑝2 respectively.

• Example (1): 𝑔𝑒𝑡_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑜𝑓_𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦⤏ 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 . In this example, both activities are private,
which would normally require𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 and 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 to share runtime information about the execu-
tion time of the respective activities. In turn, this would require an agreement on a time synchronization protocol
that considers network failures and message transmission delays. This can be solved by identifying a transitive
relation between the two private activities that include an interaction activity. According to Theorem 1, the
interaction activity 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 between 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 and 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 fulfills the conditions
𝐴1 and 𝐴2:
𝑔𝑒𝑡_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑜𝑓_𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦⤏ 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 and 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⤏ 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 .
The behavioral and structural compatibility (cf. Section 2) between the partner processes ensures that message
𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 sent by𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 shall be correctly received by𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟. By locally check-
ing 𝐴1 and 𝐴2 by 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 and 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 respectively, we can ensure that the original GCR is not
violated as long as the assertions are not violated. If one assertion is violated, a communication between the two
partners will become necessary. Note that this violation does not necessarily mean that the original GCR is vio-
lated. For example, assume that for a given process instance, assertion𝐴1 evaluates to true, and𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟
executeÅŻ activity 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 before the message arrival. Although this would result in 𝐴2 being evaluated
to false, it does not necessarily mean that 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 is executed before 𝑔𝑒𝑡_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑜𝑓_𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦.

• Example (2): 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑜𝑟𝑑𝑒𝑟⤏ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 . In this example, 𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 and 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 do not
engage in any direct interaction. However, by looking at the public processes of the collaboration model from
Fig. 3, it becomes possible to identify a double transitive relation through𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛, which interacts with both
partners. Therefore, using Corollary 1, the transitive relations (assertions): 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑜𝑟𝑑𝑒𝑟⤏ 𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 ,
𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑓𝑤𝑑_𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 , and 𝑓𝑤𝑑_𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
reproduce the behavior of 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑜𝑟𝑑𝑒𝑟⤏ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 . 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛, which has initially not been
involved in the GCR, becomes involved in the derived assertions. We call𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 an intermediary partner.

• Example (3): 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⤏ 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 . In this example, it is not possible to identify any tran-
sitive relation between 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 and 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 that involve private activities 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 and
𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘. The interaction activity 𝑤𝑎𝑦𝑏𝑖𝑙𝑙_𝑓𝑜𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 connects both partners immediately after
the activities in question, which discards any possibility of a transitive relation. In this case, it is not possible
to satisfy Theorem 1 and, hence, additional message exchanges become necessary to inform about the execu-
tion state of the activities involved in the GCR. Message exchanges can be either synchronous or asynchronous.
Asynchronous message exchange only allows for reactive GCR checking and, therefore, detecting violations
after their occurrence. Synchronous message exchange, in turn, is proactive as it enforces the GCR with new

First Author et al.: Preprint submitted to Elsevier Page 9 of 30

Verifying Compliance in Process Choreographies

m1

Get permission
of authority

Transport

intermediate

Get permission
of authority

Order
special transport

Get permission
of authority

Order
special transport

Get permission
of authority

Quick test
intermediate

Arrival of
intermediate

Arrival of
intermediate

Transport

intermediate

Quick test
intermediate

Example (4) Example (5)

AB

A

B

Special Carrier- P2 Manufacturer - P1 Manufacturer - P2Special Carrier- P1

m1

Figure 9: Examples 4–5

restrictions to the process models, e.g., the execution of activity 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 becomes enabled only after re-
ceiving a synchronization message (i.e., about whether or not 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 is executed). 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 shall
also inform 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 in case activity 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 is not executed, as this does not prevent activity
𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 from being executed according to the GCR.

Rightwards transitivity (cf. Theorem 1.a) directly ensures the correctness of the assertions derived in the above exam-
ples. It should be clear that the correctness of the derived assertions in Example (2) can be directly concluded based
on Corollary 1. The same examples can be also used to illustrate leftwards transitivity.

Theorem 2 (Zig zag Transitivities).
Let 𝐴,𝐵, and 𝐶 be three activity or message types. Then:

a. The rightwards zig zag transitivity holds for the consequence absence:

𝐵⤏𝐴 ∧ 𝐵⤏𝐶 ⇒ 𝐴⤏𝐶

b. The leftwards zig zag transitivity holds for the consequence absence:

𝐴⤏𝐵 ∧ 𝐶 ⤏𝐵 ⇒ 𝐶 ⤏𝐴

Proof 2 (Rightwards Zig Zag Transitivity of Absence).
Let 𝐴,𝐵, and 𝐶 be activities or interactions. Then:
𝐵⤏𝐴 ∧ 𝐵⤏𝐶
∶⇔ ∀𝑎∃𝑏 ∶

�
𝑥(𝑎,𝐴) → (𝑥(𝑏,𝐵) ∧ 𝑏 < 𝑎)

�
∧ ∀𝑏, 𝑐 ∶

�
𝑥(𝑏,𝐵) → (¬𝑥(𝑐,𝐶) ∨ 𝑐 ≤ 𝑏)�

⇔ ∀𝑎
�
∃𝑏 ∶

(
𝑥(𝑎,𝐴) → (𝑥(𝑏,𝐵) ∧ 𝑏 < 𝑎)

)
∧ ∀𝑏, 𝑐 ∶

(
𝑥(𝑏,𝐵) → (¬𝑥(𝑐,𝐶) ∨ 𝑐 ≤ 𝑏))�

⇒ ∀𝑎∃𝑏∀𝑐 ∶
�(
𝑥(𝑎,𝐴) → (𝑥(𝑏,𝐵) ∧ 𝑏 < 𝑎)

)
∧
(
𝑥(𝑏,𝐵) → (𝑥(𝑐,𝐶) → 𝑐 ≤ 𝑏))�

⇒ ∀𝑎∃𝑏∀𝑐 ∶
�(
𝑥(𝑎,𝐴) → 𝑥(𝑏,𝐵) → (𝑥(𝑐,𝐶) → 𝑐 ≤ 𝑏 < 𝑎))�

⇒ ∀𝑎∀𝑐 ∶
�
𝑥(𝑎,𝐴) → (𝑥(𝑐,𝐶) → 𝑐 ≤ 𝑎)�

⇒ ∀𝑎, 𝑐 ∶
�
𝑥(𝑎,𝐴) → (¬𝑥(𝑐,𝐶) ∨ 𝑐 ≤ 𝑎)� ⇒ 𝐴⤏𝐶 q.e.d.

Leftwards zig zag transitivity of absence can be proven similarly by replacing ’<’ with ’>’ and ’≤’ with ’≥’.
In the following, we use Examples (4) and (5) from Fig. 9 to illustrate and discuss how Theorem 2 can be used to
decompose a GCR of type rightwards zigzag 𝐴⤏𝐵 . Note that these two examples are adopted from the running
example we introduced in Section 1 in order to fulfill the decomposition requirements.

• Example (4): 𝑞𝑢𝑖𝑐𝑘_𝑡𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 . In this example, 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
and 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 in 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 belong to different XOR branches, which means that the

First Author et al.: Preprint submitted to Elsevier Page 10 of 30

Verifying Compliance in Process Choreographies

execution of activity 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 implies the non-execution of activity 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
and vice versa (fulfilling assertion 𝐴1 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒). Additionally, in
𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟, the interaction activity 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 and the private activity 𝑞𝑢𝑖𝑐𝑘_𝑡𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
belong to the same XOR branch, and fulfill assertion 𝐴2 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⤏ 𝑞𝑢𝑖𝑐𝑘_𝑡𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 .
According to Theorem 2.a, the conjunction of 𝐴1 and 𝐴2 reproduces the behavior of the original GCR. Note
that process compatibility ensures that whenever sending 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 occurs in 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟,
receiving 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 should occur in𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 as well. At the presence of loops that encap-
sulate the depicted process part of 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟, the XOR fragment can be executed multiple times possibly
leading to an alternate execution of the corresponding branches. For example, if in the first loop iteration,
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 is executed and 𝑞𝑢𝑖𝑐𝑘_𝑡𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 is not executed, then, to this point both de-
rived assertions are satisfied. Let us assume that a future iteration over the XOR fragment in the context of the
same process instance triggers 𝑞𝑢𝑖𝑐𝑘_𝑡𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 execution, thus, violating the original GCR.
iteration 1: 𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟: {𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒}
iteration 1: 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 {}
iteration 2: 𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 {𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒, 𝐨𝐫𝐝𝐞𝐫_𝐬𝐩𝐞𝐜𝐢𝐚𝐥_𝐭𝐫𝐚𝐧𝐬𝐩𝐨𝐫𝐭}
iteration 2: 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 {𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, 𝐪𝐮𝐢𝐜𝐤_𝐭𝐞𝐬𝐭_𝐢𝐧𝐭𝐞𝐫𝐦𝐞𝐝𝐢𝐚𝐭𝐞}
Combined trace: {𝐭𝐫𝐚𝐧𝐬𝐩𝐨𝐫𝐭_𝐢𝐧𝐭𝐞𝐫𝐦𝐞𝐝𝐢𝐚𝐭𝐞, 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡,
𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, 𝐪𝐮𝐢𝐜𝐤_𝐭𝐞𝐬𝐭_𝐢𝐧𝐭𝐞𝐫𝐦𝐞𝐝𝐢𝐚𝐭𝐞}
By looking at the combined trace, it becomes clear that the GCR is violated. Unfortunately, this would require
both partners to exchange the traces and use a common time stamping system to obtain the same chronological
order of activities. Using the theorems, however, the𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 can locally run its derived assertion against
its own execution trace of the same process instance, and identify the violation. Note that the decomposition
does not enforce the processes with new restrictions (except when no transitivity could be derived), but uses the
existing control flow and interactions between partners to derive assertions that can be used for a decentralized
checking of the original GCR.

• Example (5): 𝑞𝑢𝑖𝑐𝑘_𝑡𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 ⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 . In Fig. 9, 𝑞𝑢𝑖𝑐𝑘_𝑡𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 al-
ways happens after 𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑜𝑓_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 ensuring 𝑞𝑢𝑖𝑐𝑘_𝑡𝑒𝑠𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 ⤏ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑜𝑓_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 .
The second part of the decomposition can be directly derived from the process control flow of 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟:
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑜𝑓_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 . The same reasoning applies to this example at the pres-
ence of loops. The correctness of Example (5) concludes from the leftwards zig zag transitivity (cf. Theo-
rem 2.b), whereas Example (4) relies on the rightwards zig zag transitivity of the absence (cf. Theorem 2.a).
The decomposition process is not limited to these scenarios and, as aforementioned, the decomposition cannot
always be automated, but might require manual interaction and processing. Altogether, the decomposition eases
global compliance rule checking, where each partner checks its corresponding derived assertions locally. A
GCR is rechecked only if at least one of the derived assertions is not evaluated to true. Note that this does not
necessarily imply that the GCR is violated.

Theorem 3 (Rightwards Chaining Transitivity).
Let 𝐴,𝐵,𝐶 , and 𝐷 be activities or interactions such as 𝐴→𝐵⤏𝐶⤏𝐷 : if 𝐴 and 𝐵 occur, 𝐶 and 𝐷 shall occur
afterwards. Let 𝑚1,𝑚2, and 𝑚3 be three interactions such as:

(1) 𝑀1 ⤏𝐴

(2) 𝑀1 →𝐵⤏𝑀2

(3) 𝑀2 ⤏𝐶⤏𝑀3

(4) 𝑀3 ⤏𝐷

Then: Whenever (1) ∧ (2) ∧ (3) ∧ (4) evaluates to true, 𝐴→𝐵⤏𝐶⤏𝐷 is true as well.

Proof 3 (Rightwards Chaining Transitivity).
(1) ∧ (2) ∶
∶⇔ ∀𝑎∃𝑚1 ∶

�
𝑥(𝑎,𝐴) → 𝑥(𝑚1,𝑀1) ∧ (𝑚1 < 𝑎)

�
∧ ∀𝑚1,∀𝑏,∃𝑚2 ∶

�
(𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑏,𝐵) ∧ 𝑚1 < 𝑏) →

First Author et al.: Preprint submitted to Elsevier Page 11 of 30

Verifying Compliance in Process Choreographies

(𝑥(𝑚2,𝑀2) ∧ 𝑏 < 𝑚2)
�

⊧ ∀𝑎∃𝑚1∀𝑏∃𝑚2 ∶
�
𝑥(𝑎,𝐴) → 𝑥(𝑚1,𝑀1) ∧ (𝑚1 < 𝑎)

�
∧
�
(𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑏,𝐵) ∧𝑚1 < 𝑏) → (𝑥(𝑚2,𝑀2) ∧ 𝑏 < 𝑚2)

�

⊧ ∀𝑎∃𝑚1∀𝑏∃𝑚2 ∶
�
𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏 → 𝑥(𝑚1,𝑀1) ∧ (𝑚1 < 𝑏)

�
→ (𝑥(𝑚2,𝑀2) ∧ 𝑏 < 𝑚2)

⊧ ∀𝑎∀𝑏∃𝑚2 ∶ 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏→ 𝑥(𝑚2,𝑀2) ∧ 𝑏 < 𝑚2
(1) ∧ (2) ∧ (3)
⊧ ∀𝑎∀𝑏∃𝑚2 ∶

�
𝑥(𝑎,𝐴)∧𝑥(𝑏,𝐵)∧𝑎 < 𝑏 → 𝑥(𝑚2,𝑀2)∧𝑏 < 𝑚2

�
∧∀𝑚2∃𝑐∃𝑚3 ∶

�
𝑥(𝑚2,𝑀2) → 𝑥(𝑐,𝐶)∧𝑥(𝑚3,𝑀3)∧

𝑚2 < 𝑐 ∧ 𝑐 < 𝑚3

�

⊧ ∀𝑎∀𝑏∃𝑐∃𝑚3 ∶ 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏→ 𝑥(𝑐,𝐶) ∧ 𝑥(𝑚3,𝑀3) ∧ 𝑏 < 𝑐 ∧ 𝑐 < 𝑚3
(1) ∧ (2) ∧ (3) ∧ (4)
⊧ ∀𝑎∀𝑏∃𝑐∃𝑚3 ∶

�
𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏 → 𝑥(𝑐,𝐶) ∧ 𝑥(𝑚3,𝑀3) ∧ 𝑏 < 𝑐 ∧ 𝑐 < 𝑚3

�
∧ ∀𝑚3∃𝑑 ∶

�
𝑥(𝑚3,𝑀3) →

𝑥(𝑑,𝐷) ∧ 𝑚3 < 𝑑
�

⊧ ∀𝑎∀𝑏∃𝑐∃𝑑 ∶
�
𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏 → 𝑥(𝑐,𝐶) ∧ 𝑥(𝑑,𝐷) ∧ 𝑏 < 𝑐 ∧ 𝑐 < 𝑑

�

• Example (6): 𝑔𝑒𝑡_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦→ 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 . In
this example, all activities involved in the GCR are private and belong to separate partners. According to the
process models shown in Figs. 3 and 4, each partner can separately derive the corresponding assertion based on
Theorem 3 and involving the corresponding activity in the GCR.

(1) 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 𝑓𝑤𝑑_𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑔𝑒𝑡_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦
(2) 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑓𝑤𝑑_𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒→ 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⤏𝑤𝑎𝑦𝑏𝑖𝑙𝑙_𝑓𝑜𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
(3) 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑤𝑎𝑦𝑏𝑖𝑙𝑙_𝑓𝑜𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑜𝑓_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
(4) 𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑜𝑓_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

In this example, partners will first engage in a setup phase, in which they agree on the interaction activities that
satisfy all derived assertions following the assertions’ templates of Theorem 3. For example, 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 will
start by identifying relations in its process of type 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦⤏ 𝑔𝑒𝑡_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦 , where
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 must be a message exchange with 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 that is the partner being responsible for the
following antecedence occurrence 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡. In this example, 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 and 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 have only
one interaction that satisfies the derived assertion (1); however, it is also possible to identify several alternatives.
The combination of the four derived assertions reproduce the behavior of the original GCR when all assertions
are true.

The following theorem represents a generalization of Theorem 3 with 𝑛 antecedences’ occurrences and 𝑚 conse-
quences’ occurrences. Note that the previous example also illustrates Theorem 4 with 𝑛 = 2 and 𝑚 = 2.
Theorem 4 (Generic Rightwards Chaining Transitivity).
Let𝐴1≤𝑖≤𝑛 and𝐶1≤𝑗≤𝑚 be 𝑛+𝑚 activities. 𝐴1 → ...→𝐴𝑛⤏𝐶1 ⤏ ...⤏𝐶𝑚 : if all𝐴𝑖 occur such that ∀𝑖 < 𝑛,𝐴𝑖 < 𝐴𝑖+1
holds, then all 𝐶𝑗 should occur afterwards such that ∀𝑗 < 𝑚,𝐶𝑗 < 𝐶𝑗+1 holds.
Let 𝑚𝑘, where 1<k<n+m-1 be interactions such that:

(1) 𝑀1 ⤏𝐴1

(2) 𝑀𝑖−1 →𝐴𝑖⤎𝑀𝑖 where 1 < 𝑖 < 𝑛

(3) 𝑀𝑛−1 →𝐴𝑛⤏𝑀𝑛

(4) 𝑀𝑛+𝑗−1 ⤏𝐶𝑗 ⤏𝑀𝑛+𝑗 where 1 ≤ 𝑗 < 𝑚
(5) 𝑀𝑛+𝑚−1 ⤏𝐶𝑚

First Author et al.: Preprint submitted to Elsevier Page 12 of 30

Verifying Compliance in Process Choreographies

Then: Whenever (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) evaluates to true, 𝐴1 → ...→𝐴𝑛⤏𝐶1 ⤏ ...⤏𝐶𝑚 is true as well.

Proof 4 (Generic Rightwards Chaining Transitivity).
(1)
∶⇔ ∀𝑎∃𝑚1 ∶

�
𝑥(𝑎,𝐴) → 𝑥(𝑚1,𝑀1) ∧ (𝑚1 < 𝑎)

�

(2)
∶⇔

⋀
1<𝑖<𝑛

�
∀𝑚𝑖−1∀𝑎𝑖∃𝑚𝑖 ∶ (𝑥(𝑚𝑖−1,𝑀𝑖−1) ∧ 𝑥(𝑎𝑖,𝐴𝑖) ∧ 𝑚𝑖−1 < 𝑎𝑖) → (𝑥(𝑚𝑖,𝑀𝑖) ∧ 𝑚𝑖 < 𝑎𝑖)

�

(3)
∶⇔

�
∀𝑚𝑛−1∀𝑎𝑛∃𝑚𝑛 ∶ (𝑥(𝑚𝑛−1,𝑀𝑛−1) ∧ 𝑥(𝑎𝑛,𝐴𝑛) ∧ 𝑚𝑛−1 < 𝑎𝑛) → (𝑥(𝑚𝑛,𝑀𝑛) ∧ 𝑎𝑛 < 𝑚𝑛)

�

(1) ∧ (2) ∧ (3): when evaluated to true, this ensures that all 𝐴𝑖 were executed, and all these executions combined
lead to 𝑀𝑛 as a consequence. This includes the case where all 𝐴𝑖 execute in ascending order. So, if we consider this
particular order, the formula leading to 𝑀𝑛 becomes true.
(4)
∶⇔

⋀
1≤𝑗<𝑚

�
∀𝑚𝑛+𝑗−1∀𝑐𝑗∃𝑚𝑛+𝑗 ∶ (𝑥(𝑚𝑛+𝑗−1,𝑀𝑛+𝑗−1)∧ 𝑥(𝑐𝑗 ,𝐶𝑗)∧𝑚𝑛+𝑗−1 < 𝑐𝑛) → (𝑥(𝑚𝑛+𝑗 ,𝑀𝑛+𝑗)∧𝑚𝑛+𝑗 < 𝑐𝑗)

�

(5)
∶⇔

�
∀𝑚𝑛+𝑚−1∃𝑐𝑚 ∶ (𝑥(𝑚𝑛+𝑚−1,𝑀𝑛+𝑚−1) → (𝑥(𝑐𝑚,𝐶𝑚) ∧ 𝑚𝑛+𝑚−1 < 𝑐𝑚)

�

(4)∧(5): This formula transitively ensures that whenever𝑀𝑛+𝑗−1 is executed, there is a least one execution in ascending
order of all 𝐶𝑗 . 𝑀𝑛+𝑗−1 becomes the link between all antecedence patterns and consequence patterns. Therefore, the
conjunction of formulas (1) to (5) ensures that whenever an instance containing an ordered execution of𝐴𝑖 should lead
to an ordered execution of execution of 𝐶𝑖. Note that this conjunction represents a stronger constraint than the original
GCR. However, as these formulas are deducted directly from the actual processes, they do not add new constraints.

Theorem 5 (Between Pattern 1).
Let𝐴, 𝐵 and𝐶 be three activities. 𝐴⤏𝐶⤏𝐵 : if𝐴 and𝐵 occur and𝐵 occurs after𝐴, then𝐶 must occur in between.

(1) 𝐴⤏𝑀1 ⊕ 𝑀2 ⤏𝑀1

(2) 𝑀2 ⤏𝑀3 ⤏𝐵

(3) 𝑀1 ⤏𝐶⤏𝑀3

Then: Whenever (1) ∧ (2) ∧ (3) evaluates to true, 𝐴⤏𝐶⤏𝐵 is true as well.

Proof 5 (Between Pattern 1).
(1) ∶⇔ ∀𝑎, 𝑥(𝑎,𝐴) → ∃𝑚1∄𝑚2, 𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚2,𝑀2) ∧ (𝑎 < 𝑚1) ∧ (𝑚2 < 𝑚1)
(2) ∶⇔ ∀𝑏, 𝑥(𝑏,𝐵) → ∃𝑚2∃𝑚3, 𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚3,𝑀3) ∧ (𝑚2 < 𝑚3 < 𝑏)
(3) ∶⇔ ∀𝑚1∀𝑚3, 𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚3,𝑀3) → ∃𝑐, 𝑥(𝑐,𝐶) ∧ (𝑚1 < 𝑐 < 𝑚3)
(1)∧(2) ⇔ ∀𝑎∀𝑏, 𝑥(𝑎,𝐴), 𝑥(𝑏,𝐵) → (∃𝑚1∄𝑚2, 𝑥(𝑚1,𝑀1)∧𝑥(𝑚2,𝑀2)∧(𝑎 < 𝑚1)∧(𝑚2 < 𝑚1))∧(∃𝑚2∃𝑚3, 𝑥(𝑚2,𝑀2)∧
𝑥(𝑚3,𝑀3) ∧ (𝑚2 < 𝑚3 < 𝑏))
⊧ ∀𝑎∀𝑏, 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) → ∃𝑚1∃𝑚2∃𝑚3, 𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚3,𝑀3) ∧ (𝑎 < 𝑚1 < 𝑚2) ∧ (𝑚2 < 𝑚3 < 𝑏))
⊧ ∀𝑎∀𝑏, 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏→ ∃𝑚1∃𝑚2∃𝑚3, 𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚3,𝑀3) ∧ (𝑎 < 𝑚1 < 𝑚2 < 𝑚3 < 𝑏))
(1) ∧ (2) ∧ (3) ∶⊧ ∀𝑎∀𝑏, 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏 → ∃𝑚1∃𝑚2∃𝑚3, 𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚3,𝑀3) ∧ (𝑎 < 𝑚1 <
𝑚2 < 𝑚3 < 𝑏)) → ∃𝑐, 𝑥(𝑐,𝐶) ∧ (𝑚1 < 𝑐 < 𝑚3)
⊧ ∀𝑎∀𝑏∃𝑚1∃𝑚2∃𝑚3∃𝑐, 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏 → 𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚3,𝑀3) ∧ 𝑥(𝑐,𝐶) ∧ (𝑎 < 𝑚1 < 𝑚2 <
𝑚3 < 𝑏)) ∧ (𝑚1 < 𝑐 < 𝑚3)
⊧ ∀𝑎∀𝑏, 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏→ ∃𝑐, 𝑥(𝑐,𝐶) ∧ (𝑎 < 𝑐 < 𝑏))

• Example (7): 𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 . Again, in this example,
we consider the worst case scenario where each activity referred to by the GCR belongs to a different process
partner. In this example, 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 has one single alternative as it only has two interaction activities with
𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 and 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 respectively, which follow the assertion template (1) of Theorem 5; i.e., each ex-
ecution of 𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 must be followed (not necessarily immediately) by 𝑓𝑤𝑑_𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒,

First Author et al.: Preprint submitted to Elsevier Page 13 of 30

Verifying Compliance in Process Choreographies

which, in turn, should not be preceded by any 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 execution. Similarly, 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟
and 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 should identify assertions that follow rule templates (2) and (3) respectively.
Note that the Between Pattern 𝐴⤏𝐶⤏𝐵 can be also checked using chaining transitivity 𝐴⤏𝐶⤏𝐵 . How-
ever, this adds a stronger assumption on 𝐶 and 𝐵 that should follow 𝐴 whenever it occurs. For example, this
holds in the running example (cf. Fig. 3), as 𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 transitively implies 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, which,
in turn, transitively implies 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒.

(1) 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑓𝑤𝑑_𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
⊕ 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ⤏ 𝑓𝑤𝑑_𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒

(2) 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⤏𝑤𝑎𝑦𝑏𝑖𝑙𝑙_𝑓𝑜𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
(3) 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑓𝑤𝑑_𝑜𝑟𝑑𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒⤏ 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⤏𝑤𝑎𝑦𝑏𝑖𝑙𝑙_𝑓𝑜𝑟_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒

Theorem 6 (Between Pattern 2).
Let𝐴,𝐵 and𝐶 be three activities. 𝐴⤏𝐶⤏𝐵 : if𝐴 and𝐵 occur and𝐵 occurs after𝐴, then𝐶 shall occur in between.

(1) ∶ 𝑀1 ⤏𝐴⤏𝑀2 ⤏𝑀3 ⤏𝑀4

(2) ∶ 𝑀1 →𝐵⤏𝑀3 ⤏𝑀4

(3) ∶ 𝑀3 ⤏𝑀5 ⤏𝐵

(4) ∶ 𝑀2 ⤏𝐶⤏𝑀5

Then: Whenever (1) ∧ (2) ∧ (3) ∧ (4) evaluates to true, 𝐴⤏𝐶⤏𝐵 is true as well.

Proof 6 (Between Pattern 2).
(1) ∶⇔ ∀𝑎, 𝑥(𝑎,𝐴) → ∃𝑚1∃𝑚2∃𝑚3∃𝑚4, 𝑥(𝑚1,𝑀1)∧𝑥(𝑚2,𝑀2)∧𝑥(𝑚3,𝑀3)∧𝑥(𝑚4,𝑀4)∧(𝑚1 < 𝑎 < 𝑚2 < 𝑚3 < 𝑚4)
(2) ∶⇔ ∀𝑚1∀𝑏∀𝑚4, 𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑏,𝐵) ∧ 𝑥(𝑚4,𝑀4) → ∄𝑚2, 𝑥(𝑚2,𝑀2) ∧ (𝑏 < 𝑚2 < 𝑚4)
(3) ∶⇔ ∀𝑚3∀𝑏, 𝑥(𝑚3,𝑀3) ∧ 𝑥(𝑏,𝐵) → ∃𝑚5, 𝑥(𝑚5,𝑀5) ∧ (𝑚3 < 𝑚5 < 𝑏)
(4) ∶⇔ ∀𝑚2∀𝑚5, 𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚5,𝑀5) → ∃𝑐, 𝑥(𝑐, 𝑐) ∧ (𝑚2 < 𝑐 < 𝑚5)
Using (1):
⊧ ∀𝑎∀𝑏, 𝑥(𝑎,𝐴)∧ 𝑥(𝑏,𝐵)∧ 𝑎 < 𝑏→ ∃𝑚1∃𝑚2∃𝑚3∃𝑚4, 𝑥(𝑚1,𝑀1)∧ 𝑥(𝑚2,𝑀2)∧ 𝑥(𝑚3,𝑀3)∧ 𝑥(𝑚4,𝑀4)∧ (𝑚1 < 𝑎 <
𝑚2 < 𝑚3 < 𝑚4) ∧ (𝑎 < 𝑏 < 𝑚4 ∨ 𝑚4 < 𝑏)
⊧ ∀𝑎∀𝑏∃𝑚1∃𝑚2∃𝑚3∃𝑚4, 𝑥(𝑎,𝐴)∧ 𝑥(𝑏,𝐵)∧ 𝑎 < 𝑏 →

�
𝑥(𝑚1,𝑀1)∧ 𝑥(𝑚2,𝑀2)∧ 𝑥(𝑚3,𝑀3)∧ 𝑥(𝑚4,𝑀4)

�
∧
�
((𝑚1 <

𝑎 < 𝑚2 < 𝑚3 < 𝑚4) ∧ (𝑚1 < 𝑏 < 𝑚4)) ∨ ((𝑚1 < 𝑎 < 𝑚2 < 𝑚3 < 𝑚4) ∧ (𝑚4 < 𝑏))
�

Using (2), if 𝑏 happens before 𝑚4 then 𝑚3 should not happen in between:
⊧ ∀𝑎∀𝑏∃𝑚1∃𝑚2∃𝑚3∃𝑚4, 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏→

�
𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚3,𝑀3) ∧ 𝑥(𝑚4,𝑀4)

�
∧
�
(𝑚1 <

𝑎 < 𝑚2 < 𝑚3 < 𝑏 < 𝑚4) ∨ (𝑚1 < 𝑎 < 𝑚2 < 𝑚3 < 𝑚4 < 𝑏)
�

⊧ ∀𝑎∀𝑏∃𝑚2∃𝑚3, 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏→
�
𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚3,𝑀3) ∧ (𝑎 < 𝑚2 < 𝑚3 < 𝑏)

�

Using (3), if 𝑚3 < 𝑏, then there should be 𝑚4 in between:
⊧ ∀𝑎∀𝑏∃𝑚2∃𝑚3, 𝑥(𝑎,𝐴)∧𝑥(𝑏,𝐵)∧𝑎 < 𝑏→

�
𝑥(𝑚2,𝑀2)∧𝑥(𝑚3,𝑀3)∧(𝑎 < 𝑚2 < 𝑚3 < 𝑏) → ∃𝑚5, 𝑥(𝑚5,𝑀5)∧(𝑚3 <

𝑚5 < 𝑏)
�

⊧ ∀𝑎∀𝑏∃𝑚2∃𝑚3∃𝑚5, 𝑥(𝑎,𝐴)∧𝑥(𝑏,𝐵)∧ 𝑎 < 𝑏→
�
𝑥(𝑚2,𝑀2)∧𝑥(𝑚3,𝑀3)∧𝑥(𝑚5,𝑀5))∧ (𝑎 < 𝑚2 < 𝑚3 < 𝑚5 < 𝑏)

�

⊧ ∀𝑎∀𝑏∃𝑚2∃𝑚3∃𝑚5, 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏→
�
𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚5,𝑀5)) ∧ (𝑎 < 𝑚2 < 𝑚5 < 𝑏)

�

Using (4), if there exist 𝑚2 and 𝑚5 such that 𝑚2 < 𝑚5, then there should be 𝑐 in between:
⊧ ∀𝑎∀𝑏∃𝑚2∃𝑚5, 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏 →

�
𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚5,𝑀5)) ∧ (𝑎 < 𝑚2 < 𝑚5 < 𝑏) → ∃𝑐, 𝑥(𝑐,𝐶) ∧ 𝑚2 <

𝑐 < 𝑚5

�

First Author et al.: Preprint submitted to Elsevier Page 14 of 30

Verifying Compliance in Process Choreographies

⊧ ∀𝑎∀𝑏∃𝑚2∃𝑚5∃𝑐, 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏→
�
𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚5,𝑀5) ∧ 𝑥(𝑐,𝐶)) ∧ (𝑎 < 𝑚2 < 𝑐 < 𝑚5 < 𝑏)

�

⊧ ∀𝑎∀𝑏∃𝑐, 𝑥(𝑎,𝐴) ∧ 𝑥(𝑏,𝐵) ∧ 𝑎 < 𝑏→ 𝑥(𝑐,𝐶)) ∧ (𝑎 < 𝑐 < 𝑏)

In order to illustrate Theorem 6, we apply the following adaptations to the running example (cf. Figs. 1 - 4):
(i) After receiving 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠,𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 prepares the details privately (𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑑𝑒𝑡𝑎𝑖𝑙𝑠), then informs𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛
about the start of intermediate production (𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑢𝑠) before sending back 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠.
(ii) After receiving transport details, 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 confirms to 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 the availability of transportation for
intermediate (𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛).
(iii) After receiving 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 receives 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑢𝑠, does 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝑐ℎ𝑒𝑐𝑘𝑠, and
waits for 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛.

• Example (8): 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑑𝑒𝑡𝑎𝑖𝑙𝑠⤏ 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝑐ℎ𝑒𝑐𝑘𝑠⤏ 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 . Similar to the previous examples, the
partners start by locally identifying relations that satisfy the derived assertions templates of Theorem 6, then
apply a matching mechanism to check whether the additional interactions used for the derived assertions intersect
and jointly fulfill the templates. It is noteworthy that the number of additional interaction activities required for
the derived assertions is superior to the number required in Theorem 5. Despite that, Theorem 6 provides more
relaxed assumptions compared to Theorem 5 as it does not restrict activity 𝐵 from occurring before activity 𝐴.
Theorem 6 still prevents 𝐵 from happening between 𝑚1 and 𝑚3. The following assertions are the decomposition
results of Example (8):

(1) 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 ∶
𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠⤏ 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑑𝑒𝑡𝑎𝑖𝑙𝑠⤏ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑢𝑠⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠⤏𝑤𝑎𝑦𝑏𝑖𝑙𝑙_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒

(2) 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 ∶ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠→ 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠 ⤏𝑤𝑎𝑦𝑏𝑖𝑙𝑙_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
(3) 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 ∶ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛⤏ 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘
(4) 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 ∶ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑢𝑠⤏ 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝑐ℎ𝑒𝑐𝑘𝑠⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Note that all previous theorems consider loops and multiple occurrences of each of the activities composing the global
compliance rule GCR. Indeed, in a process model that includes loops or multiple instance patterns, an activity may be
executed multiple times at different points in time in the context of one single process instance. As such, each derived
assertion including such repetitive activity should be satisfied for all its occurrences. Although this issue has been
addressed in all previous theorems (see proofs), it resulted in additional decomposition complexity not required for
loop-free processes. Therefore, we propose a simpler decomposition method for the "between" pattern, which may be
applied solely to loop-free processes.
Theorem 7 (Between Pattern (without loops)).
Let𝐴,𝐵 and𝐶 be three activities. 𝐴⤏𝐶⤏𝐵 : if𝐴 and𝐵 occur and𝐵 occurs after𝐴, then𝐶 shall occur in between.

• (1) ∶ 𝐴⤏𝑀1 ⤏𝑀2

• (2) ∶ 𝑀2 ⤏𝑀3 ⤏𝐵

• (3) ∶ 𝑀1 ⤏𝐶⤏𝑀3

Then: If the conjunction of formulas (1) ∧ (2) ∧ (3) evaluates to true, 𝐴⤏𝐶⤏𝐵 is true as well.

Proof 7 (Between Pattern (without loops)).
(1) ∶⇔ ∀𝑎 ∶ (𝑥(𝑎,𝐴) → ∃𝑚1,∃𝑚2 ∶ (𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚2,𝑀2) ∧ (𝑎 < 𝑚1 < 𝑚2))
⇔ ∀𝑎∃𝑚1,∃𝑚2 ∶ (𝑥(𝑎,𝐴) → (𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚2,𝑀2) ∧ (𝑎 < 𝑚1 < 𝑚2))
(2) ∶⇔ ∀𝑏 ∶ (𝑥(𝑏,𝐵) → ∃𝑚′

2,∃𝑚3 ∶ (𝑥(𝑚′
2,𝑀2) ∧ 𝑥(𝑚3,𝑀3) ∧ (𝑚′

2 < 𝑚3 < 𝑏))
(2) ∶⇔ ∀𝑏∃𝑚′

2,∃𝑚3 ∶ (𝑥(𝑏,𝐵) → (𝑥(𝑚′
2,𝑀2) ∧ 𝑥(𝑚3,𝑀3) ∧ (𝑚′

2 < 𝑚3 < 𝑏))
(1)∧ (2) ⊧ (∀𝑎∀𝑏∃𝑚1,∃𝑚2∃𝑚′

2∃𝑚3 ∶ (𝑥(𝑎,𝐴)∧ (𝑥(𝑏,𝐵)) → (𝑥(𝑚1,𝑀1)∧𝑥(𝑚2,𝑀2)∧𝑥(𝑚′
2,𝑀2)∧𝑥(𝑚3,𝑀3)∧ (𝑎 <

First Author et al.: Preprint submitted to Elsevier Page 15 of 30

Verifying Compliance in Process Choreographies

𝑚1 < 𝑚2) ∧ (𝑚′
2 < 𝑚3 < 𝑏))

As there are no loops over 𝐴,𝐵 and corresponding 𝑀𝑖 messages, then 𝑀2 can occur only once within one process
instance. Consequently, 𝑚2 = 𝑚′

2:
(1) ∧ (2) ⊧ (∀𝑎∀𝑏∃𝑚1,∃𝑚2∃𝑚3 ∶ (𝑥(𝑎,𝐴) ∧ (𝑥(𝑏,𝐵)) → (𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚2,𝑀2) ∧ 𝑥(𝑚3,𝑀3) ∧ (𝑎 < 𝑚1 < 𝑚2 <
𝑚3 < 𝑏))
⊧ (∀𝑎∀𝑏∃𝑚1,∃𝑚3 ∶ (𝑥(𝑎,𝐴) ∧ (𝑥(𝑏,𝐵)) → (𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚3,𝑀3) ∧ (𝑎 < 𝑚1 < 𝑚3 < 𝑏))
(3) ∶⇔ ∀𝑚1∀𝑚3 ∶ (𝑥(𝑚1,𝑚1) ∧ 𝑥(𝑚3,𝑀3) → ∃𝑐 ∶ (𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑐,𝐶) ∧ (𝑚1 < 𝑐 < 𝑚3))
⇔ ∀𝑚1∀𝑚3∃𝑐 ∶ (𝑥(𝑚1,𝑚1) ∧ 𝑥(𝑚3,𝑀3) → (𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑐,𝐶) ∧ (𝑚1 < 𝑐 < 𝑚3))
(1) ∧ (2) ∧ (3) ⊧ (∀𝑎∀𝑏∃𝑚1,∃𝑚3 ∶ (𝑥(𝑎,𝐴) ∧ (𝑥(𝑏,𝐵)) → (𝑥(𝑚1,𝑀1) ∧ 𝑥(𝑚3,𝑀3) ∧ (𝑎 < 𝑚1 < 𝑚3 < 𝑏)) →
∃𝑐, 𝑥(𝑐,𝐶) ∧ (𝑎 < 𝑚1 < 𝑐 < 𝑚3 < 𝑏)
⊧ (∀𝑎∀𝑏(𝑥(𝑎,𝐴) ∧ (𝑥(𝑏,𝐵)) → ∃𝑐, 𝑥(𝑐,𝐶) ∧ (𝑎 < 𝑐 < 𝑏)

• Example (9): 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑑𝑒𝑡𝑎𝑖𝑙𝑠⤏ 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝑐ℎ𝑒𝑐𝑘𝑠⤏ 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 . We use the same GCR as in previous
theorem illustration (including the adaptations to Fig. ??). As the tasks involved in the GCR are not contained
in any loop, Theorem 7 may be applied. The following assertions are the decomposition results:

(1) 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑝𝑟𝑒𝑝𝑎𝑟𝑒_𝑑𝑒𝑡𝑎𝑖𝑙𝑠⤏ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑢𝑠⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠
(2) 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑑𝑒𝑡𝑎𝑖𝑙𝑠⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛⤏ 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘
(4) 𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑢𝑠⤏ 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝑐ℎ𝑒𝑐𝑘𝑠⤏ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Theorem 8 (Requires transitivity).
Let 𝐴 and 𝐵 be two activities or interactions such as 𝐴 𝐵 : if 𝐴 occurs then 𝐵 should occur (before or after,
∀𝑎, 𝑥(𝑎,𝐴) → ∃𝐵, 𝑥(𝑏,𝐵)):.
Let 𝐴,𝐵,𝑀 be three activities or interactions such that :

(1) ∶ 𝐴⤏𝑀

(2) ∶ 𝑀 𝐵 .

If (1) ∧ (2) evaluates to true, then 𝐴⤏𝐵 ∨ 𝐵⤏𝐴 evaluates to true.

Proof 8 (Requires transitivity).
(1) ∶⇔ ∀𝑎, 𝑥(𝑎,𝐴) → ∃𝑚 ∶ 𝑥(𝑚,𝑀) ∧ (𝑎 < 𝑚)
(2) ∶⇔ ∀𝑚,

�
𝑥(𝑚,𝑀) → ∃𝑏 ∶ 𝑥(𝑏,𝐵)) ∧ 𝑚 < 𝑏

�
∨ ∀𝑚,

�
𝑥(𝑚,𝑀) → ∃𝑏 ∶ 𝑥(𝑏,𝐵)) ∧ (𝑏 < 𝑚)

�

⇔ ∀𝑚,
�
𝑥(𝑚,𝑀) → ∃𝑏 ∶ 𝑥(𝑏,𝐵)) ∧ (𝑚 < 𝑏) ∨ 𝑏 < 𝑚)

�

(1) ∧ (2) ∶⇔ ∀𝑎,
�
𝑥(𝑎,𝐴) → ∃𝑚 ∶ 𝑥(𝑚,𝑀) ∧ (𝑎 < 𝑚)

�
∧ ∀𝑚,

�
𝑥(𝑚,𝑀) → ∃𝑏 ∶ 𝑥(𝑏,𝐵)) ∧ (𝑚 < 𝑏) ∨ 𝑏 < 𝑚)

�

⊧ ∀𝑎∃𝑚∃𝑏, 𝑥(𝑎,𝐴) → 𝑥(𝑚,𝑀) ∧ (𝑎 < 𝑚) → 𝑥(𝑏,𝐵) ∧ (𝑚 < 𝑏) ∨ 𝑏 < 𝑚)
⊧ ∀𝑎∃𝑚∃𝑏, 𝑥(𝑎,𝐴) → 𝑥(𝑚,𝑀) ∧ (𝑎 < 𝑚) → 𝑥(𝑏,𝐵) ∧ (𝑎 < 𝑚 < 𝑏) ∨ (𝑎 < 𝑏 < 𝑚) ∨ (𝑏 < 𝑎 < 𝑚)
⊧ ∀𝑎∃𝑏, 𝑥(𝑎,𝐴) → 𝑥(𝑏,𝐵) ∧ (𝑎 < 𝑏) ∨ (𝑏 < 𝑎)
⊧ ∀𝑎, 𝑥(𝑎,𝐴) → ∃𝑏, 𝑥(𝑏,𝐵)

Note that this theorem also considers loops and multi-instance patterns. The illustration of Theorem 8 is similar to the
rightwards and leftwards transitivity examples.

4. Algorithm for Decomposing Global Compliance Rules
At design time, checking a GCR that solely refers to interactions and/or public activities can be achieved by applying
contemporary compliance checking techniques (cf. (29)) either on the choreography model or the public process
models of the involved partners. By contrast, if a GCR refers to private activities of different partners, it becomes
impossible to check its correctness as partners must not view the private process model parts of the other partners and,

First Author et al.: Preprint submitted to Elsevier Page 16 of 30

Verifying Compliance in Process Choreographies

therefore, cannot identify the dependencies between the private activities involved in the GCR. To cope with this issue,
we suggest decomposing the GCR into a set of assertions of which each can be checked locally by the corresponding
partner. The decomposed rules then reproduce the behavior of the original GCR.
Decomposition in compliance checking has been exploited by (60), but only at the process model level in order to
achieve performance gains for the compliance checks. The article at hand proposes to decompose the GCR to distribute
the compliance checks to the partners for maintaining the confidentiality of their private tasks. This section focuses
on the decomposition algorithms and explains the steps to derive assertions by applying the theorems introduced in
Section 3.
Figure 10 provides a high-level description of the steps required by partners involved in a GCR to identify a valid
decomposition. Algorithm 1 provides a more detailed view on how this can be achieved in practice with a particular
focus on compliance rules that include one antecedence pattern.

Select GCR
--Leader--

Derive Assertions
Templates

--Leader--

Assign Assertion
Templates to Partners

--Leader--

Identify Assertion
Template Instances

--Partner p--

Collect all Assertion
Template Instances I

--Leader--

List of GCRs

GCR
TH, GCR

Templates {ti}

Public Model
Choreography Model

No Instances Identified
& list of remaining applicable
 theorems not empty

Add Sync
Messages
--Partner p--

Matching Instances

Elect a Leader
--Partner p--

Choose applicable
theorem TH

--Leader--

List of Theorems
Graph Matching Algorithm

Leader

Templates {ti}p

XOR

Assertion Template
Instances Matching

--Leader--

Successful
Decomposition

Instances are Identified

XOR

No matching Instances & List of applicable theorems not empty

No matching Instances
& list of remaining applicable
 theorems empty

No Instances Identified & list of remaining applicable
 theorems is empty

Figure 10: Decomposition Process

Given a GCR, the decomposition process starts by selecting a leader among the partners involved in the GCR. The
leader will be responsible for identifying the pattern corresponding to the GCR (e.g., rightward chaining pattern or be-
tween pattern). This is trivial and can be accomplished with a simple exact graph matching algorithm (e.g., comparing
node types and connectors). Once the pattern is identified, several decomposition theorems may be applicable. For ex-
ample, in the case of the between pattern, Theorems 5, 6, and possibly 7 (if the processes are loop free) may be applied.
The leader will then select and apply a theorem, derive the assertion templates accordingly, and send each of them to the
corresponding partner–this step can be easily automated. An assertion template, in turn, is a derived assertion output
from the theorem, where the actual interactions (i.e., message exchanges) have not yet been defined. For example, for
𝑀𝑖𝑑𝑑𝑙𝑒𝑚𝑎𝑛, 𝑔𝑒𝑡_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑜𝑓_𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦⤏𝑀 (where M shall be an activity interacting with 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟)
is a derived assertion template of the global compliance rule 𝑔𝑒𝑡_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑜𝑓_𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦⤏ 𝑠𝑎𝑓𝑒𝑡𝑦_𝑐ℎ𝑒𝑐𝑘 , as𝑀
has not been defined yet.
First Author et al.: Preprint submitted to Elsevier Page 17 of 30

Verifying Compliance in Process Choreographies

Next, each partner will try to identify an assertion template instance that conforms with the derived assertion template–
an instance of an assertion template corresponds to a template with actual activities. 𝑂𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 is a
valid option in this example as it interacts with 𝑆𝑝𝑒𝑐𝑖𝑎𝑙_𝑐𝑎𝑟𝑟𝑖𝑒𝑟 fulfilling the template constraint (i.e., the template in-
stance corresponds to 𝑔𝑒𝑡_𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑜𝑓_𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦⤏ 𝑜𝑟𝑑𝑒𝑟_𝑠𝑝𝑒𝑐𝑖𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡). This can be automated by having
each partner responsible for an assertion template iterating over the message exchanges in its private process model.
Depending on the assertion template structure, one or several message exchanges may be selected for constructing an
assertion instance candidate. The latter must conform with the assertion template. Moreover, it needs to be ensured
that the process in question is compliable with it. Existing design-time compliance checking techniques can be em-
ployed in this regard (3; 4; 35; 6).
Several assertion instance candidates can be identified for the same partner, which may increase the probability of
finding a collective solution among all partners. Afterwards, partners either collectively enter a negotiation phase and
exchange their assertion instance candidates, or rely on the leader to collect all proposals and run a matching algorithm
that selects assertion candidates, which replicate the templates derived by the decomposition. Indeed, two assertion
templates may require that they use the same message exchange. Therefore, the matching algorithm will select the
assertion instance candidates of different partners that have the same message exchange in common (using function 𝜓
or 𝜙 to ensure that the mapping is correct). While having the leader collecting the assertion proposals and doing the
matching can be more efficient and reduce the communication overhead between partners, conducting the negotiation
in a distributed manner reduces trust assumptions.
Note that it is possible to run the entire process in a distributed manner, without need for a leader. In this case, all
partners will have to run the matching algorithms for identifying the GCR pattern. Moreover, they have to agree on the
decomposition theorem to be applied (e.g., using a majority vote) and collectively execute the matching of assertion
instances. If a matching solution is found, each partner will use the selected assertion instance for future run-time
checking. Unless a solution is found, the next applicable theorem will be explored in the same way. If no solution
could be found after trying all applicable decomposition theorems, synchronization messages become necessary for
enabling distributed run-time checking of the GCRs. At run-time, no additional communication with other partners
is needed for checking the GCR, unless a violation occurs. Similar to assertion and local compliance rules monitor-
ing, each partner is responsible for complying with the derived assertions. This can be enforced using post-auditing
processes by the respective legal entities, e.g., WHO in the case of Covid-19.
Algorithm 1 realizes GCR decomposition as set out in Definition 2. It assumes that each node of the GCR is assigned
to one partner being responsible for it. Further on, we assume the input GCR to be consistent and satisfiable (for
dealing with unsatisfiable and inconsistent rules we refer interested readers to (11)). In the following, we first explain
Algorithm 1 step by step and then illustrate the entire algorithm along Example 1 (see below).
Starting from the 𝐴 node (cf. Def. 2), Algorithm 1 walks outwards through all other nodes of the GCR. Thereby, the
visited parts are copied and become assertions. Wherever the algorithm walks over a connector between two nodes 𝑛
and 𝑠, which are assigned to different partners 𝜌(𝑛) and 𝜌(𝑠), the GCR is split at this position as this dependency cannot
be evaluated by a single partner. Next, the algorithm tries to replicate the connector where the GCR was split through
(transitive) message exchanges between both affected partners by applying the transitive relationships from Section 2.
Therefore, sets 𝑛∙, ∙𝑠, and Θ are calculated. Depending on the pattern of 𝑠 (cf. Def. 2), 𝑛∙ and ∙𝑠 contain the messages
succeeding or preceding 𝑛 and 𝑠, respectively. Note that these calculations have to be accomplished in a decentralized
manner by 𝜌(𝑛) and 𝜌(𝑠) themselves as 𝑛 and 𝑠 may be private tasks. Next, Θ combines those messages of 𝑛∙ and ∙𝑠
that can be combined.
If 𝑠 is a 𝐶 node (i.e., 𝑠 must follow 𝑛), Θ contains message tuples (𝑚1,𝑚2) that ensure that 𝑛 is always followed by
𝑚1, 𝑚1 by 𝑚2 (unless 𝑚1 = 𝑚2), and 𝑚2 by 𝑠. Any pair (𝑚1,𝑚2) ∈ Θ can then be used to complement the created
assertions, i.e., 𝑚1 becomes a placeholder for 𝑠 within the assertion of 𝜌(𝑛), whereas 𝑚2 replaces 𝑛 for 𝜌(𝑠).
Regarding 𝐶 nodes (i.e., 𝑠 must not follow 𝑛), all pairs of messages (𝑚1,𝑚2) ∈ Θ ensure that 𝑛 is preceded by 𝑚1in any case, and 𝑚1 is preceded by 𝑚2 (unless 𝑚1 = 𝑚2), whereas 𝑠 never follows 𝑚2. Finally, for 𝐴 nodes an
occurrence of 𝑠 after 𝑛 allows ignoring the rule. Hence, 𝐴 nodes result in pairs (𝑚1,𝑚2) such that 𝑚1 may only occur
after 𝑛 and 𝑚2 may only occur after 𝑚1 (unless 𝑚1 = 𝑚2). However, there should be at least one case in which 𝑚2 is
followed by 𝑠 (i.e., 𝑠 is not always preceded by 𝑚2).
Finally, all assertions of the same partner, which depend on the same 𝐴 message, are merged to reduce the number of
assertions. Remaining assertions without consequences are removed as they result from the processing of 𝐴 nodes,
but have not been merged in the previous step. Remember that ignoring 𝐴 nodes is allowed as this makes rules even
more strict.

First Author et al.: Preprint submitted to Elsevier Page 18 of 30

Verifying Compliance in Process Choreographies

Algorithm 1: GCR decomposition DECOMPOSE(gcr)
• Global compliance rule 𝑔𝑐𝑟 = (𝑁 , 𝜌,𝜑, 𝑡𝑦𝑝𝑒, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

• Choreography model 𝑦, and  as the set of all partners’ message nodes.
• We assume that 𝜌 also returns the partner private model of a node 𝑛.

select the only 𝑎 ∈ 𝑁 with 𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑎) = 𝐴
initialize queue 𝑄 ← {𝑎}
create (incomplete) Assertion 𝐴𝑎 ← ε 𝑎 ε for the partner associated with 𝜌(𝑎)
foreach (𝑛 ← 𝑟𝑒𝑚𝑜𝑣𝑒𝐻𝑒𝑎𝑑(𝑄)) do

foreach (𝑠 ∈ 𝑁 with 𝜑(𝑛, 𝑠) ≠ ∅) do
𝑄 ← 𝑄 ∪ {𝑠}
if (𝜌(𝑛) = 𝜌(𝑠)) then

//𝑛 and 𝑠 involve the same partner
initialize 𝐴𝑠 ← @𝐴𝑛 as reference on 𝐴𝑛
if (𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑠) = 𝐴) then extend 𝐴𝑠 with ε⤏ 𝑠 ε

if (𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑠) = 𝐶) then extend 𝐴𝑠 with ε⤏ 𝑠 ε

if (𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑠) = 𝐶) then extend 𝐴𝑠 with ε⤏ 𝑠 ε
else

//𝑛 and 𝑠 involve different partners 𝑝𝑖, 𝑝𝑗
if (𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑠) = 𝐶) then
𝑛∙ ← {𝑚 ∈ 𝜌(𝑛)|𝑚 ∈ , 𝜌(𝑛) ⊧ 𝑛 ⤏ 𝑚 }
∙𝑠 ← {𝑚 ∈ 𝜌(𝑠)|𝑚 ∈ , 𝜌(𝑠) ⊧ 𝑚 ⤏ 𝑠 }
Θ ← {(𝑚𝑛,𝑚𝑠) ∈ (𝑛∙ × ∙𝑠) | 𝛾 ⊧ 𝑚𝑛 ⤏ 𝑚𝑠 }

if (𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑠) = 𝐶) then
𝑛∙ ← {𝑚 ∈ 𝜌(𝑛)|𝑚 ∈ , 𝜌(𝑛) ⊧ 𝑚 ⤏ 𝑛 }
∙𝑠 ← {𝑚 ∈ 𝜌(𝑛)|𝑚 ∈ , 𝜌(𝑛) ⊧ 𝑚 ⤏ 𝑠 }
Θ ← {(𝑚𝑛,𝑚𝑠) ∈ (𝑛∙ × ∙𝑠) | 𝛾 ⊧ 𝑚𝑠 ⤏ 𝑚𝑛 }

if (𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑠) = 𝐴)} then
𝑛∙ ← {𝑚 ∈ 𝜌(𝑛)|𝑚 ∈ , 𝜌(𝑛) ⊧ 𝑛 ⤏ 𝑚 }
∙𝑠 ← {𝑚 ∈ 𝜌(𝑠)|𝑚 ∈ , 𝜌(𝑠) ̸⊧ 𝑚 ⤏ 𝑠 }
Θ ← {(𝑚𝑛,𝑚𝑠) ∈ (𝑛∙ × ∙𝑠) | 𝛾 ⊧ 𝑚𝑛 ⤏ 𝑚𝑠 }

if (Θ ∪ (𝑛∙ ∩ ∙𝑠) = {∅}) then
//No implicit dependency between 𝑛 and 𝑠
add 𝑠𝑦𝑛𝑐 message between 𝑛 and 𝑠
update models 𝑝1, … , 𝑝𝑛, and 𝛾
recalculate 𝑛∙, ∙𝑠, and Θ

else
//implicit dependency 𝑚 between 𝑛 and 𝑠 exists
select (𝑚𝑛,𝑚𝑠) ∈ Θ ∪ (𝑛∙ ∩ ∙𝑠)2

if (𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑠) = 𝐶) then
extend 𝐴𝑛 with ε⤏ 𝑚𝑛 ε

create Assertion 𝐴𝑠 ← ε 𝑚𝑠 ⤏ 𝑠 ε for 𝜌(𝑠)

if (𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑠) = 𝐶) then
extend 𝐴𝑠 with ε 𝑚𝑛 ⤏ ε

create Assertion 𝐴𝑠 ← ε 𝑚𝑠 ⤏ 𝑠 ε for 𝜌(𝑠)

if (𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑠) = 𝐴) then
create Assertion 𝐴𝑠 ← ε 𝑚𝑠 → 𝑠 ε for 𝜌(𝑠)

foreach ((𝑠 ∈ 𝑁 with 𝜑(𝑛, 𝑠) ≠ ∅)) do
//same as for each (𝑛, 𝑠) ∈ 𝐶 above
//but with flipped directions

foreach (partner 𝑖) do
foreach ((𝐴𝑗 ,𝐴𝑘) of partner 𝑖) do

if (𝐴𝑗 ,𝐴𝑘 have the same 𝐴 pattern) then
merge 𝐴𝑗 and 𝐴𝑘 based on the 𝐴 pattern

foreach (Assertion 𝐴) do
if (𝐴 has empty 𝐶 and 𝐶 patterns) then remove 𝐴

First Author et al.: Preprint submitted to Elsevier Page 19 of 30

Verifying Compliance in Process Choreographies

Figure 11: Decomposition process of GCR 𝐶3

Example 1. Let us apply Algorithm 1 to GCR 𝐶3 (cf. Fig. 11) from the running example that we introduced in
Section 1 (cf. Figs. 1 - 4). Let the responsibilities be 𝜌(Safety Check) = Special Carrier, 𝜌(Get permission of authority)
= Middleman, and 𝜌(Transport intermediate) = Special Carrier. After assigning responsibilities, Algorithm 1 starts
with 𝐴 node Transport intermediate and creates a new assertion for the Special Carrier who is responsible for this
activity. Then the Safety check is discovered and added to the assertion, since it belongs to the same partner. In turn,
another partner (i.e., Middleman) is responsible for activity Get permission of authority. Hence, the algorithm cuts
the respective connector and creates a new assertion for the respective partner. Next, Special Carrier and Middleman
determine 𝑛∙ and ∙𝑠 with 𝑛∙ = {Waybill,T. Details,Req. Details,Order ST} and ∙𝑠 = {Order ST} to calculate those
message pairs Θ = {(Waybill,Order ST),… , (Order ST,Order ST)} that can be used to transitively replicate the
connector where the GCR was split. Finally, the algorithm places the selected messages into both assertions in such a
way that the correctness of the original rule is preserved through the (leftwards) transitivity of eCRGs. Note that the
Special Carrier could use message Waybill instead as (Waybill,Order ST) ∈ Θ holds.

For the same GCR, it is possible to infer several decomposition alternatives, depending on which interactions are
used to find a transitive control flow relationship between the nodes of the GCR. It is also possible that no direct
link can be identified between two partners’ GCR nodes (i.e., there is no interaction between these two partners). As
such, interactions with intermediary partners can be used to find an indirect link (i.e., transitive interactions). As
aforementioned, if no transitivity is identified between the GCR nodes of two partners (even not through intermediary
partners), it becomes necessary to exchange additional execution data between the partners involved in the GCR, by,
for example, adding sync messages. Sync messages are a specific type of messages communicated between partners
to inform about the state of a given task (e.g., terminated, started, not executed). Although sync messages are not
preferred as they expose private data about the exact execution time of a private task, they become necessary when the
GCR cannot be decomposed into assertions, i.e., no transitive relations can be identified.
In the following, we discuss the complexity of the GCR decomposition in Algorithm 1. Results on checking regulatory
compliance in general have been provided in (59). The first and second loops iterate over the nodes of the compliance
rule. If we consider that two nodes can only have one flow connector, the number of required operations will be 𝑛𝑛−12 ,
otherwise 𝑛(𝑛 − 1). In both cases complexity corresponds to 𝑂(𝑛2). The first 𝑖𝑓 statement is 𝑂(1), whereas the 𝑒𝑙𝑠𝑒
statement calculates 𝑛∙, ∙𝑠 and 𝜃 each with a worst case complexity of 𝑂(𝑛2). The second inner loop has the same
complexity as the first inner loop. The third nested inner loop iterates over partners and compare assertions within the
same partner with a number of operations equal to 𝑛×𝑚𝑚−12 , which gives a complexity of𝑂(𝑛3). Finally, the last inner
loop has a complexity of 𝑂(𝑛). Obviously, the overall worst case complexity of the algorithm is polynomial 𝑂(𝑛4);
i.e., outer loop combined with the third nested inner loop.

5. Verifying GCR Decomposition
The GCR decomposition algorithms from Section 4 are based on the theorems we have presented and proven in Sec-
tion 3. Although these theorems support most control flow (i.e. behavior) compliance patterns known from literature
(56; 19), they cannot cover every possible scenario. There may be two reasons for this: (i) either the structure of a GCR
is not covered by Theorems 1–8 or (ii) none of the proposed decompositions is applicable. In both cases, it might not
only become necessary to find a novel decomposition of a GCR, but also to verify the latter, i.e., to prove the correct-
ness of the decomposition. One approach to accomplish this would be to apply the eCRG semantics and to formally

First Author et al.: Preprint submitted to Elsevier Page 20 of 30

Verifying Compliance in Process Choreographies

prove correctness (cf. Section 3). However, this is far from being trivial. Therefore, we introduce Algorithm 2 that
enables the automated verification of GCR decompositions based on eCRG model checking.

Algorithm 2: Verification of Decompositions (Assertions 𝐴1,… ,𝐴𝑛, GCR 𝑔𝑐𝑟)
1 Let  be a function that translates an eCRG into a corresponding finite-state automaton
2  ←

⋂
1≤𝑖≤𝑛(𝐴𝑖)

3  ←  ∩ ¬(𝑔𝑐𝑟)
4 if  = ∅ then
5 //Decomposition is correct
6 return true
7 else
8 //Decomposition is incorrect
9 return any arbitrary trace through  as counter example.

The main idea of Algorithm 2 is to interpret a GCR decomposition as declarative process model and to verify whether
it solely allows for execution traces that comply with the original GCR. Thus, techniques that are known from the
verification of declarative process models (50; 52) can be applied: First, all assertions𝐴1,… ,𝐴𝑛 of the decomposition
are translated into finite state automatons (𝐴1),… ,(𝐴𝑛). Their intersection (⋂

1≤𝑖≤𝑛(𝐴𝑖)
) corresponds to an

automaton that only accepts traces that comply with every assertion. In turn, ¬(𝑔𝑐𝑟) denotes the automaton that
accepts solely traces violating the original GCR. If the intersection of these two automatons is empty, the decomposition
is correct as it only allows for traces that do not violate the original GCR and, thus, comply with it.

(⋂
1≤𝑖≤𝑛(𝐴𝑖)

)
∩ ¬(𝑔𝑐𝑟) = ∅ ⇒

(⋂
1≤𝑖≤𝑛(𝐴𝑖)

)
⊆ (𝑔𝑐𝑟)

For any choreography y, whose partners ensure 𝐴1,… ,𝐴𝑛, we can now directly conclude:
(𝑦) ⊆

(⋂
1≤𝑖≤𝑛(𝐴𝑖)

)
⇒ (𝑦) ⊆ (𝑔𝑐𝑟), i.e. 𝑦 complies with 𝑔𝑐𝑟

6. Implementation
The presented approach is implemented as part of the C3Pro framework6, which deals with change and compliance in
process choreographies (21). The framework provides sophisticated functions for defining, propagating and negotiating
changes in the context of process choreographies. Furthermore, it comprises a modeling component as one of its core
components for editing and changing public and private process models as well as process choreography models. This
component further enables the visualisation of change propagations. In the context of the present work, the three-
layer architecture of the framework (21) (i.e., process modeling, change, and execution) was extended with additional
components for dealing with process compliance. In detail, these new components include (i) an eCRG modelling
tool, (ii) an automated generator of compliant choreographies, (iii) a model checker, and (iv) a GCR decomposition
tool.
Figure 12 depicts the main components of the C3Pro framework. The compliance (CME) and process modeling
(PME) environments allow defining and editing compliable process choreography models (39; 35) and decomposing
global compliance rules. Compliability was introduced as “a semantic correctness criterion to be considered when
designing interaction models. It ensures that interaction models do not conflict with the set of imposed global compli-
ance rules” (39). At design time, it is ensured that the created choreography models are compliant with the defined
compliance rules. Using both PME and CME, it becomes possible to parameterize and automatically generate com-
pliable choreographies, which then can be used for testing and simulation purposes. A user, therefore, can specify the
number and patterns of the GCRs as well as the parameters of the process and choreography models (e.g., number of
private and public tasks, number of partners and interactions, or number and types of the control flow patterns that
shall be covered by the processes) (6). Although the generated models represent synthetic processes without real-world
semantics (i.e., these models do not reflect actual use cases such as a manufacturing collaborative process), they may

6http://www.wst.univie.ac.at/communities/c3pro/

First Author et al.: Preprint submitted to Elsevier Page 21 of 30

Verifying Compliance in Process Choreographies

LCR
(Local Compliance Rule)

Assertion GCR
(Global Compliance Rule)

Private Model Public Model
Choreography

Model

Compliance
Modeling

environment

(CME)

Process
Modeling

environment

(PME)

Change Editor
(CE)

Change
Management

Service

Change
Negotiation

Service

Compliance
Management

Service

Execution
Log

Monitoring
Service

Violations
Log

Change
Log

Execution
Engine

Cloud Execution Engine CPEE
XLM JSON

BPMN 2.0 XML, JSON

RETE-based Rule engine

eCRG

Figure 12: C3Pro Prototype Architecture

serve as a support for simulation and research work evaluation, e.g., model executions can result in distributed logs of
synthetic data, which are useful for evaluating the efficiency of specific mining techniques. In the context of this work,
this tool can be used to test the feasibility and applicability of the decomposition process on more complex choreogra-
phies and corresponding GCRs. Currently, the automated generator tool only supports four basic compliance patterns.
However, other GCR patterns can be directly inferred from the models and be used for testing. The tool is integrated
in the C3Pro framework and can be tested. A data set of automatically generated models and the corresponding GCRs
are made available in the same repository.6 Finally, the change editor allows defining and editing changes of process
models and compliance rules, respectively.
The Compliance Management Service represents the main extension to C3Pro related to this work, and handles the
defined compliance rules and implements the theorems as well as the GCR decomposition algorithm (cf. Section 4).
As process execution engine, the Cloud Process Execution Engine7 is utilized. Most functions of the C3Pro framework
are provided as a RESTful service, which enables unified access from any client being able to communicate via HTTP.
Finally, the Compliance Management Service serves as a pluggable middleware that may be used to integrate other
process execution engines.
For testing the framework, we edited BPMN 2.0 choreography and collaboration models using Signavio8 and exported
them to the C3Pro framework as XML files. Examples are extended with GCRs, which are then decomposed into de-
rived assertions using Algorithm 1. To this endeavor, mainly the CME, PME and the compliance management service
were used.
In addition, the C3Pro framework was extended with a novel eCRG model checker that was published on github9. Its
command line interface enables the specification and verification of both global and local compliance rules (GCR and
LCR) as well as process models and choreographies. In particular, the eCRG model checker supports the verification

7http://cpee.org
8http://academic.signavio.com/
9https://github.com/davidknuplesch/SCV

First Author et al.: Preprint submitted to Elsevier Page 22 of 30

Verifying Compliance in Process Choreographies

of
• GCR decompositions, i.e., it allows verifying whether GCRs can be concluded from a given decomposition,
• local compliance, i.e., it allows verifying whether a single process model complies with a given compliance rule

(CR), and
• global compliance, i.e., it allows verifying whether a process choreography complies with a given GCR.

Moreover, the eCRG checker enables the automated decomposition of tree-structured GCRs with a single antecedence.
In order to verify GCR decompositions and the various kinds of compliance respectively, the eCRG model checker
translates global and local complicance rules as well as process models and choreographies into automaton, which are
then combined and intersected. Depending on whether the resulting automaton is empty or not, the verification has
been successful or a counter example trace has been produced. The eCRG model checker has been written in Java 8
on top of the dk.brics.automaton framework10.

7. Applicability
This section demonstrates and discusses how the presented decomposition algorithm can be applied in real-world
settings. Here, a GCR may be imposed on process choreographies by external sources, e.g., considering regulatory
documents such as the GDPR or standards such as ISO norms (63). A GCR may also reflect internal compliance rules
expressing, for example, implicit dependencies between the partners that are crucial for (re-)scheduling the process
activities for one partner or across multiple partners in the choreography. The visibility of activities and compliance
rules in real-world settings depends on the contractual situation and the roles of the partners in the choreography. In
supply chains in automotive domain, for example, an Original Equipment Manufacturer (OEM) might demand insights
into certain specifics of the private processes of its suppliers and the connected (internal) compliance rules.
7.1. Use Cases
In the supply chain example presented in the Section 1, GCR 𝐶3 (cf. Fig. 2) reflects an externally imposed GCR on
safety in manufacturing and logistics processes. GCR 𝐶1, in turn, might reflect an internal quality assurance rule that
is solely verified by the Manufacturer, but is also made visible to the other partners in order to, e.g., create trust.
The real-world use case from manufacturing depicted in Fig. 13 demonstrates how the decomposition algorithms
can be employed to lift implicit (data) connections to explicitly modeled assertions. The use case covers a process
choreography between Partner 1 (i.e., a car manufacturer), Partner 2 (doing injection molding), and Partner 3
(i.e., the electro plater that coats parts in a correct color scheme). The choreography is designed and implemented using
the CPEE (Cloud Process Execution Engine)11. Figure 13 shows the public activities of all partners, e.g., activity place
order for Partner 1 and private activities, e.g., activity wait for order completion for Partner 1. The public
activities send or receive messages, e.g., activity place order sends a message received by activity receive order.
Note that the scenario abstracts from the details of the public and private activities, which are modelled as sub-processes
activities. The underlying sub-processes are of different complexity, i.e., they might contain decisions and loops as
well. The complex activity wait for order completion, in particular, comprises a set of sub-activities and is
signifying the scheduling between the activities of the different partners.
During the design of the choreography the partners specified implicit connections, i.e., dependencies between (private)
activities that are not covered by message exchanges and express mostly data dependencies. For example, activity wait
for order completion (private, Partner 1) implicitly depends on the the data produced by activities prepare
for manufacturing, manufacturing of parts, and quality control (all private, Partner 2).
These implicit connections refer to two main “functions” of the manufacturing setting, i.e., (i) resource planning and
(ii) quality control.
(i) Proper resource planning is part of the contract between the partners. There are implicit rules regarding how fast
Partner 2 has to react to an order. This depends on assumptions how fast the stock drops for Partner 1. This

10https://www.brics.dk/automaton/
11https://cpee.org/

First Author et al.: Preprint submitted to Elsevier Page 23 of 30

Verifying Compliance in Process Choreographies

Figure 13: Manufacturing Use Case

manifests as follows: If activity place order (Partner 1) occurs, then activity resource planning Partner
2 has been done before (i.e., resource planning data received) and activity resource planning (Partner 2) was
based on activities put parts to stock and deliver until stock is low (Partner 1). Understanding this
as a compliance task, we can say that when the above activity information matches, the compliant ordering can be
ensured.
The question is how such implicit connections can be checked without revealing information on the private activities.
Here, the presented decomposition algorithm can help. The idea is to express the implicit connections by GCR and
verify them based on assertions. Take, for example, the implicit connection between private activities place order
(Partner 1) and resource planning (Partner 2). We can formulate this implicit connection as GCR
𝐶1 ∶ place order ⤏ resource planning
Using Algorithm 1, 𝐶1 can be decomposed into the following assertions:

• 𝐴1
𝐶1

∶ place order ⤏ 𝑚1

• 𝐴2
𝐶1

: 𝑚1 ⤏ resource planning

Note that doing so, the implicit connection is lifted up to an explicit one by sending message 𝑚1.
(ii) Consider now the more complex GCR covering the overall quality control that involves all three partners.
Partner 1 has to do the final inspection, Partner 2 has to ensure the quality of the injection molded parts (no
cracks, no holes), and Partner 3 has to ensure the quality.

First Author et al.: Preprint submitted to Elsevier Page 24 of 30

Verifying Compliance in Process Choreographies

It is assumed that data for checking quality individually has been delivered whenever an order is finished. In this
case, activity wait for order completion by Partner 1 yields all information about the quality of the injection
molded parts and the electroplating process, whereas during activity check electro-plated parts by Partner
1 all additional information about the molding process is available. Overall, if activity check electro-plated
parts (Partner 1) occurs, then it has to be checked whether or not activities electro-plate parts and quality
control by Partner 3 were executed. Before that, for activity wait for order completion, activities prepare
for manufacturing (e.g. machine calibration data, material information), manufacturing of parts, and quality
control by Partner 2 were executed. If all of the above information has been received, the manufacturing process
was compliant, i.e., all required steps seem to have taken place.
7.2. Discussion
In the introduction, the following research question was stated:

RQ: How to verify GCRs in a decentralized setting of a process choreography where no central coordinator with
complete knowledge on the private and public tasks of all partners exists?

In the following, we discuss how far the article at hand has addressed RQ and which open questions still remain. For
this purpose, we sketch the end-to-end application of the decomposition algorithm along the following steps:

1. Check whether the GCR can be verified at choreography level, i.e., solely refering to interactions.
2. Check whether the GCR can be verified at the public process of one partner.
3. Check whether the GCR can be verified on the public processes of at least two partners: partners have to check

for the absence/presence of GCR-related activities and activity orders based on choreography and interactions
if possible. Otherwise, verification has to be postponed to the runtime by additionally synchronizing activities
OR compliance has to be verified in an ex post way based on logs if available.

4. Otherwise: The GCR refers to the private processes of one or several partners and a decomposition has to be
applied.

As private activities and their dependencies are not visible to all collaborators, parts of the decomposition algorithm
are executed locally by all partners involved in this GCR in order to identify possible transitive relations between their
corresponding private activities and possible public activities, or interactions that replicate the connector where the
GCR was split. This results in multiple derived assertion alternatives, which are then aggregated to alternatives from
other partners in order to find a combination that recreates the original rule as described in Section 4 (cf. Example 1).
Once the GCR is decomposed and the corresponding assertions are derived, each partner locally checks its derived
assertions at runtime.
Overall, RQ has been addressed in breaking down the problem of GCR verification on distributed processes into the
steps outlined above. Moreover, a sophisticated decomposition algorithm for GCR that refers to private activities of
one or multiple partners has been provided. This enables distributed compliance verification for the supply chain and
manufacturing use cases discussed in Section 7.1.
Limitations and open questions: This paper focuses on structural compliance, i.e., a GCR solely refers to control
flow patterns. Compliance patterns that deal with, for example, data and resources (cf. (61)) are future work and
will add substantially to the complexity of the approach. Moreover, we have applied our approach to a use case from
the manufacturing domain. However, additional studies in other domains, such as healthcare and logistics, become
necessary to evaluate the generalizability and broad applicability of the approach. In addition, the presence of XOR
branches in the processes (where sending of messages on these branches is optional) does not affect the correctness
of the decomposition as long as the processes are compliable with the original GCR (39). As aforementioned, we
assume the soundness of the different process models (i.e., consistency and compatibility) and their compliability to
the original GCR. This means that original GCRs are correctly specified, and the decomposition enables their checking
in a distributed way. In this case, transitivity ensures correct decomposition of GCR even at the presence of XOR
branches. If no transitive relations are identified, sync messages are required. Further on, in the end-to-end approach
outlined above, Step 3 still offers the challenge on how to check GCR on public processes of multiple partners.

First Author et al.: Preprint submitted to Elsevier Page 25 of 30

Verifying Compliance in Process Choreographies

8. Related Work
The work presented in this article can be positioned at the interface between process choreographies and business
process compliance. Section 8.1 summarizes basic works from these two research fields, whereas Section 8.2 discusses
approaches that address issues at the interface between them.
8.1. Basic Research Fields
Section 8.1.1 gives backgrounds on process choreography research, whereas Section 8.1.2 summarizes basic works
dealing with business process compliance.
8.1.1. Process Choreography
Process choreography research has mainly dealt with the modeling of process choreographies and the verification of
correctness properties. For this purpose, specific choreography modeling languages like Let’s dance, Interaction Petri
nets, and BPMN choreography diagrams are proposed, which support the modeling of collaborative process behavior.
A particular focus of existing works has been put on correctness properties of choreography models (e.g., realizability),
which have been intensively studied in literature (17; 16)–for an overview we refer interested readers to (62).
8.1.2. Business Process Compliance
Business process compliance, in turn, has been investigated for more than a decade and several surveys exist (e.g.,
(4; 24)). Contemporary approaches have focused on compliance rule languages, including visual notations (3; 40; 38),
logic-based formalisms (45; 43), and Event Calculus (49). Moreover, several approaches enable compliance checking
at both build- and run-time (e.g., (4; 44; 40)) or cover different process perspectives of compliance rule checking such
as behavior, data, time, and resources (58; 40). Finally, characteristic patterns for business process compliance are
proposed by (19).
A formal approach that verifies local process behavior (i.e., WS-BPEL process models) against legal constraints, spec-
ified in terms of the Compliance Request Language, is proposed by (19). This approach and similar works focus on
local compliance rules, which can be checked for a given (partner) process model. By contrast, we consider verify-
ing global compliance rules (GCR) in a process choreography based on their correct and lossless decomposition into
assertions that can be checked locally by each concerned partner.
Another related field deals with checking compliance of a (local) process model against its refinement or implementa-
tion. An approach that enables checking compliance of a (local) process model against its refinement is presented in
(53). More specifically, this approach deals with the automated verification of lower-level against higher-level UML
activity charts. Behavioural containment is established to ensure that a lower-level chart constitutes a valid refinement
of the higher-level one. Similarly, (18) presents an approach for enforcing compliance of hierarchical business pro-
cesses with visually specified security constraints. An approach that enables checking compliance of a (local) process
model against its implementation is presented in (8), which derives the specification of a web application from a (local)
process model followed by the verification of web execution logs against derived LTL formulae. Although the problem
addressed by these approaches is different from the one considered in our paper, the techniques could be of interest for
global compliance checking in choreographies as well.
8.2. Interface between Process Choreography and Process Compliance
There exist several approaches that address issues at the interface between process choreography and process compli-
ance. Section 8.2.1 discusses centralized and distributed approaches for checking compliance in multi-party processes
(i.e., process choreographies). In turn, approaches that map global contracts (i.e., sets of global compliance rules) to
compliable process choreographies are presented in Section 8.2.2. The conformance between process choreography
and local partner processes are considered in Section 8.2.3. Finally, issues related to business process compliance in
the context of dynamically evolving business partner networks are discussed in Section 8.2.4.
8.2.1. Compliance Checking in a Process Choreography – Centralized vs. Distributed Approaches
Compliance checking mechanisms assuming a trusted party are proposed by (27). In (26) the same authors present a
service-oriented approach that relies on a central integration platform in order to enable cross-organizational service
interactions, while at the same time meeting global compliance rules. As opposed to our work, this approach relies on
a central component (i.e., the integration platform) to ensure that global compliance rules can be checked.

First Author et al.: Preprint submitted to Elsevier Page 26 of 30

Verifying Compliance in Process Choreographies

(33) advocates compliance checking in a distributed process (i.e., process choreography) as crucial, but it cannot be
assessed in how far the approach deals with the restricted visibility and availability of process information as we do. In
prior work, we have introduced the criterion of compliability (39) that captures the ability of a choreography to comply
with a given set of compliance rules at all and how to check it (35). The approach presented in (37) enables checking
the effects of changes on the compliance in process choreographies based on dependency graphs between global and
local compliance rules as well as assertions. Finally, (22) provides an overview on the challenges, related approaches,
and possible solutions at the interplay of compliance, change, and choreographies.
Distributed approaches that rely on IoT technology are proposed by (51; 48). The approach suggested by (51) considers
the flow of physical objects between the parties of a multi-party process. In particular, this approach exploits the sensing
capabilities of smart devices to improve process compliance checking. For this purpose, commitments define mutual
contractual relationships between parties in a declarative way and drive the configuration of smart devices, which check
their satisfaction and, in case of misalignment, inform the concerned parties timely.
This multi-party process compliance monitoring approach is conceptually enhanced by (48) through IoT-enabled ar-
tifacts. This approach proposes a decentralized solution switching from control- to artifact-based monitoring, where
physical objects can monitor their own conditions as well as the process activities in which they participate, i.e., com-
pliance monitoring is distributed among the physical artifacts interacting with the global process. To instruct these
smart objects, BPMN process models are translated into a set of artifact-centric process models, rendered in Extended-
Guard-Stage-Milestone (E-GSM) notation. In particular, this work shows that artifact-based modeling approaches have
a high potential in respect to multi-party process management involving physical objects, which has not been the focus
of our work.
Finally, (46) discusses legal, organizational, human-centered, technical and economic challenges to be tackled in the
field of business process compliance when enacting the (cross-organizational) business processes on the Ethereum
blockchain. For example, at the implementation level, the immutability of illegal content or the error-proneness and
zero-defect tolerance of smart contracts raise challenging issues in this context. Although this work does not deal with
a concrete compliance verification approach, it indicates directions for future research on process compliance when
using blockchain infrastructures for enacting multi-party business processes.
8.2.2. Mapping Global Contracts to Process Choreographies
Contract languages allow specifying obligations, permissions and prohibitions in business contracts, which govern the
interactions between business partners. (28) provides means to model corresponding contract constraints. An early
approach that extends choreographies with such contract constraints is provided by (5). This approach transforms the
contract constraints into expressions of a choreography language, i.e., contract terms are translated into choreography
expressions that govern the global process (i.e. choreography) to ensure compliance. In particular, it is shown how
cross-organizational business processes can be monitored and enforced according to business contract specifications
through the transformation of the contract definition to constraints on (global) process behavior. However, this approach
is less powerful than ours as it tightly couples compliance constraints with choreography models, which aggravates
the evolution of both choreography model and contract constraints. Besides, this approach does not consider local
compliance checking (i.e., locally checking assertions derived from the decomposition of global compliance rules),
which limits its applicability at the presence of more complex compliance requirements.
(31) advocates Dynamic Condition Response (DCR) Graphs for decomposing global contracts into local processes.
More precisely, (31) shows how a timed DCR Graph can be used to describe the global contract for a timed multi-
party process (i.e., choreography), which can then be distributed as a network of communicating timed DCR Graphs
(i.e. local processes) describing the local contract for each party. As opposed to our work, this approach relies on a
declarative process modeling approach with a focus on discrete time deadlines.
8.2.3. Conformance between Process Choreography and Local Partner Processes
Several proposals have been made to ensure conformance between choreography (i.e., the global process) and the local
processes of the involved business partners. In (1), conformance checking of the event logs of local processes against
a given choreography model is addressed. As such an event log is not available at design time, (43) relies on a graph
transformation tool–GROOVE (GRaphs for Object-Oriented VErification)–to automatically verify that a local process
of a partner involved in a choreography complies with the globally specified behavior of that choreography. LTL
semantics of the choreography model is employed and token semantics of the local process model, which is expressed
in terms of a BPMN collaboration diagram, is used to verify conformance.

First Author et al.: Preprint submitted to Elsevier Page 27 of 30

Verifying Compliance in Process Choreographies

(9) relates the theory of contracts with the notion of choreography conformance, i.e., it is checked whether an aggre-
gation of services correctly behaves according to a high level specification of their possible conversations. For this
purpose, a method based on the composition of choreography projection and contract refinement is presented that al-
lows verifying that a service with a given contract can correctly play a specific role within a choreography. Finally,
(14) presents an approach for ensuring conformance between a set of BPMN collaboration diagrams (i.e., local process
models) and a BPMN choreography diagram (i.e., choreography model).
As opposed to these approaches, our decomposition-based method verifies the compliance of a choreography model
with global compliance rules and regulations that cover multiple process perspectives. However, conformance between
the choreography and the participating partner processes can be considered as a prerequisite of our approach.
8.2.4. Ensuring Compliance in Dynamically Evolving Partner Networks
(64) assumes that the partners in a business networks try to provide wrong information and, hence, introduce the
notion of accountability. Compliance requirements also need to be met in dynamic business networks (12; 13). In
such a network, the partners may join and leave the collaboration dynamically and tasks over which compliance rules
may be specified then have to be distributed or delegated to new partners or be backsourced by network participants
in order to avoid compliance issues. In (12; 13), a conceptual model for aligning the compliance requirements in a
business network with the monitoring requirements they induce on the network participants, particularly when the
network changes or evolves, is presented. Various techniques (e.g., task delegation and in-house backsourcing) for
ensuring the consistency between the monitoring and compliance requirements as well as metrics for evaluating the
status of a collaboration in respect to compliance monitorability are discussed. Obviously, this approach lacks a process
perspective, but is complementary to our work with a focus on business network changes and their effects on compliance
requirements.

9. Conclusions
The interplay between interoperability and business process compliance poses a tremendous challenge on companies.
In this problem space, the work at hand addresses the question on how to verify global compliance rules (GCR),
i.e., rules that span multiple partners in a multi-party process (i.e., process choreography), in a decentralized manner
where certain tasks of one partner process might not be visible to the other partners due to confidentiality reasons.
The presented approach focuses on the decomposition of a GCR such that the decomposed parts, i.e., assertions, can
be checked by the partners locally. Consequently, compliance verification is shifted from a global to a decentralized
manner.
The presented decomposition approach addresses research question RQ, which we introduced in Section 1. In par-
ticular, the presented decomposition algorithms exploits transitivity properties of the GCR for finding the correct
decompositions. The correctness is formally proven. Moreover, the complexity of the decomposition algorithm is
formally analyzed and also illustrated based on specific scenarios. The feasibility of the decomposition algorithm is
shown based on a prototypical implementation, including a model checker for ensuring decomposition correctness.
The applicability of the approach is demonstrated through a use case from the manufacturing domain.
Future work targets at two directions, (1) GCR language and (2) applications. First, we want to extend the decom-
position based on the eCRG formalism, as used in this work, to arbitrary GCR and adapt the decomposition to other
compliance rule languages such as Declare (55), PENELOPE (25), or BPMN-Q (3). Second, further applications of
the approach include healthcare as interoperability and compliance are “strategic imperatives” in this domain.
Overall, the presented approach provides a fundamental brick in enabling process collaborations between different
partners by infringing neither their privacy nor any regulations.

Acknowledgment
This work is jointly supported by COMET SBA-K1 and the Austrian Research Promotion Agency (FFG) via (i) project
number 874019, and (ii) the "Austrian Competence Center for Digital Production" (CDP) under contract number
85418. We thank Juergen Mangler for his input on the manufacturing use case.

First Author et al.: Preprint submitted to Elsevier Page 28 of 30

Verifying Compliance in Process Choreographies

References
[1] van der Aalst, W.M.P.and Weske, M.: Reflections on a decade of interorganizational workflow research. In: Bubenko, J., Krogstie, J., Pastor, O.,

Pernici, B., Rolland, C., Sølvberg, A. (eds.) Seminal Contributions to Information Systems Engineering: 25 Years of CAiSE. p. 307âĂŤ313.
Springer (2013)

[2] van der Aalst, W., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: From public views to private views – Correctness-by-Design for services.
In: WS-FM’08. pp. 139–153 (2008)

[3] Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and explaining their violations for business processes. Journal of
Visual Languages & Computing 22(1), 30–55 (2011)

[4] Becker, J., Delfmann, P., Eggert, M., Schwittay, S.: Generalizability and applicability of model-based business process compliance-checking
approaches - a state-of-the-art analysis and research roadmap. Bus Res 5(2), 221–247 (2012)

[5] Berry, A., Milosevic, Z.: Extending choreography with business contract constraints. Int’l Journal on Cooperative Information Systems 14(2-
3), 131–179 (2005)

[6] Bischoff, F., Fdhila, W., Rinderle-Ma, S.: Generation and transformation of compliant process collaboration models to BPMN. In: Advanced
Information Systems Engineering. pp. 462–478 (2019)

[7] Borkowski, M., Fdhila, W., Nardelli, M., Rinderle-Ma, S., Schulte, S.: Event-based failure prediction in distributed business processes. Inf.
Syst. 81, 220–235 (2019)

[8] Brambilla, M., Deutsch, A., Sui, L., Vianu, V.: The role of visual tools in a web application design and verification framework: A visual
notation for ltl formulae. In: Lowe, D., Gaedke, M. (eds.) Web Engineering. pp. 557–568. Springer (2005)

[9] Bravetti, M., Zavattaro, G.: Foundational aspects of contract compliance and choreography conformance. In: The Rise and Rise of the
Declarative Datacentre. Microsoft Research Cambridge, UK (2018)

[10] Ciccio, C.D., van der Aa, H., Cabanillas, C., Mendling, J., Prescher, J.: Detecting flight trajectory anomalies and predicting diversions in
freight transportation. Decis. Support Syst. 88, 1–17 (2016)

[11] Ciccio, C.D., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. Inf. Syst.
64, 425–446 (2017)

[12] Comuzzi, M.: Aligning monitoring and compliance requirements in evolving business networks. In: On the Move to Meaningful Internet
Systems: OTM 2014 Conferences. pp. 166–183. Springer (2014)

[13] Comuzzi, M.: Alignment of process compliance and monitoring requirements in dynamic business collaborations. Enterprise Information
Systems 11(6), 884–908 (2017)

[14] Corradini, F., Morichetta, A., Polini, A., Re, B., Tiezzi, F.: Collaboration vs. choreography conformance in bpmn 2.0: From theory to practice.
In: IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC 2018). pp. 95–104 (2018)

[15] Decker, G., Weske, M.: Behavioral consistency for B2B process integration. In: CAiSE’07. pp. 81–95 (2007)
[16] Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Informatiion Systems 36(2), 292–312 (2011)
[17] Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: 5th Int Conference on Business Process Management (BPM 2007).

pp. 305–319. Springer (2007)
[18] Duan, L., Zhang, Y., Sun, C., et al.: Enforcing compliance of hierarchical business process with visual security constraints. Int J Syst Assur

Eng Manag 95(1), 703–715 (2018)
[19] Elgammal, A., Turetken, O., van den Heuvel, W.J., Papazoglou, M.: Formalizing and appling compliance patterns for business process

compliance. Software and Systems Modeling 15(1), 119–146 (2016)
[20] Fdhila, W., Gall, M., Rinderle-Ma, S., Mangler, J., Indiono, C.: Classification and formalization of instance-spanning constraints in process-

driven applications. In: BPM. pp. 348–364 (2016)
[21] Fdhila, W., Indiono, C., Rinderle-Ma, S., Reichert, M.: Dealing with change in process choreographies: Design and implementation of

propagation algorithms. Inf Sys 49, 1 – 24 (2015)
[22] Fdhila, W., Rinderle-Ma, S., Knuplesch, D., Reichert, M.: Change and compliance in collaborative processes. In: SCC. pp. 162–169 (2015)
[23] Fdhila, W., Rinderle-Ma, S., Knuplesch, D., Reichert, M.: Decomposition-based verification of global compliance in process choreographies.

In: 24th IEEE International Enterprise Distributed Object Computing Conference, EDOC 2020, Eindhoven, The Netherlands, October 5-8,
2020. pp. 77–86 (2020)

[24] Fellmann, M., Zasada, A.: State-of-the-art of business process compliance approaches. In: ECIS (2014)
[25] Goedertier, S., Vanthienen, J.: Designing compliant business processes with obligations and permissions. In: BPM’06 Workshops. pp. 5–14

(2006)
[26] González, L., Ruggia, R.: Towards a compliance-aware inter-organizational service integration platform. In: On the Move to Meaningful

Internet Systems: OTM 2014 Workshops. pp. 8–17. Springer (2014)
[27] González, L., Ruggia, R.: A comprehensive approach to compliance management in inter-organizational service integration platforms. In:

ICSOFT. pp. 722–730 (2018)
[28] Governatori, G., Idelberger, F., Milosevic, Z., Riveret, R., Sartor, G., Xu, X.: On legal contracts, imperative and declarative smart contracts,

and blockchain systems. Artif. Intell. Law 26(4), 377–409 (2018)
[29] Hashmi, M., Governatori, G., Lam, H., Wynn, M.T.: Are we done with business process compliance: state of the art and challenges ahead.

Knowl. Inf. Syst. 57(1), 79–133 (2018)
[30] Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for regulatory compliance: An abstract formal framework. Information

Systems Frontiers 18(3), 429–455 (2016)
[31] Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-organizational workflows as timed dynamic condition response

graphs. J. Log. Algebraic Methods Program. 82(5-7), 164–185 (2013)
[32] Kasse, J.P., Xu, L., de Vrieze, P., Bai, Y.: The need for compliance verification in collaborative business processes. In: PRO-VE. pp. 217–229

(2018)

First Author et al.: Preprint submitted to Elsevier Page 29 of 30

Verifying Compliance in Process Choreographies

[33] Kasse, J.P., Xu, L., de Vrieze, P., Bai, Y.: Verifying for compliance to data constraints in collaborative business processes. In: PRO-VE. pp.
259–270 (2019)

[34] Knuplesch, D., Reichert, M., Mangler, J., Rinderle-Ma, S., Fdhila, W.: Towards compliance of cross-organizational processes and their
changes. In: BPM Workshops. pp. 649–661 (2013)

[35] Knuplesch, D., Reichert, M., Pryss, R., Fdhila, W., Rinderle-Ma, S.: Ensuring compliance of distributed and collaborative workflows. In:
CollaborateCom’13. pp. 133–142 (2013)

[36] Knuplesch, D.: Enabling Multi-Perspective Business Process Compliance, University of Ulm, Germany (2019)
[37] Knuplesch, D., Fdhila, W., Reichert, M., Rinderle-Ma, S.: Detecting the effects of changes on the compliance of cross-organizational business

processes. In: ER’15. pp. 94–107 (2015)
[38] Knuplesch, D., Reichert, M.: A visual language for modeling multiple perspectives of business process compliance rules. Software and

Systems Modeling 16(3), 715–736 (2017)
[39] Knuplesch, D., Reichert, M., Fdhila, W., Rinderle-Ma, S.: On enabling compliance of cross-organizational business processes. In: Business

Process Management. pp. 146–154 (2013)
[40] Knuplesch, D., Reichert, M., Kumar, A.: A framework for visually monitoring business process compliance. Inf. Syst. 64, 381–409 (2017)
[41] Knuplesch, D., Reichert, M., Ly, L.T., Kumar, A., Rinderle-Ma, S.: On the formal semantics of the extended compliance rule graph. Tech.

Rep. 2013-05, Ulm University (2013)
[42] Knuplesch, D., Reichert, M., Ly, L.T., Kumar, A., Rinderle-Ma, S.: Visual modeling of business process compliance rules with the support

of multiple perspectives. In: ER’13. pp. 106–120 (2013)
[43] Kwantes, P.M., Van Gorp, P., Kleijn, J., Rensink, A.: Towards compliance verification between global and local process models. In: Graph

Transformation. pp. 221–236. Springer (2015)
[44] Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Compliance monitoring in business processes: Functionalities,

application, and tool-support. Inf. Syst. 54, 209–234 (2015)
[45] Maggi, F., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring business constraints with linear temporal logic: an approach

based on colored automata. In: BPM. pp. 132–147 (2011)
[46] Meironke, A., Seyffarth, T., Damarowsky, J.: Business process compliance and blockchain: How does the ethereum blockchain address chal-

lenges of business process compliance? In: Human Practice. Digital Ecologies. Our Future. 14. Internationale Tagung Wirtschaftsinformatik
(WI 2019). pp. 1880–1891 (2019)

[47] Mendling, J., et al.: Blockchains for business process management - challenges and opportunities. ACM Trans. Management Inf. Syst. 9(1),
4:1–4:16 (2018)

[48] Meroni, G., Baresi, L., Montali, M., Plebani, P.: Multi-party business process compliance monitoring through iot-enabled artifacts. Inf. Syst.
73, 61–78 (2018)

[49] Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitoring business constraints with the event calculus. Trans on
Intelligent Sys and Tech 5(1), 17.1–17.30 (2014)

[50] Montali, M., Pesic, M., Aalst, W.M.P.v.d., Chesani, F., Mello, P., Storari, S.: Declarative specification and verification of service choreogra-
phiess. ACM Trans on the Web 4(1), 1–62 (2010)

[51] Montali, M., Plebani, P.: Iot-based compliance checking of multi-party business processes modeled with commitments. In: 6th European
Conference on Service-Oriented and Cloud Computing(ESOCC). pp. 179–195. Springer (2017)

[52] Montali, M., Torroni, P., Chesani, F., Mello, P., Alberti, M., Lamma, E.: Abductive logic programming as an effective technology for the
static verification of declarative business processes. Fundam. Informaticae 102(3-4), 325–361 (2010)

[53] Muram, F., Tran, H., Zdun, U.: Automated mapping of uml activity diagrams to formal specifications for supporting containment checking.
In: 11th Int Workshop on Formal Engineering Approaches to Software Components and Architectures. pp. 93–107 (2014)

[54] Oyekola, O., Xu, L.: Verification and compliance in collaborative processes. In: Boosting Collaborative Networks 4.0 - 21st IFIP WG 5.5
Working Conference on Virtual Enterprises, PRO-VE 2020, Valencia, Spain, November 23-25, 2020, Proceedings. pp. 213–223 (2020)

[55] Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: EDOC. pp. 287–300 (2007)
[56] Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did i misbehave? Diagnostic information in compliance checking. In: BPM’12. pp.

262–278 (2012)
[57] Schunselaar, D.M.M., Maggi, F.M., Sidorova, N.: Patterns for a log-based strengthening of declarative compliance models. In: Integrated

Formal Methods. pp. 327–342 (2012)
[58] Taghiabadi, E.R., Fahland, D., van Dongen, B.F., van der Aalst, W.M.P.: Diagnostic information for compliance checking of temporal com-

pliance requirements. In: Advanced Information Systems Engineering. pp. 304–320 (2013)
[59] Tosatto, S.C., Governatori, G., van Beest, N.: Checking regulatory compliance: Will we live to see it? In: Business Process Management. pp.

119–138 (2019)
[60] Tosatto, S.C., Governatori, G., van Beest, N., Olivieri, F.: Efficient full compliance checking of concurrent components for business process

models. FLAP 6(5), 963–998 (2019)
[61] Voglhofer, T., Rinderle-Ma, S.: Collection and elicitation of business process compliance patterns with focus on data aspects. Bus. Inf. Syst.

Eng. 62(4), 361–377 (2020)
[62] Weske, M.: Business Process Management - Concepts, Languages, Architectures, Third Edition. Springer (2019)
[63] Winter, K., Stertz, F., Rinderle-Ma, S.: Discovering instance and process spanning constraints from process execution logs. Inf. Syst. 89,

101484 (2020)
[64] Yao, J., Chen, S., Levy, D.: Accountability-based compliance control of collaborative business processes in cloud systems. In: Security,

Privacy and Trust in Cloud Systems. pp. 345–374 (2014)
[65] Zaman, R., Hassani, M.: On enabling GDPR compliance in business processes through data-driven solutions. SN Comput. Sci. 1(4), 210

(2020)

First Author et al.: Preprint submitted to Elsevier Page 30 of 30

