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ABSTRACT
The current push towards interoperability drives companies to collaborate through process chore-
ographies. At the same time, they face a jungle of continuously changing regulations, e.g., due to
the pandemic and developments such as the BREXIT, which strongly affect cross-organizational
collaborations. Think of, for example, supply chains spanning several countries with different
and maybe even conflicting COVID19 travelling restrictions. Hence, providing automatic com-
pliance verification in process choreographies is crucial for any cross-organizational business
process. A particular challenge concerns the restricted visibility of the partner processes at the
presence of global compliance rules (GCR), i.e., rules that span across the process of several
partners. This work deals with the question how to verify global compliance if affected tasks are
not fully visible. Our idea is to decompose GCRs into so called assertions that can be checked
by each affected partner whereby the decomposition is both correct and lossless. The algorithm
exploits transitivity properties of the underlying rule specification, and its correctness and com-
plexity are proven, considering advanced aspects such as loops. The algorithm is implemented
in a proof-of-concept prototype, including a model checker for verifying compliance. The ap-
plicability of the approach is further demonstrated on a real-world manufacturing use case.

ction
s interoperability as “strategic imperative”1 for healthcare. Especially the global push by digitalization
t pandemic require the collaboration and integration of (business) partners and organizations. Process
rves as enabler for process-oriented collaborations between distributed business partners, realized and
through so-called process choreographies. Applications include healthcare (34), blockchain-based pro-
), multi-modal logistics scenarios (7; 10), and supply chains (22).
and ongoing changes due to, for example, the pandemic situation or the BREXIT flood enterprises and
with updated or even new regulations at a fast pace. For example, “bank regulations change every
Regulatory frameworks comprise application-independent frameworks such as the GDPR on “data

undaries of the personal data of European Union’s citizens” (66) and the ISO 27001 security standard3
ication-specific ones, e.g., theWHO regulations defined in the context of COVID194. As a consequence,
ed world, regulations and their changes affect process collaborations (55) and lead to an increased need
e verification in process choreographies.
Statement

articular challenges with respect to compliance verification in process choreographies? Let us illustrate
ample. Figure 1 depicts a BPMN choreography model of a supply chain scenario adapted from (22). It
rocess partners, i.e., Bulk Buyer,Manufacturer,Middleman, Supplier, and Special Carrier that interact
ing author
@sba-research.org (W. Fdhila)
000-0002-5245-6128 (W. Fdhila); 0000-0001-5656-6108 (S. Rinderle-Ma); 0000-0003-2536-4153 (M. Reichert)
tnr.it/3vGFB7f
hefinanser.com/2017/01/bank-regulations-change-every-12-minutes.html/
ww.iso.org/isoiec-27001-information-security.html
ww.who.int/teams/regulation-prequalification/covid-19
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Verifying Compliance in Process Choreographies

ge exchanges. First, the Bulk Buyer orders a set of products from the Manufacturer (e.g., an aircraft).
uring of the product requires several sub-products (intermediates) to be provided by different suppliers.
o, we assume that only one intermediate is required and provided by the Supplier. After processing the
the Manufacturer sends an order for the intermediate (e.g., the fuselage or engines) to the Middleman.
n forwards the order of the intermediate to the Supplier and sends an order for a special transport to the
er. The Special Carrier requests the details on the transport from the Supplier and the Supplier provides
ecial Carrier, followed by sending the waybill for the intermediate. The Special Carrier sends a notice
of the intermediate to the Manufacturer, which then delivers the product to the Bulk Buyer.

N choreography model for a supply chain – running example with five process partners

that the partners and the choreography are subject to the Global Compliance Rules (GCR) depicted in
stem from legal regulations and standards such as GDPR or ISO 27001:
roduction a Final test must be performed.
termediate is required before Transport Intermediate.
ansport intermediate requires Permission of authority. Further on, the transporter must pass a Safety

ne of the GCR can be directly verified on basis of the choreography model in Fig. 1 as none of the public
xchanging tasks corresponds to any of the tasks referred to in the GCR.

G model of Global Compliance Rules imposed on supply chain choreography

ook at the public processes of the partners involved in the choreography as shown in Fig. 3. These public
s contain all public tasks that are visible to the other partners, including the tasks that exchangemessages,

visible tasks such as Production at the Manufacturer. Based on the public process models, C1 and C2,
t al.: Preprint submitted to Elsevier Page 2 of 32
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Verifying Compliance in Process Choreographies

Fig. 2, can be verified: C1 refers to public tasks of theManufacturer process, which obviously complies
public task Production is followed by public task Final Test. C2 can be verified over the Supplier and
er processes. The order between tasks Pack Intermediate and Transport Intermediate is determined by
xchange between sending and receiving Waybill Intermediate. As opposed to C1 and C2, C3 cannot be
on the public processes of the partners as there are no public tasks for Safety check and Get permission

lic processes (collaboration model) – running example with five process partners cooperating in a supply
from (22))

ion is that C3 also refers to private tasks of the partners, i.e., tasks that are only present in the private
ls of the partners. In general, private process models of the partners implement and possibly extend
of the corresponding public models. As opposed to public tasks, private tasks are not visible to the
re 4 shows the private process models of partners Special Carrier and Middleman where private tasks
d in gray color. Although private tasks are usually hidden to other partners, restrictions over them might
upply chain, for example, C3 refers to private tasks Safety Check for partner Special Carrier and Get
authority for partnerMiddleman. If private tasks are affected by a GCR, no information about how and
sks are executed, or how they are connected to other nodes of the corresponding private process model,
le to the other partners. Usually, this happens when a collaborating partner p1 imposes the execution of
that must exist in its private process and comply with a given rule involving another partner p2. Partner
assure the existence of such task and that it follows the imposed rule.

n from the example depicted in Figs. 1–4, GCRs constrain actions of multiple partners and/or the inter-
en them. Ensuring the compliance of process choreographies with a GCR is crucial and challenging (32)
nly has the visibility of the portion of the process under its direct control” (49). Reconsider GCR C3 as
t asks for a safety check accomplished by a private task of the Special Carrier. To cope with this issue,
be used. An assertion (A) corresponds to a commitment of a partner guaranteeing that its private/public
lies with the imposed rule (22). Figure 5 depicts the two assertions A1 and A2: theMiddleman agrees to
sion of the authority before ordering the special transport (A1). Moreover, the Special Carrier commits
safety check before transporting the intermediate (A2). In combination, assertions A1 and A2 enable
t al.: Preprint submitted to Elsevier Page 3 of 32
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Verifying Compliance in Process Choreographies

ate processes of partners Special Carrier and Middleman, omitting message exchanges (adapted from (22))

C3.

rtions by partners Middleman and Special Carrier

ution
eads to the overarching research question RQ tackled in this work:

verify GCRs in a decentralized setting of a process choreography where no central coordinator with
complete knowledge on the private and public tasks of all partners exists?

here is a “knowledge gap” when it comes to compliance verification in process choreographies (32).
e problem of checking a GCR on private tasks based on IoT-enabled artifacts. However, not all process
settings with compliance requirements feature IoT-enabled artifacts. Hence, this works aims at providing
oach that is independent of any technology or application. The central idea is to decompose the GCR
s in a lossless way, i.e., the verification of all assertions guarantees the one of the GCR. Note that this
blem as assertions may be checked separately by each of the partners. Hence, infringing the privacy of
avoided.
sition algorithm presented in this article exploits transitivity properties of the underlying GCR speci-
as originally presented in (23). The decomposition relies on transitivity properties of the underlying
tion. The transitivity properties are shown by the example of a translation to first order predicate logic.
example, (58) presents declarative patterns based on Linear Temporal Logic (LTL).
ch, GCRs are specified in a pattern-based and visual way using the eCRG formalism (40). This means
ay be composed of so called antecedence patterns and consequence patterns. The patterns can be

ecting pre-/post-conditions of the respective GCR. C1 in Fig. 2, for example, connects antecedence
t al.: Preprint submitted to Elsevier Page 4 of 32
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Verifying Compliance in Process Choreographies

ction with consequence pattern Final test, demanding that after the production a final test is required.
cedence and consequence patterns may require occurrence (i.e., something must happen) and absence
g must not happen). In (23), we relied on simple rules that consist of single antecedent and multiple
tterns. Aside the decomposition algorithm itself, (23) provides basic proofs, simple GCR decomposition
the embedding of the approach in the overall digitalized change and compliance management framework
article extends and elaborates the results presented in (23) in several directions:
w for additional and more complex compliance rules with multiple antecedence patterns. This sig-
ly increases the complexity of the theoretical considerations as well as the one of the provided GCR
osition scenarios. As a result, we obtain new theorems and algorithms.
omposition proofs are extended to cover the additional complexity of the GCR; in particular they now
r loops as well.
omposition algorithm with extensions is prototypically implemented and integrated with the C3Pro
ork, which deals with both change and compliance in process choreographies.
l checker for verifying decomposition correctness is provided.
facturing use case illustrates the applicability of the approach. Specifically, the use case demonstrates
licability of the approach beyond regulatory compliance, i.e., it shows how decomposition can be used
plicit connections to explicit assertions.
ted work section is significantly extended.
r of the paper is structured as follows: Section 2 provides fundamentals required for understanding this
tion 3 introduces the foundations for GCR decomposition (including transitivity theorems). Section 4
the decomposition algorithm for global compliance rules, whereas Section 5 deals with the automated
the resulting decompositions based on model checking. Sections 6 and 7 cover the evaluation of the

, the implementation and application of the algorithms. Section 8 discusses related work. Section 9
paper with a summary and an outlook.

entals
resents definitions and formal backgrounds for global compliance rules (GCRs) to be obeyed by a process
y. A choreography includes three types of overlapping models: (i) a private model representing the
ocess and including both private and public activities (see Fig. 4 for examples of private process models),
odel (also called the interface of the process) that solely includes the public activities and the interactions
tner (see Fig. 3 for the public process models of our running example), and (iii) a choreography model
obal view on the interactions between all partners (see Fig. 1 for the choreography model of our running
. Compared to (21; 2), this paper assumes that public activities are not necessarily interactions with other
ay additionally represent tasks made visible by the corresponding partners. Therefore, both interactions

action public activities of a single partner are described in a public model. The latter serves as public
ew on the private model of the partner, which “describes the internal logic of a partner including its
blic activities” (6). For a formal definition of process choreography, we refer to Definition 1.
Choreography (21)). We define a choreography y as a tuple
, Γ, �) where

f all participating partners.
eography model representing the interactions  between partners in  (cf. Fig. 1).
is the set of all private models (cf. Fig. 4).
is the set of all public models (cf. Fig. 3).
p ↔ �p}p∈ is a partial mapping function between nodes of the public and private models.
a partial mapping function between nodes of different public models.
is a partial mapping function between nodes of the choreography model and the public models.
w.wst.univie.ac.at/communities/c3pro

t al.: Preprint submitted to Elsevier Page 5 of 32
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Verifying Compliance in Process Choreographies

Figures 1, 3 and 4, choreography, public and private models are defined as graphs, where nodes are
s (i.e., interaction, public or private activities) or gateways (e.g., sequence, exclusive or parallel), and
dependencies between them. As described above, each of these three models use specific type of ac-
.g., interaction activities for choreography models). Because the focus of this paper is mainly on GCR
, we abstract their respective formal definitions, but the reader may refer to (21) for more details.
n  maps the activities of the public models to those of the private models, function Γ determines
ies between the interactions of different public models (e.g., Γ(Request_details (Special_carrier)) =
ils(Supplier)). Finally, function � represents the dependencies between the activities in the choreogra-
those of the public models (e.g., �(order) = {order(Bulk_buyer), order(Manufacturer)}). Note that
s above, connected interaction activities (i.e., the send and the corresponding receive) of different public
he same labels, while in practice, it is possible to have them different.
tions  and Γ, certain soundness properties of choreography y can be checked, including structural and
mpatibility between public models, and consistency between public and private models (15). Structural
quires that for each public activity of the public model of a partner p, there should be a matching element
nding private model of p, but not vice versa (21). Structural compatibility states that for each interaction
public model of a partner p, there should be a matching interaction activity in the public model of another
that this is a necessary, but not yet sufficient condition for ensuring compatibility and consistency–the
iors (control flow dependencies) should also be compatible and consistent. In this paper, we assume that
phy y is sound.
ork (20), multiple formal languages employed for business process compliance modelling and checking
mporal logic LTL, event calculus EC, extended compliance rule graph eCRG) were compared. It was
ost of these languages can deal with most qualitative time patterns, and can therefore be used to model
e constructs addressed in this paper. Similar results were proven in (30).
ecify these constructs as well as transitivity properties required for the GCR decomposition, this work
sual eCRG (extended Compliance Rule Graph) language (42; 38; 36). The eCRG language offers a
tation for expressing compliance rules over process choreographies and is based on first order predicate
. 6). To distinguish between a precondition (i.e., antecedence) and corresponding postconditions (i.e.,
), an eCRG can be partitioned into an antecedence pattern and a consequence pattern. The antecedence
es when the compliance rule is triggered (i.e., activated), whereas the consequence pattern specifies what
nds. As compliance rules may require the occurrence or absence of certain activities or interactions (i.e.,
anges), the antecedence and consequence patterns are further sub-divided into occurrence and absence
ce conditions between these events can be expressed using directed connectors between the respective
e the following notation: A : Antecedence occurrence; A : Antecedence absence; A : Consequence
: Consequence absence. Fig. 6 introduces the elements of the eCRG language. For a formal definition

refer to Def. 2.
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Verifying Compliance in Process Choreographies

Global Compliance Rule (GCR) structure). Given a process choreography y = ( , , Π, ,  , Γ, �)
et  be the set of private and public non-interaction activities and  be the set of interaction activities.
r is defined as tuple r = (N, �, ', type, pattern) with

g the set of nodes,
 returning the partner responsible for a node.

N → {⤏,→, ∅} returning the sequence flow connector between two nodes, i.e., consequence sequence
ecedence sequence connectors respectively.

→  ∪  mapping each node to an activity or an interaction (i.e., message exchange).

∶ N → { A , A , C , C }

CRG as a graph of connected nodes, where each node is assigned to a particular partner (e.g., in
tion) = manufacturer). A node may either be a private, non-interaction public activity, or an inter-
gure 6). Given two nodes of an eCRG, function ' returns the sequence flow connector as depicted
where a dashed arrow (i.e., consequence connector) connects an antecedence pattern to set of conse-
s (e.g, C1: After production a final test is required), and an antecedence connector expresses a relation
edence patterns solely (i.e, the pre-condition). For example, assume that we change C3 as follows:
ion_of_autℎority→ safety_cℎeck⤏ transport_intermediate . Then: if the pre-condition (i.e., execu-
y Get_permission_of_autℎority followed by the one of activity safety_cℎeck) is met, the post condi-
ity transport_ intermediate) will be triggered. Finally, function pattern evaluates whether a node is an
r consequence, and whether or not it should occur.

ompliance Rule Decomposition Theorems
ntroduces the theoretical foundations for the decomposition of global compliance rules (including theo-
fs) illustrated by a number of examples, whichwe have extracted from the application scenario introduced
Section 3.1 first describes the basic idea of our approach (i.e., why do we need to decompose a GCR),
e presentation, proofs and illustrations of the theorems in Section 3.2.
dea
r the decentralized checking of global compliance rules relies on the decomposition of the original GCR
sertions that can be checked locally by each partner and collectively reproduce the behavior of the GCR
communication between partners is only required in the setup phase to deduct the assertions. During
ver, no further compliance-related communication becomes necessary for checking the GCR unless a
becomes violated. The decomposition of a GCR into a set of assertions is based on well-grounded

ch ensure that if a conjunction of hypotheses is true, the conclusion (GCR) is true as well.

hod Overview
t al.: Preprint submitted to Elsevier Page 7 of 32
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Verifying Compliance in Process Choreographies

ms
, we provide a decomposition method for selected global compliance patterns and show how they can
a collaborative setting. In particular, we prove a set of theorems required for ensuring the correctness of
ition method. Each theorem represents a possible decomposition of a given compliance pattern.
he translation of a GCR into a First Order Logic (FOL) expression using basic equivalences as in Def. 3.
Basic Equivalences). Based on (41), the following equivalences hold by definition. Predicate x(t, ty)
at the point in time t an activity (message) of type ty was executed (i.e., sent or received).

∶⇔ ∀a ∶
(
x(a, A)→

(
∃b ∶ (x(b, B) ∧ a < b)

) )
∶
(
x(a, A)→ (x(b, B) ∧ a < b)

)

∶⇔ ∀b ∶
(
x(b, B)→

(
∃a ∶ (x(a, A) ∧ a < b)

) )
∶
(
x(b, B)→ (x(a, A) ∧ a < b)

)

∶⇔ ∀a ∶
)→

(
∄b ∶ (x(b, B) ∧ a < b)

) )
∶
(
x(a, A)→ ¬(x(b, B) ∧ a < b)

)
∶
(
x(a, A)→ (¬x(b, B) ∨ b ≤ a)

)

∶⇔ ∀b ∶
)→

(
∄a ∶ (x(a, A) ∧ a < b)

) )
∶
(
x(b, B)→ ¬(x(a, A) ∧ ¬a < b)

)
∶
(
x(a, A)→ (¬x(b, B) ∨ b ≤ a)

)

GCR Production⤏ Final test is translated into: ∀a ∶ (
x(a,Production) → ∃b ∶ x(b,Final test) ∧

eby, relation < expresses a temporal precedence between points in time a and b. The decomposition
sented in Section 4 exploits the transitivities for GRC as in Theorem 1. Specifically, by combining
tions, where each relation can be checked locally by a single partner, it becomes possible to reconstruct
CR behavior. Theorem 1 ensures that the behavior of the derived assertions reproduces the behavior of
not vice versa.
ransitivities).
C be three activity or message types. Then:

htwards transitivity holds:

∧ B⤏C ⇒ A⤏C

wards transitivity holds:

∧ B⤏C ⇒ A⤏C

g, the correctness of Theorem 1 is proven applying Def. 3.
twards Transitivity).
C be three activities or interactions. Then A⤏B ∧ B⤏C
x(a, A)→ (x(b, B) ∧ a < b)

)
∧∀b∃c ∶

(
x(b, B)→ (x(c, C) ∧ b < c)

)

x(a, A)→ (x(b, B) ∧ a < b)
)
∧∀b ∶ ∃c ∶

(
x(b, B)→ (x(c, C) ∧ b < c)

))
((
x(a, A)→ (x(b, B) ∧ a < b)

)
∧
(
x(b, B)→ (x(c, C) ∧ b < c)

))
((
x(a, A)→ x(b, B)→ (x(c, C) ∧a < b < c)

)))
)

(a, A)→ (x(c, C) ∧ a < c) ⇒ A⤏C q.e.d.

t al.: Preprint submitted to Elsevier Page 8 of 32
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sitivity can be proven similarly by replacing ’<’ with ’>’.
Let A,B, C , and D be activities or interactions. Then

⤏C ∧ C⤏D ⇒ A⤏C ∧ C⤏D ⇒ A⤏D

ng, we use Examples (1) - (3) (cf. Fig. 8), which we extracted from our running example (cf. Figs. 3
er to illustrate how we use Theorem 1 for decomposing a simple compliance rule of type A⤏B that
rivate tasks A and B of two different partners p1 and p2 respectively.
e (1): get_permission_of_autℎority⤏ safety_cℎeck . In this example, both activities are private,
ould normally requireMiddleman and Special_carrier to share runtime information about the execu-
e of the respective activities. In turn, this would require an agreement on a time synchronization protocol
siders network failures and message transmission delays. This can be solved by identifying a transitive
between the two private activities that include an interaction activity. According to Theorem 1, the
ion activity order_special_transport betweenMiddleman and Special_carrier fulfills the conditions
A2:
rmission_of_autℎority⤏ order_special_transport and order_special_transport⤏ safety_cℎeck .
avioral and structural compatibility (cf. Section 2) between the partner processes ensures that message
pecial_transport sent byMiddleman shall be correctly received bySpecial_carrier. By locally check-
and A2 by Middleman and Special_carrier respectively, we can ensure that the original GCR is not
as long as the assertions are not violated. If one assertion is violated, a communication between the two
will become necessary. Note that this violation does not necessarily mean that the original GCR is vio-
or example, assume that for a given process instance, assertionA1 evaluates to true, andSpecial_carrier
ÅŻ activity safety_cℎeck before the message arrival. Although this would result in A2 being evaluatedit does not necessarily mean that safety_cℎeck is executed before get_permission_of_autℎority.
e (2): process_order⤏ produce_intermediate . In this example,Manufacturer and Supplier do not
in any direct interaction. However, by looking at the public processes of the collaboration model from
t becomes possible to identify a double transitive relation throughMiddleman, which interacts with both
. Therefore, usingCorollary 1, the transitive relations (assertions): process_order⤏ order_intermediate ,
intermediate⤏ fwd_order_intermediate , and fwd_order_intermediate⤏ produce_intermediate
ce the behavior of process_order⤏ produce_intermediate . Middleman, which has initially not been
in the GCR, becomes involved in the derived assertions. We callMiddleman an intermediary partner.

e (3): prepare_transport⤏ safety_cℎeck . In this example, it is not possible to identify any tran-
lation between Supplier and Special_carrier that involve private activities prepare_transport and
cℎeck. The interaction activity waybill_for_intermediate connects both partners immediately after
vities in question, which discards any possibility of a transitive relation. In this case, it is not possible
y Theorem 1 and, hence, additional message exchanges become necessary to inform about the execu-
te of the activities involved in the GCR. Message exchanges can be either synchronous or asynchronous.
ronous message exchange only allows for reactive GCR checking and, therefore, detecting violations
eir occurrence. Synchronous message exchange, in turn, is proactive as it enforces the GCR with new
t al.: Preprint submitted to Elsevier Page 9 of 32
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ons to the process models, e.g., the execution of activity safety_cℎeck becomes enabled only after re-
a synchronization message (i.e., about whether or not prepare_transport is executed). Supplier shall
orm Special_carrier in case activity prepare_transport is not executed, as this does not prevent activity
cℎeck from being executed according to the GCR.
ansitivity (cf. Theorem 1.a) directly ensures the correctness of the assertions derived in the above exam-
be clear that the correctness of the derived assertions in Example (2) can be directly concluded based
. The same examples can be also used to illustrate leftwards transitivity.

ig zag Transitivities).
C be three activity or message types. Then:

htwards zig zag transitivity holds for the consequence absence:

∧ B⤏C ⇒ A⤏C

wards zig zag transitivity holds for the consequence absence:

∧ C ⤏B ⇒ C ⤏A

twards Zig Zag Transitivity of Absence).
C be activities or interactions. Then:
⤏C
x(a, A)→ (x(b, B) ∧ b < a)

)
∧ ∀b, c ∶

(
x(b, B)→ (¬x(c, C) ∨ c ≤ b)

)

x(a, A)→ (x(b, B) ∧ b < a)
)
∧ ∀b, c ∶

(
x(b, B)→ (¬x(c, C) ∨ c ≤ b)

))
((
x(a, A)→ (x(b, B) ∧ b < a)

)
∧
(
x(b, B)→ (x(c, C)→ c ≤ b)

))
((
x(a, A)→ x(b, B)→ (x(c, C)→ c ≤ b < a)

))

(a, A)→ (x(c, C)→ c ≤ a)
)

(a, A)→ (¬x(c, C) ∨ c ≤ a)
)
⇒ A⤏C q.e.d.

zag transitivity of absence can be proven similarly by replacing ’<’ with ’>’ and ’≤’ with ’≥’.
ng, we use Examples (4) and (5) from Fig. 9 to illustrate and discuss how Theorem 2 can be used to
GCR of type rightwards zigzag A⤏B . Note that these two examples are adopted from the running
troduced in Section 1 in order to fulfill the decomposition requirements.
e (4): quick_test_intermediate⤏ transport_intermediate . In this example, transport_intermediate

er_special_transport in Special_carrier belong to different XOR branches, which means that the
t al.: Preprint submitted to Elsevier Page 10 of 32



Journal Pre-proof

executio
and vic
Manuf
belong
Accord
that pro
receivin
sulate th
leading
transpo
rived as
same pr
iteration
iteration
iteration
iteration
Combin
order_s
By look
both pa
order of
its own
does no
existing
checkin

• Exampl
ways ha
The sec
transpo
ence of
rem 2.b
The dec
always
global c
GCR is
necessa

Theorem 3 (R
Let A,B, C , a
afterwards. L

(1) M1⤏

(2) M1→

(3) M2⤏

(4) M3⤏

Then: Whenev

Proof 3 (Righ
(1) ∧ (2) ∶
∶⇔ ∀a∃m1

First Author e
Jo
ur

na
l P

re
-p

ro
of

Verifying Compliance in Process Choreographies

n of activity transport_intermediate implies the non-execution of activity order_special_transport
e versa (fulfilling assertion A1 order_special_transport⤏ transport_intermediate ). Additionally, in
acturer, the interaction activity order_special_transport and the private activity quick_test_intermediate
to the same XOR branch, and fulfill assertion A2 order_specialtransport⤏ quick_test_intermediate .
ing to Theorem 2.a, the conjunction of A1 and A2 reproduces the behavior of the original GCR. Note
cess compatibility ensures that whenever sending order_special_transport occurs in Special_carrier,
g order_special_transport should occur inManufacturer as well. At the presence of loops that encap-
e depicted process part of Special_carrier, the XOR fragment can be executed multiple times possibly
to an alternate execution of the corresponding branches. For example, if in the first loop iteration,
rt_intermediate is executed and quick_test_intermediate is not executed, then, to this point both de-
sertions are satisfied. Let us assume that a future iteration over the XOR fragment in the context of the
ocess instance triggers quick_test_intermediate execution, thus, violating the original GCR.
1: special_carrier: {transport_intermediate}
1: manufacturer {}
2: special_carrier {transport_intermediate, order_special_transport}
2: manufacturer {order_special_transport,quick_test_intermediate}
ed trace: {transport_intermediate, order_special_transport, order_special_transport,
pecial_transport,quick_test_intermediate}
ing at the combined trace, it becomes clear that the GCR is violated. Unfortunately, this would require
rtners to exchange the traces and use a common time stamping system to obtain the same chronological
activities. Using the theorems, however, theManufacturer can locally run its derived assertion against
execution trace of the same process instance, and identify the violation. Note that the decomposition
t enforce the processes with new restrictions (except when no transitivity could be derived), but uses the
control flow and interactions between partners to derive assertions that can be used for a decentralized
g of the original GCR.
e (5): quick_test_intermediate ⤏ transport_intermediate . In Fig. 9, quick_test_intermediate al-
ppens after arrival_of_intermediate ensuring quick_test_intermediate ⤏ arrival_of_intermediate .
ond part of the decomposition can be directly derived from the process control flow of Special_carrier:
rt_intermediate⤏ arrival_of_intermediate . The same reasoning applies to this example at the pres-
loops. The correctness of Example (5) concludes from the leftwards zig zag transitivity (cf. Theo-
), whereas Example (4) relies on the rightwards zig zag transitivity of the absence (cf. Theorem 2.a).
omposition process is not limited to these scenarios and, as aforementioned, the decomposition cannot
be automated, but might require manual interaction and processing. Altogether, the decomposition eases
ompliance rule checking, where each partner checks its corresponding derived assertions locally. A
rechecked only if at least one of the derived assertions is not evaluated to true. Note that this does not
rily imply that the GCR is violated.
ightwards Chaining Transitivity).
nd D be activities or interactions such as A→B⤏C⤏D : if A and B occur, C and D shall occur
et m1, m2, and m3 be three interactions such as:

A

B⤏M2

C⤏M3

D

er (1) ∧ (2) ∧ (3) ∧ (4) evaluates to true, A→B⤏C⤏D is true as well.

twards Chaining Transitivity).
( ) (
∶ x(a, A) → x(m1,M1) ∧ (m1 < a) ∧ ∀m1,∀b,∃m2 ∶ (x(m1,M1) ∧ x(b, B) ∧ m1 < b) →

t al.: Preprint submitted to Elsevier Page 11 of 32
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b < m2)
)

2 ∶
(
x(a, A)→ x(m1,M1) ∧ (m1 < a)

)
∧
(
(x(m1,M1) ∧ x(b, B) ∧m1 < b)→ (x(m2,M2) ∧ b < m2)

)

2 ∶
(
x(a, A) ∧ x(b, B) ∧ a < b→ x(m1,M1) ∧ (m1 < b)

)
→ (x(m2,M2) ∧ b < m2)

x(a, A) ∧ x(b, B) ∧ a < b→ x(m2,M2) ∧ b < m2
(
x(a, A)∧x(b, B)∧a < b→ x(m2,M2)∧b < m2

)
∧∀m2∃c∃m3 ∶

(
x(m2,M2)→ x(c, C)∧x(m3,M3)∧

m3
)

3 ∶ x(a, A) ∧ x(b, B) ∧ a < b→ x(c, C) ∧ x(m3,M3) ∧ b < c ∧ c < m3
∧ (4)
3 ∶

(
x(a, A) ∧ x(b, B) ∧ a < b → x(c, C) ∧ x(m3,M3) ∧ b < c ∧ c < m3

)
∧ ∀m3∃d ∶

(
x(m3,M3) →

< d
)

∶
(
x(a, A) ∧ x(b, B) ∧ a < b→ x(c, C) ∧ x(d,D) ∧ b < c ∧ c < d

)

e (6): get_permission_autℎority→ prepare_transport⤏ transport_intermediate⤏ production . In
mple, all activities involved in the GCR are private and belong to separate partners. According to the
models shown in Figs. 3 and 4, each partner can separately derive the corresponding assertion based on
3 and involving the corresponding activity in the GCR.
iddleman fwd_order_intermediate⤏ get_permission_autℎority
upplier fwd_order_intermediate→ prepare_transport⤏waybill_for_intermediate
pecial_carrier waybill_for_intermediate⤏ transport_intermediate⤏ arrival_of_intermediate
anufacturer arrival_of_intermediate⤏ production

xample, partners will first engage in a setup phase, in which they agree on the interaction activities that
ll derived assertions following the assertions’ templates of Theorem 3. For example,Middleman will
identifying relations in its process of type interaction_activity⤏ get_permission_autℎority , where
tion_activity must be a message exchange with Supplier that is the partner being responsible for the
g antecedence occurrence prepare_transport. In this example, Middleman and Supplier have only
raction that satisfies the derived assertion (1); however, it is also possible to identify several alternatives.
bination of the four derived assertions reproduce the behavior of the original GCR when all assertions
.
theorem represents a generalization of Theorem 3 with n antecedences’ occurrences and m conse-

rrences. Note that the previous example also illustrates Theorem 4 with n = 2 and m = 2.
eneric Rightwards Chaining Transitivity).

dC1≤j≤m be n+m activities. A1→ ...→An⤏C1⤏ ...⤏Cm : if allAi occur such that ∀i < n, Ai < Ai+1
l Cj should occur afterwards such that ∀j < m,Cj < Cj+1 holds.
1<k<n+m-1 be interactions such that:

A1

Ai⤎Mi where 1 < i < n

An⤏Mn

1⤏Cj ⤏Mn+j where 1 ≤ j < m
1⤏Cm

t al.: Preprint submitted to Elsevier Page 12 of 32
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er (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) evaluates to true, A1→ ...→An⤏C1⤏ ...⤏Cm is true as well.

eric Rightwards Chaining Transitivity).
(
x(a, A)→ x(m1,M1) ∧ (m1 < a)

)

∀mi−1∀ai∃mi ∶ (x(mi−1,Mi−1) ∧ x(ai, Ai) ∧ mi−1 < ai)→ (x(mi,Mi) ∧ mi < ai)
)

an∃mn ∶ (x(mn−1,Mn−1) ∧ x(an, An) ∧ mn−1 < an)→ (x(mn,Mn) ∧ an < mn)
)

): when evaluated to true, this ensures that all Ai were executed, and all these executions combined
a consequence. This includes the case where all Ai execute in ascending order. So, if we consider this
er, the formula leading toMn becomes true.
(
∀mn+j−1∀cj∃mn+j ∶ (x(mn+j−1,Mn+j−1) ∧ x(cj , Cj) ∧mn+j−1 < cn)→ (x(mn+j ,Mn+j) ∧mn+j < cj)

)

1∃cm ∶ (x(mn+m−1,Mn+m−1)→ (x(cm, Cm) ∧ mn+m−1 < cm)
)

formula transitively ensures that wheneverMn+j−1 is executed, there is a least one execution in ascending
j . Mn+j−1 becomes the link between all antecedence patterns and consequence patterns. Therefore, the
f formulas (1) to (5) ensures that whenever an instance containing an ordered execution ofAi should lead
execution of execution of Ci. Note that this conjunction represents a stronger constraint than the original
r, as these formulas are deducted directly from the actual processes, they do not add new constraints.

etween Pattern 1).
be three activities. A⤏C⤏B : ifA andB occur andB occurs afterA, thenC must occur in between.

1 ⊕ M2 ⤏M1

M3⤏B

C⤏M3

er (1) ∧ (2) ∧ (3) evaluates to true, A⤏C⤏B is true as well.

een Pattern 1).
(a, A)→ ∃m1∄m2, x(m1,M1) ∧ x(m2,M2) ∧ (a < m1) ∧ (m2 < m1)
(b, B)→ ∃m2∃m3, x(m2,M2) ∧ x(m3,M3) ∧ (m2 < m3 < b)
m3, x(m1,M1) ∧ x(m3,M3)→ ∃c, x(c, C) ∧ (m1 < c < m3)
∀b, x(a, A), x(b, B)→ (∃m1∄m2, x(m1,M1)∧x(m2,M2)∧(a < m1)∧(m2 < m1))∧(∃m2∃m3, x(m2,M2)∧
m2 < m3 < b))
) ∧ x(b, B)→ ∃m1∃m2∃m3, x(m1,M1) ∧ x(m2,M2) ∧ x(m3,M3) ∧ (a < m1 < m2) ∧ (m2 < m3 < b))
) ∧ x(b, B) ∧ a < b→ ∃m1∃m2∃m3, x(m1,M1) ∧ x(m2,M2) ∧ x(m3,M3) ∧ (a < m1 < m2 < m3 < b))
∶⊧ ∀a∀b, x(a, A) ∧ x(b, B) ∧ a < b → ∃m1∃m2∃m3, x(m1,M1) ∧ x(m2,M2) ∧ x(m3,M3) ∧ (a < m1 <
)→ ∃c, x(c, C) ∧ (m1 < c < m3)
2∃m3∃c, x(a, A) ∧ x(b, B) ∧ a < b→ x(m1,M1) ∧ x(m2,M2) ∧ x(m3,M3) ∧ x(c, C) ∧ (a < m1 < m2 <
1 < c < m3)
) ∧ x(b, B) ∧ a < b→ ∃c, x(c, C) ∧ (a < c < b))

e (7): order_intermediate⤏ prepare_transport⤏ transport_intermediate . Again, in this example,
ider the worst case scenario where each activity referred to by the GCR belongs to a different process
In this example, Middleman has one single alternative as it only has two interaction activities with
l_carrier and Supplier respectively, which follow the assertion template (1) of Theorem 5; i.e., each ex-

of order_intermediate must be followed (not necessarily immediately) by fwd_order_intermediate,
t al.: Preprint submitted to Elsevier Page 13 of 32
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in turn, should not be preceded by any order_special_transport execution. Similarly, Special_carrier
plier should identify assertions that follow rule templates (2) and (3) respectively.
at the Between Pattern A⤏C⤏B can be also checked using chaining transitivity A⤏C⤏B . How-
is adds a stronger assumption on C and B that should follow A whenever it occurs. For example, this
the running example (cf. Fig. 3), as order_intermediate transitively implies prepare_transport, which,
transitively implies transport_intermediate.
iddleman order_intermediate⤏ fwd_order_intermediate

order_special_transport ⤏ fwd_order_intermediate
pecial_carrier order_special_transport⤏waybill_for_intermediate⤏ transport_intermediate
upplier fwd_order_intermediate⤏ prepare_transport⤏waybill_for_intermediate
etween Pattern 2).
be three activities. A⤏C⤏B : ifA andB occur andB occurs afterA, thenC shall occur in between.

A⤏M2⤏M3⤏M4

B⤏M3 ⤏M4

M5⤏B

C⤏M5

er (1) ∧ (2) ∧ (3) ∧ (4) evaluates to true, A⤏C⤏B is true as well.

een Pattern 2).
a, A)→ ∃m1∃m2∃m3∃m4, x(m1,M1)∧x(m2,M2)∧x(m3,M3)∧x(m4,M4)∧(m1 < a < m2 < m3 < m4)
b∀m4, x(m1,M1) ∧ x(b, B) ∧ x(m4,M4)→ ∄m2, x(m2,M2) ∧ (b < m2 < m4)
b, x(m3,M3) ∧ x(b, B)→ ∃m5, x(m5,M5) ∧ (m3 < m5 < b)
m5, x(m2,M2) ∧ x(m5,M5)→ ∃c, x(c, c) ∧ (m2 < c < m5)

) ∧ x(b, B) ∧ a < b→ ∃m1∃m2∃m3∃m4, x(m1,M1) ∧ x(m2,M2) ∧ x(m3,M3) ∧ x(m4,M4) ∧ (m1 < a <
4) ∧ (a < b < m4 ∨ m4 < b)

2∃m3∃m4, x(a, A) ∧ x(b, B) ∧ a < b→
(
x(m1,M1) ∧ x(m2,M2) ∧ x(m3,M3) ∧ x(m4,M4)

)
∧
(
((m1 <

< m4) ∧ (m1 < b < m4)) ∨ ((m1 < a < m2 < m3 < m4) ∧ (m4 < b))
)

happens before m4 then m3 should not happen in between:

2∃m3∃m4, x(a, A) ∧ x(b, B) ∧ a < b→
(
x(m1,M1) ∧ x(m2,M2) ∧ x(m3,M3) ∧ x(m4,M4)

)
∧
(
(m1 <

< b < m4) ∨ (m1 < a < m2 < m3 < m4 < b)
)

3, x(a, A) ∧ x(b, B) ∧ a < b→
(
x(m2,M2) ∧ x(m3,M3) ∧ (a < m2 < m3 < b)

)

3 < b, then there should be m4 in between:

3, x(a, A)∧x(b, B)∧a < b→
(
x(m2,M2)∧x(m3,M3)∧(a < m2 < m3 < b)→ ∃m5, x(m5,M5)∧(m3 <

3∃m5, x(a, A) ∧x(b, B) ∧ a < b→
(
x(m2,M2) ∧x(m3,M3) ∧x(m5,M5)) ∧ (a < m2 < m3 < m5 < b)

)

3∃m5, x(a, A) ∧ x(b, B) ∧ a < b→
(
x(m2,M2) ∧ x(m5,M5)) ∧ (a < m2 < m5 < b)

)

ere exist m2 and m5 such that m2 < m5, then there should be c in between:
m5, x(a, A) ∧ x(b, B) ∧ a < b →

(
x(m2,M2) ∧ x(m5,M5)) ∧ (a < m2 < m5 < b) → ∃c, x(c, C) ∧ m2 <
t al.: Preprint submitted to Elsevier Page 14 of 32
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5∃c, x(a, A) ∧ x(b, B) ∧ a < b→
(
x(m2,M2) ∧ x(m5,M5) ∧ x(c, C)) ∧ (a < m2 < c < m5 < b)

)

a, A) ∧ x(b, B) ∧ a < b→ x(c, C)) ∧ (a < c < b)

strate Theorem 6, we apply the following adaptations to the running example (cf. Figs. 1 - 4):
ing request_details,Supplier prepares the details privately (prepare_details), then informsMiddleman
t of intermediate production (production_status) before sending back transport_details.
iving transport details, Special_carrier confirms to Middleman the availability of transportation for
transport_confirmation).
eiving order_special_transport, Middleman receives production_status, does internal_cℎecks, and
sport_confirmation.
e (8): prepare_details⤏ internal_cℎecks⤏ safety_cℎeck . Similar to the previous examples, the
start by locally identifying relations that satisfy the derived assertions templates of Theorem 6, then

matchingmechanism to check whether the additional interactions used for the derived assertions intersect
tly fulfill the templates. It is noteworthy that the number of additional interaction activities required for
ved assertions is superior to the number required in Theorem 5. Despite that, Theorem 6 provides more
assumptions compared to Theorem 5 as it does not restrict activity B from occurring before activity A.
6 still prevents B from happening between m1 and m3. The following assertions are the decomposition
f Example (8):
upplier ∶
quest_details⤏ prepare_details⤏ production_status⤏ transport_details⤏waybill_intermediate
pecial_carrier ∶ request_details→ safety_cℎeck⤏ transport_details ⤏waybill_intermediate
pecial_carrier ∶ transport_details⤏ transport_confirmation⤏ safety_cℎeck
iddleman ∶ production_status⤏ internal_cℎecks⤏ transport_confirmation
revious theorems consider loops and multiple occurrences of each of the activities composing the global
le GCR. Indeed, in a process model that includes loops or multiple instance patterns, an activity may be
iple times at different points in time in the context of one single process instance. As such, each derived
uding such repetitive activity should be satisfied for all its occurrences. Although this issue has been
ll previous theorems (see proofs), it resulted in additional decomposition complexity not required for
esses. Therefore, we propose a simpler decomposition method for the "between" pattern, which may be
to loop-free processes.
etween Pattern (without loops)).
be three activities. A⤏C⤏B : ifA andB occur andB occurs afterA, thenC shall occur in between.

⤏M1⤏M2

2⤏M3⤏B

1⤏C⤏M3

onjunction of formulas (1) ∧ (2) ∧ (3) evaluates to true, A⤏C⤏B is true as well.

een Pattern (without loops)).
(x(a, A)→ ∃m1,∃m2 ∶ (x(m1,M1) ∧ x(m2,M2) ∧ (a < m1 < m2))
2 ∶ (x(a, A)→ (x(m1,M1) ∧ x(m2,M2) ∧ (a < m1 < m2))
(x(b, B)→ ∃m′2,∃m3 ∶ (x(m

′
2,M2) ∧ x(m3,M3) ∧ (m′2 < m3 < b))′

2,∃m3 ∶ (x(b, B)→ (x(m′2,M2) ∧ x(m3,M3) ∧ (m′2 < m3 < b))
a∀b∃m1,∃m2∃m′2∃m3 ∶ (x(a, A) ∧ (x(b, B))→ (x(m1,M1) ∧x(m2,M2) ∧x(m′2,M2) ∧x(m3,M3) ∧ (a <
t al.: Preprint submitted to Elsevier Page 15 of 32
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′
2 < m3 < b))

o loops over A,B and corresponding Mi messages, then M2 can occur only once within one process
sequently, m2 = m′2:
a∀b∃m1,∃m2∃m3 ∶ (x(a, A) ∧ (x(b, B)) → (x(m1,M1) ∧ x(m2,M2) ∧ x(m3,M3) ∧ (a < m1 < m2 <

∃m3 ∶ (x(a, A) ∧ (x(b, B)) → (x(m1,M1) ∧ x(m3,M3) ∧ (a < m1 < m3 < b))
m3 ∶ (x(m1, m1) ∧ x(m3,M3)→ ∃c ∶ (x(m1,M1) ∧ x(c, C) ∧ (m1 < c < m3))
c ∶ (x(m1, m1) ∧ x(m3,M3)→ (x(m1,M1) ∧ x(c, C) ∧ (m1 < c < m3))
) ⊧ (∀a∀b∃m1,∃m3 ∶ (x(a, A) ∧ (x(b, B)) → (x(m1,M1) ∧ x(m3,M3) ∧ (a < m1 < m3 < b)) →
a < m1 < c < m3 < b)
) ∧ (x(b, B)) → ∃c, x(c, C) ∧ (a < c < b)

e (9): prepare_details⤏ internal_cℎecks⤏ safety_cℎeck . We use the same GCR as in previous
illustration (including the adaptations to Fig. ??). As the tasks involved in the GCR are not contained

oop, Theorem 7 may be applied. The following assertions are the decomposition results:
upplier prepare_details⤏ production_status⤏ transport_details
pecial_carrier transport_details⤏ transport_confirmation⤏ safety_cℎeck
iddleman production_status⤏ internal_cℎecks⤏ transport_confirmation
equires transitivity).
be two activities or interactions such as A B : if A occurs then B should occur (before or after,
∃B, x(b, B)):.
e three activities or interactions such that :

M

B .

luates to true, then A⤏B ∨ B⤏A evaluates to true.

uires transitivity).
(a, A)→ ∃m ∶ x(m,M) ∧ (a < m)
x(m,M)→ ∃b ∶ x(b, B)) ∧ m < b

)
∨ ∀m,

(
x(m,M)→ ∃b ∶ x(b, B)) ∧ (b < m)

)

M)→ ∃b ∶ x(b, B)) ∧ (m < b) ∨ b < m)
)

∀a,
(
x(a, A)→ ∃m ∶ x(m,M) ∧ (a < m)

)
∧ ∀m,

(
x(m,M)→ ∃b ∶ x(b, B)) ∧ (m < b) ∨ b < m)

)

a, A)→ x(m,M) ∧ (a < m)→ x(b, B) ∧ (m < b) ∨ b < m)
a, A)→ x(m,M) ∧ (a < m)→ x(b, B) ∧ (a < m < b) ∨ (a < b < m) ∨ (b < a < m)
)→ x(b, B) ∧ (a < b) ∨ (b < a)
→ ∃b, x(b, B)

theorem also considers loops and multi-instance patterns. The illustration of Theorem 8 is similar to the
d leftwards transitivity examples.

m for Decomposing Global Compliance Rules
e, checking a GCR that solely refers to interactions and/or public activities can be achieved by applying
compliance checking techniques (cf. (29)) either on the choreography model or the public process
involved partners. By contrast, if a GCR refers to private activities of different partners, it becomes
check its correctness as partners must not view the private process model parts of the other partners and,
t al.: Preprint submitted to Elsevier Page 16 of 32
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not identify the dependencies between the private activities involved in the GCR. To cope with this issue,
composing the GCR into a set of assertions of which each can be checked locally by the corresponding
ecomposed rules then reproduce the behavior of the original GCR.
n in compliance checking has been exploited by (61), but only at the process model level in order to
mance gains for the compliance checks. The article at hand proposes to decompose the GCR to distribute
e checks to the partners for maintaining the confidentiality of their private tasks. This section focuses
position algorithms and explains the steps to derive assertions by applying the theorems introduced in
vides a high-level description of the steps required by partners involved in a GCR to identify a valid
. Algorithm 1 provides a more detailed view on how this can be achieved in practice with a particular
liance rules that include one antecedence pattern.

Select GCR
--Leader--

Derive Assertions 
Templates

--Leader--

Assign Assertion 
Templates to Partners

--Leader--

Identify  Assertion 
Template Instances

--Partner p--

Collect all Assertion 
Template  Instances I

--Leader--

List of GCRs

GCR
TH, GCR

Templates {ti} 

Public Model
Choreography Model

No Instances Identified 
& list of remaining applicable
 theorems not empty

Add Sync 
Messages
--Partner p--

tances

ct a Leader
-Partner p--

Choose applicable 
theorem TH

--Leader--

List of Theorems
Graph Matching Algorithm

Leader

Templates {ti}p 

XOR

Assertion Template  
Instances Matching

--Leader--

sful 
sition

Instances are Identified 

No matching Instances & List of applicable theorems not empty

o matching Instances
 list of remaining applicable

theorems empty

No Instances Identified  & list of remaining applicable
 theorems is empty

composition Process

, the decomposition process starts by selecting a leader among the partners involved in the GCR. The
responsible for identifying the pattern corresponding to the GCR (e.g., rightward chaining pattern or be-
. This is trivial and can be accomplished with a simple exact graph matching algorithm (e.g., comparing
d connectors). Once the pattern is identified, several decomposition theorems may be applicable. For ex-
ase of the between pattern, Theorems 5, 6, and possibly 7 (if the processes are loop free) may be applied.
l then select and apply a theorem, derive the assertion templates accordingly, and send each of them to the
partner–this step can be easily automated. An assertion template, in turn, is a derived assertion output
em, where the actual interactions (i.e., message exchanges) have not yet been defined. For example, for
get_permission_of_autℎority⤏M (where M shall be an activity interacting with Special_carrier)
sertion template of the global compliance rule get_permission_of_autℎority⤏ safety_cℎeck , asM

efined yet.
t al.: Preprint submitted to Elsevier Page 17 of 32
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tner will try to identify an assertion template instance that conforms with the derived assertion template–
an assertion template corresponds to a template with actual activities. Order_special_transport is a
this example as it interacts with Special_carrier fulfilling the template constraint (i.e., the template in-
onds to get_permission_of_autℎority⤏ order_special_transport ). This can be automated by having
esponsible for an assertion template iterating over the message exchanges in its private process model.
the assertion template structure, one or several message exchanges may be selected for constructing an
nce candidate. The latter must conform with the assertion template. Moreover, it needs to be ensured
ss in question is compliable with it. Existing design-time compliance checking techniques can be em-
regard (3; 4; 35; 6).
ion instance candidates can be identified for the same partner, which may increase the probability of
ctive solution among all partners. Afterwards, partners either collectively enter a negotiation phase and
r assertion instance candidates, or rely on the leader to collect all proposals and run a matching algorithm
sertion candidates, which replicate the templates derived by the decomposition. Indeed, two assertion
require that they use the same message exchange. Therefore, the matching algorithm will select the
nce candidates of different partners that have the same message exchange in common (using function  
that the mapping is correct). While having the leader collecting the assertion proposals and doing the
be more efficient and reduce the communication overhead between partners, conducting the negotiation
d manner reduces trust assumptions.
possible to run the entire process in a distributed manner, without need for a leader. In this case, all
ave to run the matching algorithms for identifying the GCR pattern. Moreover, they have to agree on
ition theorem to be applied (e.g., using a majority vote) and collectively execute the matching of asser-
. If a matching solution is found, each partner will use the selected assertion instance for future run-time
ess a solution is found, the next applicable theoremwill be explored in the same way. If no solution could
trying all applicable decomposition theorems, synchronization messages become necessary for enabling
n-time checking of the GCRs. At run-time, no additional communication with other partners is needed
he GCR, unless a violation occurs. Similar to assertion and local compliance rules monitoring, each
onsible for complying with the derived assertions. This can be enforced using post-auditing processes
ive legal entities, e.g., external audits conducted by data protection officers on hospitals that participate
ive study on COVID-19 vaccines’ efficiency. Indeed, in the healthcare sector, new methods exist, where
o conduct a research study using federated machine learning6. In this setting, the ML application is con-
within each healthcare data provider infrastructure (e,g., hospitals or bio banks), and the resulting output
gregated instead. This prevents data of different participants from being merged in a central repository,
subject to different and complex regulatory issues. These locally executed processes, nevertheless, also

ly with data protection rules, where, for example, the data used for the aggregated model must have pa-
beforehand. Therefore, external audits become necessary, at each site, to check whether each federated
r the aggregation is indeed compliant with the GDPR requirements for data consents. Note that this also
cting all participants’ consents in one central repository for the purpose of compliance checks on the
odel.
ealizes GCR decomposition as set out in Definition 2. It assumes that each node of the GCR is assigned
r being responsible for it. Further on, we assume the input GCR to be consistent and satisfiable (for
nsatisfiable and inconsistent rules we refer interested readers to (11)). In the following, we first explain
tep by step and then illustrate the entire algorithm along Example 1 (see below).
the A node (cf. Def. 2), Algorithm 1 walks outwards through all other nodes of the GCR. Thereby, the
re copied and become assertions. Wherever the algorithm walks over a connector between two nodes n
re assigned to different partners �(n) and �(s), the GCR is split at this position as this dependency cannot
y a single partner. Next, the algorithm tries to replicate the connector where the GCR was split through
ssage exchanges between both affected partners by applying the transitive relationships from Section 2.
s n∙, ∙s, and Θ are calculated. Depending on the pattern of s (cf. Def. 2), n∙ and ∙s contain the messages
preceding n and s, respectively. Note that these calculations have to be accomplished in a decentralized
) and �(s) themselves as n and s may be private tasks. Next, Θ combines those messages of n∙ and ∙s
mbined.
recloud.eu/
t al.: Preprint submitted to Elsevier Page 18 of 32
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1: GCR decomposition DECOMPOSE(gcr)
al compliance rule gcr = (N, �, ', type, pattern)
ography model y, and  as the set of all partners’ message nodes.
ssume that � also returns the partner private model of a node n.

a ∈ N with pattern(a) = A
e Q ← {a}
lete) Assertion Aa ← ε a ε for the partner associated with �(a)
removeHead(Q)) do
∈ N with '(n, s) ≠ ∅) do
{s}
�(s)) then

d s involve the same partner
ize As ← @An as reference on An
ttern(s) = A ) then extend As with ε⤏ s ε

ttern(s) = C ) then extend As with ε⤏ s ε

ttern(s) = C ) then extend As with ε⤏ s ε

d s involve different partners pi, pj
ttern(s) = C ) then
← {m ∈ �(n)|m ∈, �(n) ⊧ n ⤏ m }
← {m ∈ �(s)|m ∈, �(s) ⊧ m ⤏ s }
{(mn, ms) ∈ (n∙ × ∙s) |  ⊧ mn ⤏ ms }

ttern(s) = C ) then
← {m ∈ �(n)|m ∈, �(n) ⊧ m ⤏ n }
← {m ∈ �(n)|m ∈, �(n) ⊧ m ⤏ s }
{(mn, ms) ∈ (n∙ × ∙s) |  ⊧ ms ⤏ mn }

ttern(s) = A )} then
← {m ∈ �(n)|m ∈, �(n) ⊧ n ⤏ m }
← {m ∈ �(s)|m ∈, �(s) ⊧̸ m ⤏ s }
{(mn, ms) ∈ (n∙ × ∙s) |  ⊧ mn ⤏ ms }

∪ (n∙ ∩ ∙s) = {∅}) then
o implicit dependency between n and s
sync message between n and s
ate models p1,… , pn, and 
alculate n∙, ∙s, and Θ

plicit dependency m between n and s exists
ect (mn, ms) ∈ Θ ∪ (n∙ ∩ ∙s)2
pattern(s) = C ) then
extend An with ε⤏ mn ε

create Assertion As ← ε ms ⤏ s ε for �(s)

pattern(s) = C ) then
extend As with ε mn ⤏ ε

create Assertion As ← ε ms ⤏ s ε for �(s)

pattern(s) = A ) then
create Assertion As ← ε ms → s ε for �(s)

∈ N with '(n, s) ≠ ∅)) do
s for each (n, s) ∈ C above
flipped directions
rtner i) do
((Aj , Ak) of partner i) do
, Ak have the same A pattern) then
rge Aj and Ak based on the A pattern

sertion A) do
empty C and C patterns) then remove A
t al.: Preprint submitted to Elsevier Page 19 of 32
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de (i.e., s must follow n), Θ contains message tuples (m1, m2) that ensure that n is always followed by
(unless m1 = m2), and m2 by s. Any pair (m1, m2) ∈ Θ can then be used to complement the created
., m1 becomes a placeholder for s within the assertion of �(n), whereas m2 replaces n for �(s).nodes (i.e., s must not follow n), all pairs of messages (m1, m2) ∈ Θ ensure that n is preceded by m1nd m1 is preceded by m2 (unless m1 = m2), whereas s never follows m2. Finally, for A nodes an
s after n allows ignoring the rule. Hence, A nodes result in pairs (m1, m2) such that m1 may only occur
may only occur after m1 (unless m1 = m2). However, there should be at least one case in which m2 is(i.e., s is not always preceded by m2).ertions of the same partner, which depend on the same A message, are merged to reduce the number of
maining assertions without consequences are removed as they result from the processing of A nodes,
een merged in the previous step. Remember that ignoring A nodes is allowed as this makes rules even

composition process of GCR C3

et us apply Algorithm 1 to GCR C3 (cf. Fig. 11) from the running example that we introduced in
Figs. 1 - 4). Let the responsibilities be �(Safety Check) = Special Carrier, �(Get permission of authority)
, and �(Transport intermediate) = Special Carrier. After assigning responsibilities, Algorithm 1 starts
Transport intermediate and creates a new assertion for the Special Carrier who is responsible for this
the Safety check is discovered and added to the assertion, since it belongs to the same partner. In turn,
er (i.e., Middleman) is responsible for activity Get permission of authority. Hence, the algorithm cuts
connector and creates a new assertion for the respective partner. Next, Special Carrier and Middleman
and ∙s with n∙ = {Waybill,T. Details,Req. Details,Order ST} and ∙s = {Order ST} to calculate those
Θ = {(Waybill,Order ST),… , (Order ST,Order ST)} that can be used to transitively replicate the
re the GCR was split. Finally, the algorithm places the selected messages into both assertions in such a
orrectness of the original rule is preserved through the (leftwards) transitivity of eCRGs. Note that the
r could use message Waybill instead as (Waybill,Order ST) ∈ Θ holds.

GCR, it is possible to infer several decomposition alternatives, depending on which interactions are
transitive control flow relationship between the nodes of the GCR. It is also possible that no direct

entified between two partners’ GCR nodes (i.e., there is no interaction between these two partners). As
ions with intermediary partners can be used to find an indirect link (i.e., transitive interactions). As
d, if no transitivity is identified between the GCR nodes of two partners (even not through intermediary
ecomes necessary to exchange additional execution data between the partners involved in the GCR, by,
dding sync messages. Sync messages are a specific type of messages communicated between partners
ut the state of a given task (e.g., terminated, started, not executed). Although sync messages are not
ey expose private data about the exact execution time of a private task, they become necessary when the
e decomposed into assertions, i.e., no transitive relations can be identified.
g, we discuss the complexity of the GCR decomposition in Algorithm 1. Results on checking regulatory
general have been provided in (60). The first and second loops iterate over the nodes of the compliance
sider that two nodes can only have one flow connector, the number of required operations will be n n−12 ,
− 1). In both cases complexity corresponds to O(n2). The first if statement is O(1), whereas the else
t al.: Preprint submitted to Elsevier Page 20 of 32
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Verifying Compliance in Process Choreographies

ulates n∙, ∙s and � each with a worst case complexity of O(n2). The second inner loop has the same
the first inner loop. The third nested inner loop iterates over partners and compare assertions within the
ith a number of operations equal to n×mm−1

2 , which gives a complexity ofO(n3). Finally, the last inner
mplexity of O(n). Obviously, the overall worst case complexity of the algorithm is polynomial O(n4);
combined with the third nested inner loop.

g GCR Decomposition
omposition algorithms from Section 4 are based on the theorems we have presented and proven in Sec-
gh these theorems support most control flow (i.e., behavior) compliance patterns known from literature
cannot cover every possible scenario. There may be two reasons for this: (i) either the structure of a GCR
by Theorems 1–8 or (ii) none of the proposed decompositions is applicable. In both cases, it might not
ecessary to find a novel decomposition of a GCR, but also to verify the latter, i.e., to prove the correct-
composition. One approach to accomplish this would be to apply the eCRG semantics and to formally
ess (cf. Section 3). However, this is far from being trivial. Therefore, we introduce Algorithm 2 that
tomated verification of GCR decompositions based on eCRG model checking.

2: Verification of Decompositions (Assertions A1,… , An, GCR gcr)
function that translates an eCRG into a corresponding finite-state automaton

≤i≤n(Ai)
¬(gcr)
hen
position is correct
rue

position is incorrect
ny arbitrary trace through  as counter example.

of Algorithm 2 is to interpret a GCR decomposition as declarative process model and to verify whether
s for execution traces that comply with the original GCR. Thus, techniques that are known from the
declarative process models (51; 53) can be applied: First, all assertionsA1,… , An of the decomposition
into finite state automatons (A1),… ,(An). Their intersection (⋂

1≤i≤n(Ai)) corresponds to an
t only accepts traces that comply with every assertion. In turn, ¬(gcr) denotes the automaton that
traces violating the original GCR. If the intersection of these two automatons is empty, the decomposition
only allows for traces that do not violate the original GCR and, thus, comply with it.

(⋂
1≤i≤n(Ai)) ∩ ¬(gcr) = ∅⇒

(⋂
1≤i≤n(Ai)) ⊆ (gcr)

ography y, whose partners ensure A1,… , An, we can now directly conclude:
(y) ⊆ (⋂

1≤i≤n(Ai))⇒ (y) ⊆ (gcr), i.e., y complies with gcr

entation
approach is implemented as part of the C3Pro framework7, which deals with change and compliance in
graphies (21). The framework provides sophisticated functions for defining, propagating and negotiating
context of process choreographies. Furthermore, it comprises a modeling component as one of its core
r editing and changing public and private process models as well as process choreography models. This
rther enables the visualisation of change propagations. In the context of the present work, the three-
ure of the framework (21) (i.e., process modeling, change, and execution) was extended with additional

w.wst.univie.ac.at/communities/c3pro/

t al.: Preprint submitted to Elsevier Page 21 of 32
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Verifying Compliance in Process Choreographies

or dealing with process compliance. In detail, these new components include (i) an eCRG modelling
tomated generator of compliant choreographies, (iii) a model checker, and (iv) a GCR decomposition
icts the main components of the C3Pro framework. The compliance (CME) and process modeling
nments allow defining and editing compliable process choreography models (39; 35) and decomposing
ance rules. Compliability was introduced as “a semantic correctness criterion to be considered when
raction models. It ensures that interaction models do not conflict with the set of imposed global compli-
9). At design time, it is ensured that the created choreography models are compliant with the defined
les. Using both PME and CME, it becomes possible to parameterize and automatically generate com-
graphies, which then can be used for testing and simulation purposes. A user, therefore, can specify the
atterns of the GCRs as well as the parameters of the process and choreography models (e.g., number of
blic tasks, number of partners and interactions, or number and types of the control flow patterns that
d by the processes) (6). Although the generated models represent synthetic processes without real-world
., these models do not reflect actual use cases such as a manufacturing collaborative process), they may
port for simulation and research work evaluation, e.g., model executions can result in distributed logs of
, which are useful for evaluating the efficiency of specific mining techniques. In the context of this work,
e used to test the feasibility and applicability of the decomposition process on more complex choreogra-
esponding GCRs. Currently, the automated generator tool only supports four basic compliance patterns.
r GCR patterns can be directly inferred from the models and be used for testing. The tool is integrated
ramework and can be tested. A data set of automatically generated models and the corresponding GCRs
lable in the same repository.7 Finally, the change editor allows defining and editing changes of process
mpliance rules, respectively.
nce Management Service represents the main extension to C3Pro related to this work, and handles the
liance rules and implements the theorems as well as the GCR decomposition algorithm (cf. Section 4).
ecution engine, the Cloud Process Execution Engine8 is utilized. Most functions of the C3Pro framework
s a RESTful service, which enables unified access from any client being able to communicate via HTTP.
ompliance Management Service serves as a pluggable middleware that may be used to integrate other
tion engines.
framework, we edited BPMN 2.0 choreography and collaboration models using Signavio9 and exported
3Pro framework as XML files. Examples are extended with GCRs, which are then decomposed into de-
s using Algorithm 1. To this endeavor, mainly the CME, PME and the compliance management service

e C3Pro framework was extended with a novel eCRGmodel checker that was published on github10. Its
interface enables the specification and verification of both global and local compliance rules (GCR and
as process models and choreographies. In particular, the eCRG model checker supports the verification

compositions, i.e., it allows verifying whether GCRs can be concluded from a given decomposition,
mpliance, i.e., it allows verifying whether a single process model complies with a given compliance rule
nd
ompliance, i.e., it allows verifying whether a process choreography complies with a given GCR.
eCRG checker enables the automated decomposition of tree-structured GCRs with a single antecedence.
rify GCR decompositions and the various kinds of compliance respectively, the eCRG model checker
al and local complicance rules as well as process models and choreographies into automaton, which are
d and intersected. Depending on whether the resulting automaton is empty or not, the verification has
ee.org
ademic.signavio.com/
ithub.com/davidknuplesch/SCV
t al.: Preprint submitted to Elsevier Page 22 of 32
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ul or a counter example trace has been produced. The eCRG model checker has been written in Java 8
k.brics.automaton framework11.

bility
emonstrates and discusses how the presented decomposition algorithm can be applied in real-world
, a GCR may be imposed on process choreographies by external sources, e.g., considering regulatory
ch as the GDPR or standards such as ISO norms (64). A GCR may also reflect internal compliance rules
r example, implicit dependencies between the partners that are crucial for (re-)scheduling the process
ne partner or across multiple partners in the choreography. The visibility of activities and compliance
orld settings depends on the contractual situation and the roles of the partners in the choreography. In
in automotive domain, for example, an Original Equipment Manufacturer (OEM) might demand insights
ecifics of the private processes of its suppliers and the connected (internal) compliance rules.
cturing Use Case
chain example presented in the Section 1, GCR C3 (cf. Fig. 2) reflects an externally imposed GCR on
facturing and logistics processes. GCR C1, in turn, might reflect an internal quality assurance rule that
ed by the Manufacturer, but is also made visible to the other partners in order to, e.g., create trust.
d use case from manufacturing depicted in Fig. 13 demonstrates how the decomposition algorithms
yed to lift implicit (data) connections to explicitly modeled assertions. The use case covers a process
between Partner 1 (i.e., a car manufacturer), Partner 2 (doing injection molding), and Partner 3
o plater that coats parts in a correct color scheme). The choreography is designed and implemented using
ud Process Execution Engine)12. Figure 13 shows the public activities of all partners, e.g., activity place
ww.brics.dk/automaton/

pee.org/

t al.: Preprint submitted to Elsevier Page 23 of 32
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Verifying Compliance in Process Choreographies

tner 1 and private activities, e.g., activity wait for order completion for Partner 1. The public
or receive messages, e.g., activity place order sends a message received by activity receive order.
cenario abstracts from the details of the public and private activities, which aremodelled as sub-processes
ept for the electroplating task where the corresponding sub-process is depicted. The sub-process
measuring of the quality of the bath and the glossiness; both measures are then forwarded to the partner.
the measures bath maintenance is conducted (alternative default branch). All sub-processes are of

plexity, i.e., they might contain decisions and loops as well. The complex activity wait for order
in particular, comprises a set of sub-activities and is signifying the scheduling between the activities of
artners.
sign of the choreography the partners specified implicit connections, i.e., dependencies between (private)
are not covered bymessage exchanges and express mostly data dependencies. For example, activity wait
ompletion (private, Partner 1) implicitly depends on the the data produced by activities prepare
turing, manufacturing of parts, and quality control (all private, Partner 2).

nufacturing Use Case

t connections refer to two main “functions” of the manufacturing setting, i.e., (i) resource planning and
ntrol.
urce planning is part of the contract between the partners. There are implicit rules regarding how fast
as to react to an order. This depends on assumptions how fast the stock drops for Partner 1. This
ollows: If activity place order (Partner 1) occurs, then activity resource planning Partner
ne before (i.e., resource planning data received) and activity resource planning (Partner 2) was
t al.: Preprint submitted to Elsevier Page 24 of 32
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ities put parts to stock and deliver until stock is low (Partner 1). Understanding this
ce task, we can say that when the above activity information matches, the compliant ordering can be

is how such implicit connections can be checked without revealing information on the private activities.
ented decomposition algorithm can help. The idea is to express the implicit connections by GCR and
ased on assertions. Take, for example, the implicit connection between private activities place order
and resource planning (Partner 2). We can formulate this implicit connection as GCR
order ⤏ resource planning
hm 1, C1 can be decomposed into the following assertions:
lace order ⤏ m1

1 ⤏ resource planning

g so, the implicit connection is lifted up to an explicit one by sending message m1.
now the more complex GCR covering the overall quality control that involves all three partners.
as to do the final inspection, Partner 2 has to ensure the quality of the injection molded parts (no
es), and Partner 3 has to ensure the quality.
that data for checking quality individually has been delivered whenever an order is finished. In this
wait for order completion by Partner 1 yields all information about the quality of the injection
and the electroplating process, whereas during activity check electro-plated parts by Partner
al information about the molding process is available. Overall, if activity check electro-plated
er 1) occurs, then it has to be checked whether or not activities electro-plate parts and quality
artner 3 were executed. Before that, for activity wait for order completion, activities prepare
turing (e.g. machine calibration data, material information), manufacturing of parts, and quality
artner 2 were executed. If all of the above information has been received, the manufacturing process
t, i.e., all required steps seem to have taken place.
are Use Case: FeatureCloud 13
are sector, data is usually distributed over multiple hospitals or biobanks. As such, conducting a clinical
ll data to be collected and accessed centrally, e.g., in a central cloud. The advent of federated machine
has overcome this issue by providing means for third parties (e.g., research institutions) to conduct ML
ensuring that the data remains legally and technically within the data provider infrastructures, and where
d models are aggregated instead of the actual data (46). While, in theory, this significantly improves
ivacy, in practice it provides no guarantees that the local processes and the locally learnedmodels comply
ll global policies. To deal with this, the local process of each party (e.g., hospital) can be equipped with
help to facilitate audits and consent tracking. In such a settingwithmultiple stakeholders, multiple global
les are put in place. The following GCRs are real examples taken from the FeatureCloud project in the
main (46). The example includes multiple processes related to participants in a study (e.g., hospitals),
dinator (e.g., pharmaceutical company or university), patients (e.g., process for managing consents), and
e.g., for approving studies):
a participant (hospital) executes a clinical trial (participant process) upon invitation by the coordinator
search entity), the trial has to be approved by a legal health authority, e.g., ethics committee (approval
of the authority).
patient revokes a consent (i.e., patient process), the hospital must delete the information that the latter
en a consent to use his or her data (i.e., hospital process).
viting a participant for a study (i.e., by the study coordinator), a hospital has to collect patient consents
to that type of study (e.g., breast cancer) unless board consent had been given before.
recloud.eu/
t al.: Preprint submitted to Elsevier Page 25 of 32
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model aggregation by the study coordinator takes places (e.g., research entity process), each participant
l process) has to commit the inputs/ outputs of the locally trained model to an immutable storage.
t of the tasks involved in theseGCRs are private, and federatedMLprevents the data from being accessible
moved to other parties, which makes it impossible for the study coordinator, for example, to check

t the hospital has already collected consents after being invited. Moreover, it is not possible for a patient
ther the hospital had really deleted the data after being revoked. Additionally, it is possible that the
ator requests approval from a legal authority, but continues with executing the federated ML process on
efore receiving the approval. Therefore, decomposing such GCRs into local assertions that have to be
udited locally within each process is required as no global or shared execution logs exist that enable
g of GCR violations. The motivation behind GCR decomposition is therefore not solely restricted to
formance by minimising message exchanges, but also to deal with the impossibility of creating shared
ivacy concerns. Further assume that it is possible to create a shared log that collects information about
times of private tasks of different partners composing a GCR (to centrally monitor GCRs). Then, the
partner is involved in, the more information about its overall process can be learned by other parties.
case where privacy is not a concern, GCR decomposition can drastically enhance performance by

number of additional messages that need to be exchanged between partners when relying on existing
anges. This becomes highly interesting when the number of process instances is very high (e.g., car
, supply chain management) as the GCR then needs to be checked for each instance. For example, in
e domain (cf. Section 7.1), new reports 14 estimate the production of automotive brake pads to reach
billion OEM per year by 2026. If we consider that each OEM manufacturing corresponds to a process
has to comply with at least one GCR, the number of required message exchanges needed to check the
t decomposition) will at least match the same number.
ion
ction, the following research question was stated:
verify GCRs in a decentralized setting of a process choreography where no central coordinator with

complete knowledge on the private and public tasks of all partners exists?

ng, we discuss how far the article at hand has addressed RQ and which open questions still remain. For
e sketch the end-to-end application of the decomposition algorithm along the following steps:
hether the GCR can be verified at choreography level, i.e., solely referring to interactions.
hether the GCR can be verified at the public process of one partner.
hether the GCR can be verified on the public processes of at least two partners: partners have to check

absence/presence of GCR-related activities and activity orders based on choreography and interactions
ble. Otherwise, verification has to be postponed to the runtime by additionally synchronizing activities
pliance has to be verified in an ex post way based on logs if available.
ise: The GCR refers to the private processes of one or several partners and a decomposition has to be
.
ivities and their dependencies are not visible to all collaborators, parts of the decomposition algorithm
ocally by all partners involved in this GCR in order to identify possible transitive relations between their
private activities and possible public activities, or interactions that replicate the connector where the

t. This results in multiple derived assertion alternatives, which are then aggregated to alternatives from
in order to find a combination that recreates the original rule as described in Section 4 (cf. Example 1).
is decomposed and the corresponding assertions are derived, each partner locally checks its derived

untime.
as been addressed in breaking down the problem of GCR verification on distributed processes into the
above. Moreover, a sophisticated decomposition algorithm for GCR that refers to private activities of
e partners has been provided. This enables distributed compliance verification for the supply chain and
use cases discussed in Section 7.1.
.gminsights.com/industry-analysis/automotive-brake-pads-market
t al.: Preprint submitted to Elsevier Page 26 of 32
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nd open questions: This paper focuses on structural compliance, i.e., a GCR solely refers to control
Compliance patterns that deal with, for example, data and resources (cf. (62)) are future work and will
lly to the complexity of the approach. Moreover, we have applied our approach to two use cases from
ring and healthcare domains. However, additional studies in other domains, such as supply chains and
me necessary to evaluate the generalizability and broad applicability of the approach. In addition, the
OR branches in the processes (where sending of messages on these branches is optional) does not affect
s of the decomposition as long as the processes are compliable with the original GCR (39). Indeed, we
undness of the different process models (i.e., consistency and compatibility) and their compliability to the
. This means that original GCRs are correctly specified, and the decomposition enables their checking
d way. In this case, transitivity ensures correct decomposition of GCR even at the presence of XOR
o transitive relations are identified, sync messages are required. Further on, in the end-to-end approach
e, Step 3 still offers the challenge on how to check GCR on public processes of multiple partners.
n of the evaluation, the proposed approach has not yet been integrated with off-the-shelf information
., a manufacturing execution system, supply management systems) and, thus, has not been deployed to
ironments and been evaluated over a longer period of time. Due to this missing practical use in a real
er, it is difficult to evaluate or estimate the amount of efforts (e.g. in terms of time or money) that is
ally checking compliance in process choreographies and to compare it with the effort required with the
oach. We have insights into other real-world use cases (e.g., change management in automotive supply
rganizational patient treatment processes) where these efforts are huge according to the parties involved.
e able to quantitatively assess these manual efforts and to compare them with the ones of an automated
mpirical study is required that systematically assesses use cases from various application domains. Note
itutes a research endeavor on its own. Obviously, any approach automating compliance verification in a
setting offers benefits compared to the manual efforts and audits that would be needed instead. From a
spective the benefits for enterprises, which are enabled by the proposed approach, are as follows:
. The proposed approach prevents a partner from gaining insights into the private tasks of other partners,
re is no need for exchanging messages to tell other partners when own private tasks are executed.
alization. There is no need for a shared common log where partners collect all messages / events related
xecution of tasks involved in the GCR. Instead compliance checking is accomplished in a decentralized
.
zing the message exchange overhead. No additional message exchanges are required for checking a GCR.

Work
sented in this article can be positioned at the interface between process choreographies and business
liance. Section 8.1 summarizes basic works from these two research fields, whereas Section 8.2 discusses
at address issues at the interface between them.
esearch Fields
gives backgrounds on process choreography research, whereas Section 8.1.2 summarizes basic works
usiness process compliance.
s Choreography
ography research has mainly dealt with the modeling of process choreographies and the verification of
operties. For this purpose, specific choreography modeling languages like Let’s dance, Interaction Petri
N choreography diagrams are proposed, which support the modeling of collaborative process behavior.
cus of existing works has been put on correctness properties of choreography models (e.g., realizability),
en intensively studied in literature (17; 16)–for an overview we refer interested readers to (63).
ess Process Compliance
ess compliance, in turn, has been investigated for more than a decade and several surveys exist (e.g.,
emporary approaches have focused on compliance rule languages, including visual notations (3; 40; 38),

rmalisms (45; 43), and Event Calculus (50). Moreover, several approaches enable compliance checking
t al.: Preprint submitted to Elsevier Page 27 of 32
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and run-time (e.g., (4; 44; 40)) or cover different process perspectives of compliance rule checking such
ata, time, and resources (59; 40). Finally, characteristic patterns for business process compliance are
19).
oach that verifies local process behavior (i.e., WS-BPEL process models) against legal constraints, spec-
of the Compliance Request Language, is proposed by (19). This approach and similar works focus on
nce rules, which can be checked for a given (partner) process model. By contrast, we consider verify-
pliance rules (GCR) in a process choreography based on their correct and lossless decomposition into

t can be checked locally by each concerned partner.
d field deals with checking compliance of a (local) process model against its refinement or implementa-
oach that enables checking compliance of a (local) process model against its refinement is presented in
ecifically, this approach deals with the automated verification of lower-level against higher-level UML
. Behavioural containment is established to ensure that a lower-level chart constitutes a valid refinement
level one. Similarly, (18) presents an approach for enforcing compliance of hierarchical business pro-
sually specified security constraints. An approach that enables checking compliance of a (local) process
its implementation is presented in (8), which derives the specification of a web application from a (local)
l followed by the verification of web execution logs against derived LTL formulae. Although the problem
hese approaches is different from the one considered in our paper, the techniques could be of interest for
ance checking in choreographies as well.
ce between Process Choreography and Process Compliance
veral approaches that address issues at the interface between process choreography and process compli-
8.2.1 discusses centralized and distributed approaches for checking compliance in multi-party processes
horeographies). In turn, approaches that map global contracts (i.e., sets of global compliance rules) to
ocess choreographies are presented in Section 8.2.2. The conformance between process choreography
ner processes are considered in Section 8.2.3. Finally, issues related to business process compliance in
dynamically evolving business partner networks are discussed in Section 8.2.4.
liance Checking in a Process Choreography – Centralized vs. Distributed Approaches
hecking mechanisms assuming a trusted party are proposed by (27). In (26) the same authors present a
ed approach that relies on a central integration platform in order to enable cross-organizational service
hile at the same time meeting global compliance rules. As opposed to our work, this approach relies on
onent (i.e., the integration platform) to ensure that global compliance rules can be checked.
s compliance checking in a distributed process (i.e., process choreography) as crucial, but it cannot be
w far the approach deals with the restricted visibility and availability of process information as we do. In
have introduced the criterion of compliability (39) that captures the ability of a choreography to comply
et of compliance rules at all and how to check it (35). The approach presented in (37) enables checking
changes on the compliance in process choreographies based on dependency graphs between global and
nce rules as well as assertions. Finally, (22) provides an overview on the challenges, related approaches,
olutions at the interplay of compliance, change, and choreographies.
proaches that rely on IoT technology are proposed by (52; 49). The approach suggested by (52) considers
sical objects between the parties of amulti-party process. In particular, this approach exploits the sensing
smart devices to improve process compliance checking. For this purpose, commitments define mutual

lationships between parties in a declarative way and drive the configuration of smart devices, which check
on and, in case of misalignment, inform the concerned parties timely.
rty process compliance monitoring approach is conceptually enhanced by (49) through IoT-enabled ar-
pproach proposes a decentralized solution switching from control- to artifact-based monitoring, where
ts can monitor their own conditions as well as the process activities in which they participate, i.e., com-
oring is distributed among the physical artifacts interacting with the global process. To instruct these
BPMN process models are translated into a set of artifact-centric process models, rendered in Extended-
ilestone (E-GSM) notation. In particular, this work shows that artifact-basedmodeling approaches have

al in respect to multi-party process management involving physical objects, which has not been the focus
iscusses legal, organizational, human-centered, technical and economic challenges to be tackled in the
t al.: Preprint submitted to Elsevier Page 28 of 32
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ess process compliance when enacting the (cross-organizational) business processes on the Ethereum
or example, at the implementation level, the immutability of illegal content or the error-proneness and
lerance of smart contracts raise challenging issues in this context. Although this work does not deal with
pliance verification approach, it indicates directions for future research on process compliance when

ain infrastructures for enacting multi-party business processes.
ng Global Contracts to Process Choreographies
ages allow specifying obligations, permissions and prohibitions in business contracts, which govern the
etween business partners. (28) provides means to model corresponding contract constraints. An early
extends choreographies with such contract constraints is provided by (5). This approach transforms the
raints into expressions of a choreography language, i.e., contract terms are translated into choreography
at govern the global process (i.e., choreography) to ensure compliance. In particular, it is shown how
tional business processes can be monitored and enforced according to business contract specifications
nsformation of the contract definition to constraints on (global) process behavior. However, this approach
ul than ours as it tightly couples compliance constraints with choreography models, which aggravates
of both choreography model and contract constraints. Besides, this approach does not consider local
ecking (i.e., locally checking assertions derived from the decomposition of global compliance rules),
ts applicability at the presence of more complex compliance requirements.
s Dynamic Condition Response (DCR) Graphs for decomposing global contracts into local processes.
y, (31) shows how a timed DCR Graph can be used to describe the global contract for a timed multi-
(i.e., choreography), which can then be distributed as a network of communicating timed DCR Graphs
cesses) describing the local contract for each party. As opposed to our work, this approach relies on a
ocess modeling approach with a focus on discrete time deadlines.
rmance between Process Choreography and Local Partner Processes
sals have been made to ensure conformance between choreography (i.e., the global process) and the local
he involved business partners. In (1), conformance checking of the event logs of local processes against
graphy model is addressed. As such an event log is not available at design time, (43) relies on a graph
tool–GROOVE (GRaphs for Object-Oriented VErification)–to automatically verify that a local process

nvolved in a choreography complies with the globally specified behavior of that choreography. LTL
he choreography model is employed and token semantics of the local process model, which is expressed
PMN collaboration diagram, is used to verify conformance.
theory of contracts with the notion of choreography conformance, i.e., it is checked whether an aggre-
ices correctly behaves according to a high level specification of their possible conversations. For this
thod based on the composition of choreography projection and contract refinement is presented that al-
that a service with a given contract can correctly play a specific role within a choreography. Finally,
n approach for ensuring conformance between a set of BPMN collaboration diagrams (i.e., local process
BPMN choreography diagram (i.e., choreography model).
these approaches, our decomposition-based method verifies the compliance of a choreography model
mpliance rules and regulations that cover multiple process perspectives. However, conformance between
phy and the participating partner processes can be considered as a prerequisite of our approach.
ing Compliance in Dynamically Evolving Partner Networks
that the partners in a business networks try to provide wrong information and, hence, introduce the
untability. Compliance requirements also need to be met in dynamic business networks (12; 13). In
k, the partners may join and leave the collaboration dynamically and tasks over which compliance rules
ed then have to be distributed or delegated to new partners or be backsourced by network participants
oid compliance issues. In (12; 13), a conceptual model for aligning the compliance requirements in a
ork with the monitoring requirements they induce on the network participants, particularly when the
ges or evolves, is presented. Various techniques (e.g., task delegation and in-house backsourcing) for
onsistency between the monitoring and compliance requirements as well as metrics for evaluating the
aboration in respect to compliance monitorability are discussed. Obviously, this approach lacks a process
ut is complementary to ourworkwith a focus on business network changes and their effects on compliance
t al.: Preprint submitted to Elsevier Page 29 of 32
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