
Collaboration Petri Nets: Verification,
Equivalence, and Discovery (Extended Version)

Janik-Vasily Benzin1(�) and Stefanie Rinderle-Ma1

Technical University of Munich, TUM School of Computation, Information and
Technology, Garching, Germany

{janik.benzin,stefanie.rinderle-ma}@tum.de

Abstract. Process modeling and discovery techniques aim to construct
sound and valid process models for different types of processes, i.e., pro-
cess orchestrations and collaboration processes. Orchestrations represent
behavior of cases within one process. Collaboration processes represent
behavior of collaborating cases within multiple process orchestrations
that interact via collaboration concepts such as organizations, agents,
objects, and services. The heterogeneity of collaboration concepts and
types such as message exchange and resource sharing has led to different
representations and discovery techniques for collaboration process mod-
els, but a standard model class is lacking. We propose collaboration Petri
nets (cPN) to achieve comparability between techniques, to enable ap-
proach and property transfer, and to build a standardized collaboration
mining pipeline similar to process mining. For cPN , we require desirable
modeling power, decision power, modeling convenience, and relations
to existing model classes. We show the representation of collaboration
types, structural characterization as workflow nets, automatic verifica-
tion of soundness, bisimulation equivalence to existing model classes,
and application in a general discovery framework. As empirical evidence
to discover cPN , we conduct a comparative evaluation between three
discovery techniques on a set of existing collaboration event logs.

Keywords: Collaboration Mining · Collaboration Process Models · Stan-
dardisation of Nets · Process Discovery

1 Introduction

Business processes are vital to many domains such as healthcare and manufac-
turing [42] and define the control-flow of business activities, i.e., what work has
to be done in what order [48]. Languages for capturing process logic in pro-
cess models [45,36] and techniques to discover (business) process models from
process executions recorded in an event log [10,13] are are both essential to
document, understand, and improve processes [25] such that the business ben-
efits significantly [46]. Among the set of process modeling languages, Petri nets
are well-suited due to their formal semantics, graphical nature, expressiveness,
analysis techniques, and tool support [61,6,64]. Moreover, different modeling lan-
guages can be transformed to Petri nets [64] and metrics measuring the quality

ar
X

iv
:2

40
1.

16
26

3v
3

 [
cs

.F
L

]
 1

4
Fe

b
20

24

https://orcid.org/0000-0002-3979-400X
https://orcid.org/0000-0001-5656-6108

2 J.-V. Benzin and S. Rinderle-Ma

of discovered models with respect to the event log are only defined for Petri nets
[13], which means that the theory of Petri nets is central to process modeling
and discovery.

Depending on the type of process, modeling and discovery techniques employ
distinct approaches. Process orchestrations define the control-flow for similar
cases [48,10]. Process mining techniques [42] mostly deal with process orches-
trations, i.e., process discovery [13] aims at discovering a Petri net from a set of
process instances correlated by cases [30] to model a process orchestration. Col-
laboration processes define the control-flow for similar collaborating cases [17].
As a collaboration process consists of multiple process orchestrations that col-
laborate to achieve a common business goal, its collaborating cases consist of
multiple cases each corresponding to one of the process orchestrations. Hence,
collaboration process discovery (CPD) techniques such as [15,24,53] aim at dis-
covering a Petri net from a set of process instances grouped by collaborating
cases. A divide-and-conquer approach on the case notion is typical for CPD
techniques to apply process discovery on projected event logs.

Collaboration between cases can be heterogeneous [17] and occurs via var-
ious types of collaboration concepts such as a hospital’s departments [53], a
company’s agents [72], a shop’s objects like orders or packages [8], or the ser-
vices in a web service composition [69]. Hence, a collaboration process consists
of multiple collaboration concepts whose intra-process behavior is modeled as
a process orchestration, while their collaborations constitute the inter-process
behavior. Although different proposals exist to model and discover collaboration
processes in various domains, e.g., composed RM WF nets for healthcare [53],
object-centric Petri nets for commerce [8], and interaction Petri nets for supply-
chains and logistics [77,29,37], a standard Petri net class is missing [17]. Similar
to the de-facto standard of workflow nets to model process orchestrations in
process mining, a standard for collaboration processes achieves comparability
between techniques, enables transfer of approaches and properties, and lays the
foundation for a standardized and modular collaboration mining pipeline.

Advances in collaboration mining are recently focused on CPD [53,15,72].
Following this, the requirements for a standard are: (i) sufficient modeling power
to represent the control-flow of collaboration processes across domains and types
of collaboration concepts, balanced with (ii) enough decision power to decide
relevant problems like soundness, (iii) adequate modeling convenience such that
models are relatively simple, concise, and particularly suitable for discovery, and
(iv) desirable relations to existing model classes. Hence, our research question is:
How can we define a standard Petri net class for collaboration process
discovery that meets the requirements for a standard?

We propose collaboration Petri nets (cPN) as a standard to model and dis-
cover collaboration processes. To illustrate the proposal, Fig. 1 depicts a hos-
pital’s patient treatment collaboration process [77,76,53] modeled as a cPN .
Collaboration concepts comprise departments “emergency”, “X-ray”, “surgical”,
and “cardiovascular”. Patients are initially treated in “emergency”, which col-
laborates via the shared resource type “charging system” (see pr,1 in Fig. 1) with

Collaboration Petri Nets (Extended Version) 3

“X-ray” and a handover-of-work message over message channel pac,1 with “car-
diovascular”. Other collaborations (inter-process) are a second resource sharing
of the two diagnosis rooms pr,2, message exchanges via channels pac,2, . . . , pac,7,
and synchronous activity execution in transitions tsc,1 and tsc,2 where doctors of
“surgical” and “cardiovascular” consult and prescribe together. By focusing on
the intra-process behavior of the four departments, four process orchestrations
modeled as workflow nets are visible.

Surgical CardiovascularX-RayEmergency

register image

reserve

pre-examine

perform triage

apply for consul.discharge

give prescript.

sum up consult.

Message
channel

Legend
Resource
type

consult

start image

operate machine

backup

write report

pay fees

rescue

register

receive patient

process image

pac2,

pr1,

pr2,

pac3,

pac4,

pac5,

pac6,

pac7,

pac1,

i

o

iEmergeny

iX-Ray

p1

t2

t1

t3

t4

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p2

admit

plan imaging

apply for reserv.

diagnose

arrange consult.

p21

p22

p3

p4

p5

p
6 p

7

o
Emergency

oX-Ray oSurgical oCardiov.

p20

iSurgical iCardiov.

t5

t6
t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

tsc,1

tsc,2

Fig. 1. cPN of treatment collaboration process (simplified from [77,53]).

Section 2 introduces preliminaries. In Sect. 3, we define cPN , present initial
evidence for their modeling power and convenience, and show decidability of
soundness. The discovery framework for cPN in Sect. 4 proves that by apply-
ing existing CPD techniques on collaboration event logs in the framework, we
discover Petri nets that are weakly bisimilar to cPN . To underline favourable
properties of cPN , we present empirical results that compare three publicly
available CPD techniques on an existing dataset in Sect. 5. In Sect. 6, related
work is discussed. Lastly, we conclude and give an outlook in Sect. 7.

4 J.-V. Benzin and S. Rinderle-Ma

2 Preliminaries

LetX be a set. P(X) = {X ′ | X ′ ⊆ X} denotes the powerset ofX, and P+ (X) =
P(X)\∅ (with ∅ the empty set) denotes the set of all non-empty subsets ofX. Let
Y be another set. A relation R ⊆ X × Y with X × Y = {(x, y) | x ∈ X ∧ y ∈ Y }
the cartesian product of X and Y is a subset of all ordered pairs in the carte-
sian product. DOM(R) = {x ∈ X | ∃y∈Y (x, y) ∈ R} defines the domain of
relation R and RNG(R) = {y ∈ Y | ∃x∈X (x, y) ∈ R} defines the range of re-
lation R. Given set X ′, R|X′ = {(x, y) ∈ R | x ∈ X ′} defines the restriction
of relation R’s domain to X ′. The n-ary cartesian product over sets X1, . . . , Xn

is defined by X1 × . . . × Xn = {(x1, . . . , xn) | ∀i∈{1,...,n} xi ∈ Xi}. We write
(xi)i∈{1,...,n} ∈ X1 × . . . × Xn for an n-tuple, which is an element of the n-
ary cartesian product over X1, . . . , Xn. If X1 = X, . . . ,Xn = X, we also write
Xn for X1 × . . . × Xn. Function application is naturally extended to sets, i.e.,
f(X) = {f(x) | x ∈ X}.

Amultiset (or bag) m overX is a functionm : X → N, i.e.,m(x) ∈ N or xm(x)

for x ∈ X denotes the number of times x appears in m. For x /∈ X, we define
m(x) = 0. B(X) denotes the set of all finite multisets over X and ∅ also denotes
the empty multiset, i.e., we overload notation. The cardinality of a multiset is
defined by |m| =

∑
x∈X m(x). The support of multiset m ∈ B(X) is defined by

supp(m) = {x ∈ X | m(x) > 0}, i.e., the support is the set of distinct elements
that appear in m at least once. A set X ′ ⊆ X is also the multiset m(x′) = 1,

x′ ∈ X ′. We also write m = [x
m(x1)
1 , . . . , x

m(xn)
n] for supp(m) = {x1, . . . , xn}.

Given two multisets m1,m2 ∈ B(X), we lift the subset relation, addition and
subtraction operation to multisets: (1) m1 ⊆ m2 iff for all x ∈ X it holds that
m1(x) ≤ m2(x); (ii) (m1 +m2) (x) = m1(x) +m2(x) for each x ∈ X; and (iii) if
m1 ⊆ m2, then (m2 −m1) (x) = m2(s)−m1(x) for each x ∈ X.

A trace over X of length n ∈ N is a function σ : {1, . . . , n} → X. |σ|
denotes the length of trace σ. For |σ| = 0, we write σ = ϵ and for |σ| > 0, we
write σ = ⟨x1, . . . , xn⟩. The set of all finite traces over X is denoted by X∗.
We write x ∈ σ for x ∈ X, if ∃i∈{1,...,|σ|} x = σ(i). The support of trace σ is
supp(σ) = {x ∈ X | ∃1≤i≤|σ| σ(i) = x}. We define the concatenation σ = ν · γ of
two traces ν, γ ∈ X∗ by σ : {1, . . . , |ν|+ |γ|} → X, σ(i) = ν(i) if 1 ≤ i ≤ |ν| and
σ(i) = γ(i) if |ν| + 1 ≤ i ≤ |ν| + |γ|. We inductively define the projection of a
trace on a set Y by ϵ|Y = ϵ, (⟨x⟩ · σ)|Y = ⟨x⟩ · σ|Y if x ∈ Y and (⟨x⟩ · σ)|Y = σ|Y
otherwise.

Let Λ be a finite set of activity labels. A labelled, directed process graph is
a 3-tuple (S,Λ,E) where S is the set of states, and E ⊆ S × Λτ × S the set
of labelled edges, where Λτ = Λ ∪ τ for τ /∈ Λ the silent activity [15,73]. For

(s, α, s′) ∈ E, we also write s
α−→ s′. We write s1

σ−→ sn+1 iff there exists

σ ∈ Λ∗
τ with |σ| = n and s1, . . . , sn+1 ∈ S such that s1

σ(1)−→ s2 . . . sn
σ(n)−→ sn+1.

We define the weak transition relation
α

=⇒ ⊆ S × Λτ × S with α ∈ Λτ by (i)

s (
τ−→)∗ s1

α−→ s2 (
τ−→)∗ s′, if α ̸= τ , and (ii) s (

τ−→)∗ s′, if α = τ , where

(
τ−→)∗ is the reflexive, transitive closure of

τ−→. We lift the notation of the weak

Collaboration Petri Nets (Extended Version) 5

transition relation to traces and write s1
σ

=⇒ sn+1, iff there exists σ ∈ Λ∗ with

|σ| = n and s1, . . . , sn+1 ∈ S such that s1
σ(1)
=⇒ s2 . . . sn

σ(n)
=⇒ sn+1.

A labelled transition system (LTS) over Λ is a labelled, directed process graph
with an initial state: ΓΛ = (S,Λ, s0,−→), where s0 is the initial state. We define
the equivalence relation (rooted) weak bisimulation equivalence on the set of all
LTS over Λ. Let Γ1 = (S1, Λ, s0,1,−→1) and Γ2 = (S2, A, s0,2,−→2) be two LTSs.
A relation R ⊆ S1 × S2 is a (rooted) weak bisimulation equivalence, denoted by
Γ1 ≈R Γ2, iff (i) (s0,1, s0,2) ∈ R, i.e., the initial states are related; and for every

(p, q) ∈ R and α ∈ Λτ it holds that (ii) if p
α−→1 p′, then α = τ and (p′, q) ∈ R,

or there exists q′ ∈ S2 such that q
α

=⇒2 q′ and (p′, q′) ∈ R; and (iii) if q
α−→2 q′,

then α = τ and (p, q′) ∈ R, or there exists p′ ∈ S1 such that p
α

=⇒1 p′ and
(p′, q′) ∈ R. If Γ1 ≈R Γ2, we say Γ1 is weakly bisimilar to Γ2.

A labelled Petri net is a 5-tuple N = (P, T, F, l, Λτ), where P is the set of
places, T is the set of transitions with P ∩T = ∅, F ⊆ ((P ×T)∪ (T ×P)) is the
flow relation, and l : T → Λτ is the transition labelling function. We define the
preset of x ∈ P ∪ T by •x = {y | (y, x) ∈ F} and the postset of x by x• = {y |
(x, y) ∈ F}. A multiset m ∈ B(P) is called a marking. Given a marking m, m(p)
specifies the number of tokens in place p. The tuple (N,m) is called a marked
Petri net. Given labelled Petri net N , N (N) = {(N,m) | m ∈ B(P)} denotes the
set of all marked Petri nets of N . The transition enabling (N,m)[t⟩ for t ∈ T is
defined by (N,m)[t⟩ iff m(p) ≥ 1 for all p ∈ •t. An enabled transition (N,m)[t⟩
can fire, which remove a token from each of it’s input places, adds a token to each
of it’s output places, and executes an activity α ∈ Λτ represented by l(t). We
define this behavior as a relation called the firing rule ·[·⟩· ⊆ N (N)×Λτ ×N (N)
by (N,m)[l(t)⟩(N,m′) iff (N,m)[t⟩ and m′ + •t = m+ t•.

The semantics of a marked Petri net (N,m0) with N = (P, T, F, l, Λτ) is

defined by the LTS ΓN,m0 = (B(P), Λτ ,m0,−→) with m
α−→ m′ iff α = l(t) and

(N,m)[l(t)⟩(N,m′). (N,m0) is weakly bisimilar to marked Petri net (N ′,m′
0) iff

their semantics are. A trace σ ∈ Λ∗
τ is a firing trace of (N,m0) iff m0

σ−→ m′.
We omit the labelled Petri net N , if the context is clear. We define the set

of reachable markings by R(N,m0) =
{
m′ | ∃σ∈Λ∗

τ
m0

σ−→ m′
}
. Given marking

m′ ∈ B(P), we denote the set of all finite firing traces that reach m′ in (N,m0)

by Lτ (N,m0,m
′) =

{
σ ∈ Λ∗

τ | m0
σ−→ m′

}
. The trace language only contains

observable activities a ∈ Λ and is defined by L (N,m0) =
{
σ ∈ Λ∗ | m0

σ
=⇒ m′

}
.

A marked Petri net (N,m0) is bounded iff its set of reachable markings R(N,m0)
is finite. (N,m0) is live iff for every transition t ∈ T and reachable marking m ∈
R(N,m0), there exists a reachable marking m′ ∈ R(N,m) such that (N,m′)[t⟩.
A transition t ∈ T is dead iff there is no reachable marking m ∈ R(N,m0)
such that (N,m)[t⟩. N is a workflow net (WF-net) iff (i) there exists a single
source place i ∈ P such that its preset is empty: •i = ∅; (ii) there exists a single
sink place o ∈ P such that its postset is empty: o• = ∅; and (iii) every node
x ∈ P ∪ T is on a directed path from i to o. N is sound iff (i) it is weakly
terminating (also called option to complete), i.e., for all reachable markings

6 J.-V. Benzin and S. Rinderle-Ma

m ∈ R(N, [i]), [o] ∈ R(N,m); (ii) it is proper completing, i.e., for all reachable
markings m ∈ R(N, [i]), if [o] ⊆ m, then m = [o]; and (iii) it has no dead
transitions.

3 Collaboration Petri Nets

In this section, we introduce collaboration Petri nets (cPN) as a standardized
Petri net class to model collaboration processes. cPN are designed to reuse
concepts, patterns, and analysis techniques from existing work on collaboration
processes and process orchestrations such that we can apply the vast existing
body of knowledge and tools without modifications. As we will show, cPN are
WF-nets, i.e., we can recursively model and discover collaboration processes at
various granularity levels. Consequently, our model of collaboration processes
is equivalent to process orchestrations in its modeling and decision power, a
result that is not obvious from the multitude of Petri net extensions proposed in
existing work. With respect to modeling convenience, cPN explicitly represent
all four of the known collaboration types [17] similar to RM WF nets [77,76,53],
in a declarative, concise, standardized, modular, and correct definition.

3.1 Building Blocks of Collaboration Processes

To model collaboration processes, we first identify relevant building blocks that
we formalize step-by-step in this section to finally construct cPN in the next
section. To begin with, collaboration processes are studied in various research
areas [17]. Research areas with a modeling focus are process choreographies
[28,29,37,55,38], service compositions [66,9,7], multi-agent systems [70,71], in-
terorganizational workflows [5,11], virtual enterprises [22,44,43], and distributed
business processes [19,68], while object-centric process mining [8,15] and collab-
oration mining [40,77,69,75,24,50,59,53,72] are research areas with a discovery
focus. Despite the variety of areas and approaches, collaboration processes are
conceptualized as a set of collaboration concepts whose process orchestrations
collaborate. Below, we formalize collaboration concepts C and the collaboration
concepts involved in a single collaboration process.

Definition 1 (Collaboration Concept, Concept Collection). Let C be a
set of collaboration concepts. We define a (collaboration) concept collection cc of
length n ∈ N to be an injective trace over C: cc : {1, . . . , n} → C.

By means of the concept collection cc, we group the subset of collaboration
concepts that are involved in a collaboration process, e.g., cc(1) = “emergency”,
cc(2) = “X-ray” with n = 4 in Fig. 1. Because each collaboration concept’s
dynamic behavior is a process orchestration, every collaboration concept c ∈
RNG(cc) is assigned a WF-net that models the collaboration concept’s process
orchestration. We formalize this notion as a workflow collection:

Collaboration Petri Nets (Extended Version) 7

Definition 2 (Workflow Collection). Let cc be concept collection. A work-
flow collection is a |cc|-tuple WC = (Nc)c∈RNG(cc) of WF-nets Nc = (Pc, Tc, Fc,

lc, Λτ) such that ∀k,l∈{1,...,n} if k ̸= l, then
(
Pcc(k) ∪ Tcc(k)

)
∩

(
Pcc(l) ∪ Tcc(l)

)
=

∅. We define:

– Tu =
⋃

c∈RNG(cc) Tc, P
u =

⋃
c∈RNG(cc) Pc, F

u =
⋃

c∈RNG(cc) Fc, the sets of
transitions, places, and arcs of the workflow collection respectively,

– lu : Tu → Λτ , l
u(t) = lc(t) for t ∈ Tc.

Existing work on collaboration processes shares the conceptualization (mod-
ulo naming) up to this point, i.e., collaboration processes are modelled as a set
of WF-nets to the best of our knowledge. Since the WF-nets in a collaboration
process collaborate, they must be composed to represent the overall collabora-
tion process. Each existing approach models the composition in a certain way,
but they all are formalized according to the way WF-nets collaborate, i.e., the
type of composition is determined by the collaboration type studied.

There are four collaboration types: Handover-of-work, message exchange, re-
source sharing, and activity execution [76,17]. The first three types are asyn-
chronous, and the fourth is synchronuous as depicted with their respective, typi-
cal Petri net pattern to model the collaboration type in Fig. 2. For example, the
discovery techniques in [76,54,53,72] represent handing the treatment of patients
over in healthcare collaboration processes using the depicted handover-of-work
pattern. The pattern includes an asynchronuous collaboration place pac (denoted
by a grey filling) that must be marked before the first transition inNcc(1) can fire.
The handover-of-work type is a special case of the message exchange type and

determined by condition HO given some collaboration concept c ∈ RNG(cc),

a transition t ∈ ic• in the postset of source place ic in WF-net Nc has the
asynchronous collaboration place pac in its preset pac ∈ •t [76]. Although the

Activity
execution

Handover-
of-work

Message
exchange

Resource
sharing

Sync. collaboration

cc(1)
N

cc(2)
N

cc(n)
N

tsc

Asynchronuous collaboration

s
i

pac

a

b

pac

b'

y

'

pr

a'

b''

Fig. 2. Petri net patterns to model collaboration between process orchestrations.

resource sharing pattern with place pr (denoted with dashed outline in Fig. 1
and Fig. 2) does not affect the behavior of the models in [77,76,53] due to the
lack of a time notion, it can be seen as a precursor of mining enhanced models
that introduce a time notion such as the healthcare Petri net with time delays for
transition firings in [54]. We follow the same path and keep a time notion out of

8 J.-V. Benzin and S. Rinderle-Ma

our formalizations bearing in mind that it can be easily added later. Lastly, the
activity execution pattern includes a transition tsc whose firing is synchronized
across multiple WF-nets, as, for example, employed in [5,9,35,15]. Since our aim
is to standardize and integrate, we cover all existing collaboration types in a
collaboration pattern as follows.

Definition 3 (Collaboration Pattern). Let WC = (Nc)c∈RNG(cc) be a work-
flow collection. A collaboration pattern is a tuple CPWC = (PAC , PRS , ra, AC,
ET), where:

1. PAC is the set of asynchronous collaboration places that do not intersect with
existing names, i.e., PAC ∩ (Pu ∪ Tu) = ∅,

2. PRS ⊆ PAC is the set of shared resource collaboration places,
3. ra : PRS → N+ is the resource allocation function, i.e., for shared resource

type pr ∈ PRS, there exist ra(pr) shared resources,
4. AC = {(pac, Ts, Tr) ∈ PAC × P+(Tu) × P+(Tu) | ∀t∈Ts,t′∈Tr

lu(t) ̸= τ ∧
lu(t′) ̸= τ} is the asynchronous collaboration relation, i.e., (pac, Ts, Tr) with
channel pac ̸∈ PRS denotes that transitions t ∈ Ts send a message and
transitions t′ ∈ Tr receive a message via channel pac,

5. for every pr ∈ PRS there exists (pr, T1, T2) ∈ AC such that T1 = T2, i.e.,
resource types are used and released in transitions t ∈ T1, and

6. ET = {(tsc, Tsc) ∈ Tu × P+(Tu) | tsc ∈ Tsc ∧ lu(tsc) ̸= τ ∧ ∀t,t′∈Tsc lu(t) =
lu(t′)} is the relation of synchronous collaborations induced by equally-labelled
transitions.

A collaboration pattern CPWC specifies how the WF-nets in the workflow
collection collaborate in terms of the four collaboration types. All three asyn-
chronuous collaboration types are represented by PAC (cf. 1 in Def. 3) and AC
(4). The resource sharing type is differentiated by PRS (2), the resource alloca-
tion ra, and the self-loop requirement in (5) from the other two asynchronous
types. Message exchange and handover-of-work are not explicitly distinguished in
the collaboration pattern, because their only difference is captured by condition

HO. Although synchronized transitions t ∈ Tu with t ∈ Tsc, (tsc, Tsc) ∈ ET are

pre-determined by equal labels (6) following CPD techniques with synchronous
collaboration [60,77,65,8,59,53,15], we still formalize them in the collaboration
pattern for the sake of completeness.

A collaboration pattern CP is powerful and convenient in representing col-
laborations (see Sect. 4). For example, CP can represent many web service inter-
action patterns [16] as message exchanges along the dimensions of # of services
involved in an exchange (Ts or Tr may contain transitions from an arbitrary
number of collaboration concepts), the # of exchanges (transitions in Ts or Tr

may be in a loop in their respective WF-net Nc), and the difference between
round-trip interactions (two channels pac with alternating sender and receiving
collaboration concepts) and routed interactions (a transition is allowed to be
both a receiver from one and sender to another collaboration concept).

In the following section, we will compose the WF-nets in the workflow col-
lection by means of the collaboration pattern into a collaboration Petri net.

Collaboration Petri Nets (Extended Version) 9

3.2 Collaboration Petri Nets

The definition of the collaboration Petri net given a workflow collection and col-
laboration pattern takes the same definition approach as the interorganizational
workflow in [5] with extensions and modifications to cover all four collaboration
types. The modifications and extensions are defined such that the structure of
the resulting Petri net remains a WF-net, which we will show in the next section.

Definition 4 (Collaboration Petri Net (cPN)). Let CPWC = (PAC , PRS ,
ra,AC,ET) be a collaboration pattern with WC = (Nc)c∈RNG(cc) a workflow
collection. A Collaboration Petri Net is a marked Petri net cPN =
((P, T, F, l, Λτ),m0) =

⊎CP
c∈RNG(cc) Nc defined as1:

1. P = Pu ∪ PAC ∪ {i, o},
2. T = r (Tu)∪{ti, to}, with r a renaming function: r(x) = tsc if there exists a

(tsc, Tsc) ∈ ET such that t ∈ Tsc, otherwise r(x) = x,

3. {i, o, ti, to} ∩ (Pu ∪ Tu ∪ PAC) = ∅,
4. F ′ = Fu∪ {(t, p) ∈ Tu × PAC | (p, x, y) ∈ AC ∧ t ∈ x} ∪

{(p, t) ∈ PAC × Tu |(p, x, y) ∈ AC ∧ t ∈ y} ∪ {(i, ti) , (to, o)} ∪
{(ti, ic) | c ∈ RNG(cc)} ∪ {(oc, to) | c ∈ RNG(cc)},

5. F = {(r(x), r(y)) | (x, y) ∈ F ′},
6. l(t) = lu(t) if t ∈ Tu, l(t) = τ otherwise,

7. m0(p) = 1 if p = i, m0(p) = ra(p) if p ∈ PRS and m0(p) = 0 otherwise.

Observe that the example in Fig. 1 is indeed a cPN by definition. Aside
from these properties of cPN that mostly determine modeling convenience, our
approach to separate the WF-nets in the workflow collection, from their collab-
orations in the collaboration pattern, and their resulting collaboration process
model in the cPN resembles, yet clarifies the compositional approach commonly
taken for modeling and discovery of collaboration processes.

In the last section, we have informally introduced the four collaboration types
and depicted their Petri net patterns in Fig. 2. Below, we formalize them:

Definition 5 (Collaboration Types). Let CPWC = (PAC , PRS , ra, AC,
ET) be a collaboration pattern with WC = (Nc)c∈RNG(cc) a workflow collection.
We define Υ = {υs, υm, υh, υr} the set of collaboration types. Then,

– Activity execution, denoted by υs, is contained in CP iff ET ̸= ∅,
– Message exchange, denoted by υm, is contained in CP iff PAC \ PRS ̸=

∅ ∧ ∃(p,Ts,Tr)∈AC p ∈ PAC ,

– Handover-of-work, denoted by υh, is contained in CP iff it contains υm such

that the handover condition HO holds, and

– Resource sharing, denoted by υr, is contained in CP iff PRS ̸= ∅.
1 We choose to abbreviate collaboration Petri nets with cPN to mitigate confusion
with the abbreviation cPN of colored Petri nets [49].

10 J.-V. Benzin and S. Rinderle-Ma

We say that collaboration Petri net cPN =
⊎CP

c∈RNG(cc) Nc contains collaboration

types Υ ′ ⊆ Υ iff every collaboration type υ ∈ Υ ′ is contained in collaboration
pattern CP .

Hence, a collaboration pattern can represent all four collaboration types and
in the collaboration Petri net are exactly the Petri net patterns as depicted in
Fig. 2, e.g., t7, pac,1, t16 is the Petri net pattern for handover-of-work in Fig. 1.

Multiplicities represented by arc weights and other higher-level net concepts
such as token colors [49,64] or variable arcs [8] are missing. Avoiding higher-level
net concepts strikes a balance between the four requirements for a standard (cf.
Sect. 1). On the one hand, modeling power is slightly reduced such that collab-
oration processes in which multiple process orchestration instances of a collabo-
ration concept are required for a single execution of the collaboration processes
(cf. [76,8]) cannot be represented. Hence, token colors are not needed to distin-
guish the process instances running in the same process orchestration, as there
is only one. The resulting representational bias [3] is chosen by the majority of
modeling and discovery techniques [5,28,40,9,77,54,75,51,69,50,59,53,72], which
we take as evidence that our standard’s representational bias is acceptable for
most collaboration processes and domains (cf. Tab. 1). On the other hand, more
relevant problems are decidable and likely fall into a more desirable complexity
class. Moreover, a cPN is likely to be more understandable due to its restriction
on basic net concepts, i.e., modeling convenience for practitioners is better.

Interestingly, typed Jackson nets [15] employ token colors in the form of iden-
tifiers to represent the collaboration process in a continuously running state, but
still require a one-to-one correspondence between types in synchronous collabo-
rations within their discovery framework. A cPN models the collaboration pro-
cess in a static state, i.e., for a single execution similar to WF-nets for process
orchestrations. The next section shows that a cPN is a WF-net, from which we
conclude decidability of soundness.

3.3 Automated Verification of Collaboration Petri Nets

We start by showing that a cPN is a WF-net:

Lemma 1. Let cPN = ((P, T, F, l, Λτ),m0) =
⊎CP

c∈RNG(cc) Nc be a collaboration
Petri net. cPN is a WF-net.

Proof. It follows from Def. 4 (1), (3), (4), and (5) that the only source place i
and sink place o are connected to the source places ic and oc of the workflow
nets Nc for c ∈ RNG(cc) via ti and to respectively. Hence, any node in workflow
net Nc lies on a directed path from i to o. Moreover, asynchronous places pac ∈
PAC with (pac, Ts, Tr) ∈ AC lie on a directed path from transitions t ∈ Ts to
transitions t′ ∈ Tr as follows from Def. 4 (4) and (5). Fused transitions t ∈ Tsc for
some (tsc, Tsc) ∈ ET lie on a directed path within all their fused collaboration
concept’s WF-nets Nc as follows from Def. 4 (2), (4), and (5). ■

Collaboration Petri Nets (Extended Version) 11

As mentioned in Sect. 3.1, resource places pr leave behavior unaffected with-
out a time notion in our model, but still render the classical soundness definition
inapplicable. However, soundness is meaningful in our untimed setting, which is
expressed in a sightly changed soundness definition for cPN .

Definition 6 (Sound cPN). Let cPN = ((P, T, F, l, Λτ),m0) =
⊎CP

c∈RNG(cc) Nc

be a collaboration Petri net. We say cPN is sound iff the WF-net resulting from
removing all shared resource places pr ∈ PRS and their arcs through the “elimi-
nation of self-loop places” reduction rule [56] is sound.

We are able to verify soundness of collaboration Petri nets.

Theorem 1 (Decidability of Soundness for cPN). Soundness for the col-

laboration Petri net cPN = ((P, T, F, l, Λτ),m0) =
⊎CP

c∈RNG(cc) Nc is decidable.

Proof. Observe that the reduction rule “elimination of self-loop places” preserves
liveness, safety and boundedness [56] and that reducing the cPN to a collabo-
ration Petri net without any shared resource places does not break the WF-net
structure, as the reduction is similar to constructing cPN with collaboration
pattern CP that does not contain any shared resources, i.e., PRS = ∅. Since
soundness is decidable for WF-nets through reducing it to deciding boundedness
and liveness in the short-circuited WF-net in which the sink place is connected
to the source place via a transition labelled with τ [2], it follows from Lemma 1
that soundness is decidable for collaboration Petri nets.

■

To sum up, cPN have sufficient modeling power to represent all collaboration
types and soundness is decidable. We can reuse existing results and techniques
developed for modeling and analysing process orchestrations also for collabora-
tion processes by avoiding higher-level net concepts and other structural exten-
sions. On top, we can recursively stick a cPN into another workflow collection
at a higher granularity level such that we can seamlessly model collaboration at
any granularity level. Next, we move from modeling to discovering cPN .

4 Discovering Collaboration Petri Nets

Figure 3 presents the overall framework to discover collaboration Petri nets cPN
(all related concepts are defined in the following sections): Given collaboration
event log cL converted to cL′ in the required input format of CPD technique
discover, converted log cL′ is projected to each collaboration concept’s event
log Lcc(1), . . . , Lcc(n). Then, process discovery technique disc discovers WF-nets
Ncc(1), . . . , Ncc(n), while some custom mining functionality cdisc mines asyn-
chronous collaborations as Petri net patterns resulting in Nac (synchronous col-
laborations are always determined by equal labels). All results are composed with
some custom model composition comp(Ncc(1), . . . , Ncc(n), Nac) = N . If discover
has property Qdiscover, we can construct WF-nets Nccac(1), . . . , Nccac(n) to sim-
ulate Nac and N is weakly bisimilar to collaboration Petri net cPN . Because

12 J.-V. Benzin and S. Rinderle-Ma

cdisc

cL'cL N

cPN

N

discover with discover Q

Lcc(1) cc(1)

Ncc(n)

Ncc (1)ac

Ncc (1)ac

convert

disc

disc
comp

Lcc(n)

Nac

Fig. 3. Our framework to discover collaboration Petri net cPN from collaboration
event log cL. If CPD technique discover has property Qdiscover, then N ≈ cPN .

many existing CPD techniques (cf. Sect. 5) have Qdiscover, collaboration Petri
nets achieve comparability between CPD techniques despite the heterogeneity
of collaboration concept types, collaboration types, and discovered models.

4.1 Generating Collaboration Event Logs

In short, a collaboration event log cL is generated by a collaboration Petri
net cPN = (N,m0) that models the real-world collaboration process2. If we
only record the trace of (observable) activity labels σ ∈ Λ∗ in a firing trace

(N,m0)
σ

=⇒ (N,m) for some m ∈ R(N,m0) to generate a collaboration event
log, we do not have any information on collaborations, i.e., synchronous activi-
ties, message exchanges and resource requirements are unknown. To additionally
record information on collaborations during execution of a cPN , we propose the
collaboration labelling lcl that replaces l in a cPN .

Definition 7 (Collaboration Labelling). Let CPWC = (PAC , PRS , ra, AC,
ET) be a collaboration pattern with WC = (Nc)c∈RNG(cc) a workflow collection.
Collaboration labelling is a function lcl : T

u ∪ {ti, to} → Λcl with collaboration
labels Λcl = Λτ × P(RNG(cc))× P(PAC)

3 for ti, to ̸∈ Tu:

lcl(x) =


(lu(t), sync(Tsc), send(x), rec(x), res(x)) if (x, Tsc) ∈ ET ∧ t ∈ Tsc

(lu(x), {c}, send(x), rec(x), res(x)) if (x, Tsc) ̸∈ ET ∧
∃c∈RNG(cc) x ∈ Tc,

τ otherwise.
where

sync(Tsc) = {c ∈ RNG(cc) | t ∈ Tsc ∧ t ∈ Tc}
send(x) = {pac | ∃(pac,Ts,Tr)∈AC x ∈ Ts ∧ pac ̸∈ PRS},
rec(x) = {pac | ∃(pac,Ts,Tr)∈AC x ∈ Tr ∧ pac ̸∈ PRS}, and
res(x) = {pr | ∃(pr,T1,T2)∈AC x ∈ T1 ∧ pr ∈ PRS}.

2 A cPN used to generated cL is a reference model with which we can compare model
quality metrics computed on cPN and a discovered cPN ′, i.e., our framework builds
the foundation to study the maturity of CPD techniques [74]

Collaboration Petri Nets (Extended Version) 13

We call (activity, concepts, send, receive, resource) ∈ Λcl a collaboration label.

With the collaboration labelling lcl, we can generate collaboration event logs
cL given a collaboration Petri net cPN as follows:

Definition 8 (Collaboration Event Log). Given a set of activity labels Λ,
a set of traces L ⊆ Λ∗ is called an event log. An event log is generated by a
marked Petri net (N,m0), if m0

σ
=⇒ m with m ∈ B(P) for all σ ∈ L, i.e., an

event log is a subset of the trace language L ⊆ L(N,m). For a collaboration Petri
net cPN = ((P, T, F, lcl, Λcl),m0) with collaboration labelling, we call event log
cL ⊆ Λ∗

cl generated by cPN , i.e., cL ⊆ L(cPN), a collaboration event log.

Note that the information recorded in cL is on the highest logging level ac-
cording to logging levels specified in [67,32,31,41] for discovery of web service
compositions, i.e., collaboration processes. The highest logging level is sufficient
to discover the complete, executable collaboration process by some CPD tech-
nique discover [50], if no multiplicities between collaboration concept’s WF-net
instances are present (cf. Sect. 3.2).

We can convert cL into an eXtensible Event Stream (XES) [1] event log
cL′ (cf. Fig. 3) in which a collaboration label’s activity corresponds to the
concept:name, it’s concepts correspond to the org:resource, it’s send corre-
sponds to the message:sent, it’s receive corresponds to the message:rec, and
it’s resource to the resource event attributes as specified in [53]. Also, we give
an intuition on how we can convert cL into an object-centric event log (OCEL)
cL′ by defining object types for each collaboration concept c ∈ RNG(cc) and each
asynchronous type pac ∈ PAC . Each event’s object map denoted by omap(e) in
the OCEL cL′ that maps object types to object identifiers such that the respec-
tive objects are associated with the event has to be set. Each object type can
be taken as a case notion [8]. As σj(i) ∈ Λcl for σj ∈ cL, i ∈ {1, . . . , |σj |} corre-
sponds to an event in cL′, set omap(e)(c) = j if c ∈ conceptsi,j , omap(e)(pac) =
⟨pac, j,#j(pac,mode)⟩3 if pAC ∈ sendi,j ∪ receivei,j and pAC ∈ PAC \ PRS , and
omap(e)(pAC) = j if pAC ∈ resourcei,j and pAC ∈ PRS in ascending order of
i. Overall, it is important to observe that the conversions are bijections without
information loss such that we can convert cL′ back into cL.

As CPD techniques discover typically employ a divide-and-conquer approach
to discover collaboration process models M from cL as depicted in Fig. 3, the
first step of discover is a log projection as follows.

Definition 9 (Log Projection). Let cL ⊆ L(cPN) for collaboration Petri net
cPN be a collaboration event log. Log projection is defined by πc(cL) = {σc | σ ∈
cL ∧ σc = σ|Λτ×{X⊆P(RNG(cc))|c∈X}×P(PAC)3} for c ∈ RNG(cc).

In the next section, we show that the asynchronous collaboration types as
represented by PAC and AC are syntactic sugar for the synchronous collabora-
tion type represented by ET in a collaboration pattern CP .

3 #j is a counter function counting how often a message of type pAC is sent/received
as passed by argument mode in σj such that a first-in first-out message queue is
assumed.

14 J.-V. Benzin and S. Rinderle-Ma

4.2 Minimal Collaboration Types

Taking the modeling power point of view, collaboration types can be simulated
by another, i.e., we can reduce the number of collaboration types to a minimal
set while maintaining weak bisimilarity between the respective collaboration
Petri nets. We show that synchronous collaboration is minimal. To prove our
statement, a relation on the set of collaboration types Υ is required. We aim
for a relation that at least partially orders the powerset of collaboration types
P(Υ) such that Υ is the maximal element and, ideally, a unique minimal element
exists. A minimal element Υ ′ means that all other collaboration types υ ∈ Υ \Υ ′

are syntactic sugar and are included in collaboration Petri nets to improve the
modeling convenience.

Definition 10 (Simulating Collaboration Types, Minimality). A non-
empty set of collaboration types Υ1 ⊆ Υ simulates collaboration types Υ2 ⊆ Υ
with Υ1 ⊆ Υ2, denoted by Υ1 ≼ Υ2 iff for any collaboration Petri net cPN
that contains collaboration types υ ∈ Υ2 and is defined on workflow collection
WC = (Nc)c∈RNG(cc), there exists a collaboration Petri net cPN ′ that only
contains types υ′ ∈ Υ1 and is defined on WC ′ = (Nc)c∈RNG(cc′) with cc′ = cc ·cc′′
such that cPN ≈ cPN ′. A subset Υm ⊆ Υ of collaboration types is minimal iff
collaboration types Υm simulate Υ and there exists no other set of collaboration
types Υ ′

m with |Υ ′
m| < |Υm| such that collaboration types Υ ′

m simulate Υ .

In the construction of a cPN ′ that simulates cPN , it is important to prohibit
changes to the workflow collection WC = (Nc)c∈RNG(cc) except than extending
to WC ′, as other changes to WC would mean that we allow simulating col-
laboration types by a collaboration concept’s internal WF-net and not by some
other collaboration type. Note that ≼⊆ Υ × Υ defines a partial order on col-
laboration types. In the following, we show that the synchronous collaboration
type is a minimal element of ≼, under two conditions: the empty trace is not
in the trace language and no τ -labelled loop for asynchronous collaboration ex-
ists. A τ -labelled loop in cPN = (N,m0) exists for asynchronous collaboration

(pac, Ts, Tr) ∈ AC iff m1
l(t)−→ m2, m1 ∈ R(N,m0) and m2

τ
=⇒ m3 such that

(N,m3)[t
′⟩ for some t, t′ ∈ Ts. The following theorem proves our statement

with an efficient construction in the sense that the constructed, synchronous
collaboration only cPNos that is weakly bisimilar to a given cPN does not copy
complete WF-nets of collaboration concepts.

Theorem 2 (Synchronous activity execution is minimal). Υ ′ = {υs} is
minimal, if no asynchronous collaboration (pac, Ts, Tr) ∈ AC with τ -labelled
loops in cPN exists and ϵ ̸∈ L(cPN).

Proof. Let cPN = ((P, T, F, l, Λτ),m0) =
⊎CP

c∈RNG(cc) Nc be a collaboration

Petri net that contains collaboration types υ ∈ Υ with CPWC = (PAC , PRS , ra,
AC,ET) a collaboration pattern andWC = (Nc)c∈RNG(cc) a workflow collection.
Observe that labelling of transitions with observable activities α ̸= τ , α ∈ Λτ

is a bijection in any collaboration Petri net (cf. Def. 3), so we can use activity

Collaboration Petri Nets (Extended Version) 15

α and its transition interchangeably. In the following we construct collabora-
tion Petri net cPNos of only synchronous collaboration by lifting asynchronous
collaboration to a collaboration concept, i.e., every message channel and re-
source type becomes a collaboration concept. Let Mf (cPN) = {m ∈ B(P) |
m(o) ≥ 1} ∩ R(cPN) be the set of markings that mark the global sink place
for cPN . We preserve reaching the global sink place, i.e., Mf (cPN) ̸= ∅ iff
Mf (cPNos) ̸= ∅. Hence, we distinguish three cases of asynchronous collabora-
tion. Given (pac, Ts, Tr) ∈ AC, either (i) pac is dead, i.e., pac is dead iff all t ∈ Ts

are dead or for every firing trace σ ∈
⋃

m∈Mf (cPN) Lτ (N,m0,m) that marks the

global sink place it holds that ∀α∈l(Ts) α ̸∈ σ; (ii) pac is optional, i.e., pac is op-
tional iff there exists at least two firing traces σ, σ′ ∈

⋃
m∈Mf (cPN) Lτ (N,m0,m)

that mark the global sink place such that ∀α∈l(Ts) α ̸∈ σ (no sending activity
occurs in σ) and ∃α∈l(Ts) α ∈ σ′ (a sending activity occurs in σ′); and (iii) pac is
compulsory, i.e., pac is compulsory iff for every firing trace that marks the global
sink place σ ∈

⋃
m∈Mf (cPN) Lτ (N,m0,m) it holds that ∃α∈l(Ts) α ∈ σ (at least

one sending activity always occurs). Note that we can distinguish these three
cases by analysing the coverability graph [56,62]. However, we do not have to de-
termine for each asynchronous collaboration what case applies, as we only have
to compute certain markings with respective sets of activities in the coverability
graph that we will define in the following. We can ignore case (i) to construct a
weakly bisimilar cPNos, as the sending activities of pac can never occur in any
firing trace. Due to (ii), we have to ensure that the WF-net Npac

that simu-
lates optional asynchronous collaboration pac with synchronous collaboration is
able to skip all transitions with sending activities, as otherwise sink place opac

cannot be marked such that [oos] becomes unreachable. Skipping has to occur
synchronously with activities “after” which sending cannot occur anymore. Also,
repeating sending activities by some loop has to be allowed and synchronized
with activities “after” which sending occurs again.

Determine by breadth-first search for each (pac, Ts, Tr) a unique set of markings
M× ⊆ R(N,m0) and set of markings M⟲ ⊆ R(N,m0) in the coverability graph.
M× is characterized by the following formula: for each m× ∈ M× it holds that
m× is reachable by paths in the coverability graph in which no sending activities
α ∈ l(Ts) have occurred and formula γ(m×) holds. γ(m) holds iff there exist two

sets of activities A0, A1 ⊆ Λτ , τ ̸∈ A1 with m
α0=⇒ m¬, α0 ∈ A0 such that for

all m′ ∈ R(N,m¬) sending activities cannot occur ¬(N,m′)[t⟩ for all t ∈ Ts and

m
α1=⇒ m1, α1 ∈ A1 such that there exists m′ ∈ R(N,m1) that enables sending

activities (N,m′)[t⟩ for some t ∈ Ts. Thus, the activities A0 and A1 represent
the choice between not executing optional asynchronous collaboration pac and
executing asynchronous collaboration pac. It follows from ϵ ̸∈ L(cPN), that at
least one m× always exists such that M× cannot be empty, if pac is optional.
Let A′

× =
⋃

m×∈M×
A0,m× be the union of activities A0,m× that are computed

to satisfy γ(m×). Define T ′
pac,× = {t ∈ T | l(t) ∈ A′

× \ {τ}} ∪ {tpac,τ | τ ∈ A′
×}

for tpac,τ ̸∈ T the set of transitions for asynchronous collaboration pac that, if
executed, can only result in firing traces without any sending activity. Observe
that Tpac,× = ∅ in case of compulsory asynchronous collaboration (iii).

16 J.-V. Benzin and S. Rinderle-Ma

M⟲ is characterized by the following formula: for each m⟲ ∈ M⟲ it holds that
m⟲ is reachable by paths in the coverability graph in which some sending activity
α ∈ l(Ts) has occurred and (i) γ(m⟲) holds or (ii) there exists a token generator
[34] trace σ ∈ Λ∗

τ with sending activity α in the trace α ∈ σ. A token genera-
tor trace results in unbounded states of the coverability graph (ω-states) and is

characterized by: There exists m ∈ B(P) such that |m| > 0 and m⟲
σ−→ m⟲+m.

If (ii) holds, the transition t ∈ Ts labelled with the sending activity l(t) = α can
fire infinitely often. Define A1,m⟲ = {α1} with activity α1 ∈ σ, α ̸= α1 some
activity from the token generator trace that always occurs in the trace, i.e., that
is part of the cycle in the coverability graph that leads to the unbounded state.
If a sending activity is repeated, the set M⟲ cannot be empty and A1,m⟲ is
always well-defined in case of (ii) for some sending activity, since cPN does not
contain any τ -labelled loops for all (pac, Ts, Tr) ∈ AC. Note that the distinction
between a choice of repeating sending activity again (i) or infinitely often repeat-
ing a sending activity (ii) is exhaustive, as duplicate labels, i.e., t, t′ ∈ T with
l(t) = l(t′) cannot exist by definition. Let A⟲ =

⋃
m⟲∈M⟲

A1,m⟲ be the union

of activities A1,m⟲ that are computed to satisfy γ(m⟲). These activities signify
that sending activities are executed again. Let Tpac,⟲ = {t ∈ T | l(t) ∈ A⟲} be
the set of transitions for asynchronous collaboration pac that, if executed, result
in firing traces with repeated sending activities. Observe that Tpac,⟲ = ∅ in case
of no loops involving sending activities.

Since T ′
pac,× may not yet include transitions that indicate that sending activities

are not sent again in a loop, we add them as follows. Let A0,m⟲ for m⟲ ∈ M⟲

be the sets of activities that were computed to satisfy γ(m⟲), i.e., an activ-
ity α ∈ A0,m⟲ indicates that after some sending activity has occurred, it will
not occur again. Next, A× = A′

× ∪
⋃

m⟲∈M⟲
A0,m⟲ . Observe that the choice

of optional asynchronous collaboration and repeating asynchronous collabora-
tion pac coincides iff A× = A′

×. We similarly extend the respective transitions:
Tpac,× = {t ∈ T | l(t) ∈ A× \ {τ}} ∪ {tpac,τ | τ ∈ A×} for tpac,τ ̸∈ T .

pac

paci,

p

i paco

ac

"skip"

"send"

"receive"

"repeat"

p ,ac
pp ,ac

s

r

pt

p ,ac
p p ,ac

p ,ac

p ,ac

p ,ac

p

paco,t

Fig. 4. WF-net Npac constructed for asynchronous collaboration (pac, Ts, Tr) ∈ AC.

Collaboration Petri Nets (Extended Version) 17

For each (pac, Ts, Tr) ∈ AC, construct WF-net Npac
= (Ppac

, Tpac
, Fpac

, lpac
, Λτ)

as depicted in Fig. 4. The construction copies all transitions t ∈ Ts ∪ Tr ∪
Tpac,× ∪ Tpac,⟲ as depicted by dashed ovals in Fig. 4. A new transition ti,pac

connects a new source ipac
to a new place ppac,× ̸∈ P that will be the preset of

sending transitions Ts and postset of repeating transitions Tpac,⟲. A set of new τ -
labelled transitions Tpac,τ ∩ T = ∅ are added to Npac

to ensure a valid Petri net,
if Tpac,× ̸= ∅ (dashed, black oval in Fig. 4). We connect pac as defined by Ts and
Tr by means of the new flow relation Fpac in Npac . Another new place ppac,⟲ ̸∈ P
is the postset of sending transitions and the preset of both a conditional new
transition to,pac

that connects to the new sink place opac
(green highlighted

in Fig. 4) and conditional transitions Tpac,⟲ (blue highlighted “repeat” oval
in Fig. 4) to repeat sending of transitions. If Tpac,⟲ = ∅, no repeating takes
place such that the τ -labelled new transition to,pac connects ppac,⟲ with opac .
If Tpac,⟲ ̸= ∅ and the infinite repeating behavior (ii) with unbounded states
does not occur for any m⟲ ∈ M⟲ of pac, τ -labelled new transition to,pac

is
replaced by arcs to Tpac,τ and transitions Tpac,⟲. If Tpac,⟲ ̸= ∅ and the infinite
repeating behavior (ii) with unbounded states does occur for some m⟲ ∈ M⟲

of pac, then the respective sending activities T∞ ⊆ Ts and their corresponding
repeating activities T⟲,∞ ⊆ Tpac,⟲ are additionally connected through the new
place ppac,∞ ̸∈ P (purple highlighted in Fig. 4). Place ppac,∞ is only added to
Ppac

, if sending activities fire infinitely often (cf. ii for m⟲). Hence, we ensure
that sending activities T∞ in Npac

can fire infinitely often by adding a “token
generator” structure to the WF-net, i.e., T∞ has not only the place pac, but also
the place ppac,∞ as its postset such that through repeating with its corresponding
T⟲,∞ it can always fire again. By labelling copied transitions in Npac similar to
their original counterparts in cPN and all other new transitions with τ , we
encode executing asynchronous collaboration (pac, Ts, Tr) in newly constructed
WF-net Npac

.
Let ccpac

: {1, . . . , |PAC |} → PAC be a concept collection of asynchronous places.
Define ccos = cc ·ccpac , WCos = (Nc)c∈RNG(ccos) and CPWCos = (∅, ∅, ∅, ∅, ETos)
with ETos = {(tsc, Tsc) ⊆ Tu

os × P+(Tu
os) | tsc ∈ Tsc ∧ lu(tsc) ̸= τ ∧ ∀t,t′∈Tsc

luos(t) = luos(t
′)} the extended set of equally-labelled transitions in the extended

workflow collection WCos. Then, cPNos =
⊎CPWCos

c∈RNG(ccos)
Nc. Define relation Q ⊆

R(cPN) × R(cPNos) such that (m,m′) ∈ Q iff m(p) ≤ m′(p) for all places
p ∈ Pos of cPNos. Then, cPN ≈Q cPNos, since with the exception of new τ -
labelled transitions in Npac for asynchronous collaboration pac, all transitions of
the constructed WF-nets Npac are fused with their original counterparts in WC,
exactly the same flow relation is encoded in •pac and pac• as is defined by (4)
in Def. 3, and optional and repeating behavior is exactly encoded. By definition
only Υ ′ is contained in cPNos. Since collaboration types υm, υh, υh are defined
by (pac, Ts, Tr) ∈ AC and ∅ is the only subset of Υ smaller than Υ ′, it follows
from definition in Def. 10 that Υ ′ is minimal. ■

In the following, alternative formulation of Theorem 2, we prove the state-
ment by an inefficient construction that copies complete WF-nets of collabora-
tion concepts. Although the alternative formulation does not impose any con-

18 J.-V. Benzin and S. Rinderle-Ma

ditions on the asynchronous collaboration, the size of the constructed cPNos

“explodes” quickly.

Theorem (Synchronous activity execution is minimal - Alternative)
Υ ′ = {υs} is minimal.

Proof. Let cPN = ((P, T, F, l, Λτ),m0) =
⊎CP

c∈RNG(cc) Nc be a collaboration

Petri net that contains collaboration types υ ∈ Υ with CPWC = (PAC , PRS , ra,
AC,ET) a collaboration pattern and WC = (Nc)c∈RNG(cc) a workflow collec-
tion, i.e., Nc = (Pc, Tc, Fc, lc, Λτ) is a WF-net for each c ∈ RNG(cc). Define
for each pac ∈ PAC , the set of collaboration concepts Cpac

= {c ∈ RNG(cc) |
(pac, Ts, Tr) ∈ AC ∧ (t ∈ Ts ∨ t ∈ Tr) ∧ t ∈ Tc} that asynchronously collab-
orate via pac. We construct a new WF-net Npac for each (pac, Ts, Tr) ∈ AC
by copying all WF-nets Nc that collaborate via pac. We set P pac

RS = PRS ∩
{pac}. The equally-labelled transitions in Npac

are ETpac
= {(tsc, Tsc) ⊆ Tpac

×
P+(Tpac

) | tsc ∈ Tsc ∧ lu(tsc) ̸= τ ∧ ∀t,t′∈Tsc
lu(t) = lu(t′)} with Tpac

=⋃
c∈Cpac

Tc. Then, CP pac

WC = ({pac}, P pac

RS , ra|{pac}, {(pac, Ts, Tr)}, ETpac). Lastly,

Npac =
⊎CPpac

c∈Cpac
Nc.

Let ccpac
: {1, . . . , |PAC |} → PAC be a concept collection of asynchronous places.

Define ccos = cc ·ccpac
, WCos = (Nc)c∈RNG(ccos) and CPWCos

= (∅, ∅, ∅, ∅, ETos)
with ETos = {(tsc, Tsc) ⊆ Tu

os × P+(Tu
os) | tsc ∈ Tsc ∧ lu(tsc) ̸= τ ∧ ∀t,t′∈Tsc

luos(t) = luos(t
′)} the extended set of equally-labelled transitions in the extended

workflow collection WCos. Then, cPNos =
⊎CPWCos

c∈RNG(ccos)
Nc. Define relation Q ⊆

R(cPN) × R(cPNos) such that (m,m′) ∈ Q iff m(p) ≤ m′(p) for all places
p ∈ Pos of cPNos. Then, cPN ≈Q cPNos, since with the exception of new τ -
labelled transitions in Npac

, all transitions of the constructed WF-nets Npac
are

fused with their original counterparts in WC and exactly the same flow relation
is encoded in •pac and pac• as is defined by (4) in Def. 3. By definition only
Υ ′ is contained in cPNos. Since collaboration types υm, υh, υh are defined by
(pac, Ts, Tr) ∈ AC and ∅ is the only subset of Υ smaller than Υ ′, it follows from
definition in Def. 10 that Υ ′ is minimal. ■

Although {υs} is only minimal under two conditions for an efficient construc-
tion (cf. Theorem 2), both conditions are not realistic in a real-world collabora-
tion process, as the τ -labelled loop condition excludes arbitrary, non-observable
sending of messages or requiring of resources and the empty trace would mean
that a collaboration process can execute without any observable activity. From
Theorem 2, we cannot conclude that {υs} is the only minimal element of the
partial order ≼. The next theorem proves that synchronous collaboration cannot
be simulated by asynchronous collaboration such that {υs} is the only, unique
minimal element of ≼.

Theorem 3 (Synchronous activity execution cannot be simulated). Let
Υ ′ = {υr, υh, υm}. Then, Υ ′ ̸≼ Υ .

Proof. We prove by contradiction. Assume Υ ′ ≼ Υ . Let cPN =
⊎CP

c∈RNG(cc) Nc

with CPWC = (PAC , PRS , ra, AC,ET) be a collaboration Petri net that contains

Collaboration Petri Nets (Extended Version) 19

all υ ∈ Υ and cPNsc =
⊎CP

c∈RNG(ccsc)
Nc with CPWCsc

= (PAC,sc, PRS,sc, rasc,

ACsc, ∅) be a collaboration Petri net that contains only υ′ ∈ Υ ′ such that cPN ≈
cPNsc. Observe that all three synchronous collaboration types are represented
by AC and do not merge transitions or change their label in Def. 3. Hence,
from Def. 10 it follows that all transitions t ∈ Tsc, (tsc, Tsc) ∈ ET are still
present in WCsc (changing the workflow collection WC is prohibited) such that
CPWCsc

= (PAC,sc, PRS,sc, rasc, ACsc, ET) and ∅ ≠ ET 4. ■

Overall, our theory on collaboration types in collaboration Petri nets demon-
strates that modulo weak bisimilarity, asynchronous collaboration can be sim-
ulated by synchronous collaboration, but not vice versa. The implications are
twofold. First, it suffices to prove weak bisimilarity of discovered Petri nets by
some CPD technique discover for υs in the next section, if discover constructs
similar Petri net patterns for the collaboration types. Second, if a CPD tech-
nique discover can only mine asynchronous collaboration types, it is not possible
to transform the input cL′ or tweak discover in such a way that it can mine
synchronous collaborations.

4.3 Bisimulation of cPN and Discovered Petri Nets

This section shows that for any discovered model M = discover(cL′) there exists
a collaboration Petri net cPN that is weakly bisimilar to M , if Qdiscover holds
(cf. Fig. 3). Qdiscover holds iff (i) the discovered model M is a labelled Petri net
N as defined in this paper (cf. Sect. 2), (ii) only supports collaboration types Υ
with corresponding Petri net patterns that are weakly bisimilar to the typical
patterns in Fig. 2 and Def. 5, and (iii) takes the divide-and-conquer approach as
depicted in Fig. 3 with some custom model composition comp and some custom
mining functionality cdisc to mine asynchronous collaborations (synchronous
collaborations are always determined by equal labels). The third condition in
Qdiscover means that discover projects the input log cL′ to logs Lcc(1), . . . , Lcc(n),
applies process discovery disc on each log Lcc(1), . . . , Lcc(n), mines some Petri
net Nac to represent the asynchronous collaborations, and composes with some
custom model composition comp(Ncc(1), . . . , Ncc(n), Nac) = N .

To illustrate property Qdiscover, the CPD techniques [15] to discover typed
Jackson nets and OCPD [8] to discover OCPNs (cf. Tab. 1 and Sect. 5) do not
have property Qdiscover, as their discovered models are defined with multiple
higher-level net concepts, e.g., token colors, that violate (i). However, OCPD
discovers a labelled Petri net N after “step 3” that is a cPN without the global
source and sink place. Only in the next steps, N is extended to OCPN with place

4 Although the contradiction follows from a technicality, the statement still holds,
if we enable synchronizing arbitrary transitions in a collaboration pattern CP in
Def. 3, which is rarely done. To the best of our knowledge, there exists only a single
modeling technique [5] that enables synchronizing arbitrary transitions. Neverthe-
less, asynchronous collaboration does not merge transitions, so we can never avoid
firing traces σ that include all the labels of synchronized transitions. These labels
cannot be simulated by a single, synchronizing label.

20 J.-V. Benzin and S. Rinderle-Ma

types, token colors and variable arcs. Similarly, their implementation in PM4PY5

internally represents OCPN as labelled Petri net N that is extended with the
higher-level net concepts for visualization and export only. Besides, for one-to-
one correspondences between the collaboration concept’s cases, the higher-level
net concepts in an OCPN are not required. Hence, for our collaboration event
log cL, OCPD has property Qdiscover, which we demonstrate in the next section.

Two exemplary CPD techniques from Tab. 1 that have Qdiscover are cross-
department collaborative healthcare process (CCPH) discovery [53] and the Col-
liery technique [24]. For the sake of brevity, we only report the reasons for CCHP
in detail. CCHP discovers composed RM WF nets that are labelled6 Petri nets
(cf. Def. 5 and Def. 9 in [53]), i.e., (i) satisfied. CCHP discovers all four col-
laboration types υ ∈ Υ using exactly the same Petri net patterns as depicted
in Fig. 2 (cf. Definition 6, 7, and 8 in [53]), i.e., (ii) is satisfied. Given a col-
laboration event log cL′ as a XES log (cf. convert in Sect. 4.1), CCHP works
exactly as required by (iii): The collaboration event log cL′ is projected onto
each department’s event log Lcc(1), . . . , Lcc(n) for cc a concept collection of n
departments in a hospital. For each department’s event log Lcc(i), i ∈ {1, . . . , n},
a WF-net Ncc(i) is discovered using process discovery technique disc (cf. Line
2 of Algorithm 1 in [53]). Then, Petri net Nac representing all collaborations
between departments discovered by cdiscCCHP (cf. Algorithm 2 in [53]), is com-
posed with all WF-nets Ncc(i) to yield the composed RM WF nets N . Hence,
(iii) is satisfied and CCHP has property Qdiscover.

Note that the construction to create a WF-net for each message channel
and resource type pac ∈ PAC used to prove that the three asynchronous collab-
oration types υm, υh, and υr are simulated by synchronous activity execution
υs (cf. Theorem 2) can also be applied to CPD technique discover that has
property Qdiscover, in particular (ii). From Theorem 2, we can simulate any Nac

with asynchronous collaborations by synchronous collaborations, i.e., equally-
labelled transitions in the WF-nets Ncc(1), . . . Ncc(n) and additional WF-nets
Npac

for each asynchronous collaboration pac in Nac. Hence, the custom model
composition comp in discover reduces to the following model composition:

Definition 11 (Model Composition [8,53]). Let WC = (Nc)c∈RNG(cc) be
a workflow collection. The model composition is a marked Petri net (N,m0) =⋃

c∈RNG(cc) Nc with N = (P, T, F, l, Λτ) defined by:

– P = Pu as defined in Def. 2,
– T =

⋃
c∈RNG(cc) r(Tc), with r a renaming function: r(x) = ts if there exists

Ts ∈ ST such that x ∈ Ts and ts ∈ Ts a fixed transition with ST = {Ts |
Ts ⊆ Tu ∧ ∀t,t′∈Ts

lu(t) = lu(t′) ∧ lu(t) ̸= τ} the set of equally-labelled
(synchronous) transition subsets, otherwise r(x) = x,

5 https://pm4py.fit.fraunhofer.de/
6 [53] does not define labelling l. Without labelling, WF-nets with different τ -labelled
transitions are impossible. WF-nets with different τ -labelled transitions are discov-
ered by many process discovery techniques, e.g., Inductive [52] or Split Miner [14].
CCHP uses the Inductive Miner and Split Miner [53], i.e., we assume labelling l.

https://pm4py.fit.fraunhofer.de/

Collaboration Petri Nets (Extended Version) 21

– F = {(r(x), r(y)) | (x, y) ∈ Fu},
– l = lu,
– m0(p) = [icc(1), . . . , icc(n)].

Given collaboration event log cL that contains collaboration concepts in cc
and a CPD technique discover with propertyQdiscover, we define discover(cL

′) =⋃
c∈RNG(cc′)(disc(πc(cL

′)))c∈RNG(cc) · (Nc)c∈RNG(ccac)
7 with cc′ = cc · ccac for

(Nc)c∈RNG(ccac) the workflow collection of WF-nets constructed to simulate asyn-
chronous collaboration by synchronous collaboration. Coming back to the dis-
covery framework in Fig. 3, we are left to prove that discover(cL′) = N ≈ cPN .

Theorem 4 (Composed models are weakly bisimilar to collaboration
Petri nets). Let (N,m0) =

⋃
c∈RNG(cc) Nc be a model composition. Then, there

exists collaboration Petri net cPN such that N ≈ cPN .

Proof. Given (N,m0) =
⋃

c∈RNG(cc) Nc with N = (P, T, F, l, Λτ) for work-

flow collection WC = (Nc)c∈RNG(cc). Define collaboration pattern CPWC =
(∅, ∅, ∅, ∅, ET) with ET a set that satisfies property (6) in Def. 3 and |ET | = |ST |
as defined in Def. 11. From Def. 3 (6), it follows that ST = {Tsc | (tsc, Tsc) ∈
ET}. Then, cPN = (N ′,m′

0) =
⊎

c∈RNG(cc) Nc. The statement follows from

Def. 4, Def. 11, and from relation Q ⊆ R(N,m0) × R(N ′,m′
0) defined by

(m,m′) ∈ Q iff m(p) ≤ m′(p) for all places p ∈ P of the model composition’s
net N . ■

Consequently, for a CPD technique discover that has property Qdiscover, ev-
ery discovered Petri net N = discover(cL′) is weakly bisimilar to a collaboration
Petri net cPN . As our proofs are constructive, we are always able to explicitly
construct, export or visualize the weakly bisimilar collaboration Petri net such
that subsequent analysis techniques in a collaboration mining pipeline can be
developed for and applied on collaboration Petri nets. In the next section, we
demonstrate how collaboration Petri nets allow to compare CPD techniques.

5 Comparative Evaluation

In this section, we present results from comparing CPD techniques with our
discovery framework (cf. Fig. 3). There exist at least 14 techniques discover
as depicted in Tab. 1. Each technique discovers a specific class of models N =
discover(cL′). The class of discovered models can either be defined using basic
net concepts as introduced in this paper (cf. Sect. 2) or using higher -level net
concepts such as token colors, variable arcs, and place types (cf. Sect. 3.2).

From the fourteen CPD techniques in Tab. 1, only four are publicly available
such that we can apply the implementation in our publicly available8 framework
implementation. The four publicly available CPD techniques are CCHP [53],

7 Concatenation is similarly defined for tuples as for traces.
8 https://github.com/janikbenzin/cpn discovery

https://github.com/janikbenzin/cpn_discovery

22 J.-V. Benzin and S. Rinderle-Ma

Table 1. Overview of existing CPD techniques discover.

CPD Year Model Υ Domains Net Concepts

[60,65] 2013/15 Artifact-centric models υs Accounting Basic
[8] 2020 Object-centric Petri nets υs Commerce Higher
[15] 2023 Typed Jackson nets υs Commerce Higher
[40] 2008 WF-nets υm Web service Basic
[69] 2019 Communication nets υm Web service Basic
[39] 2022 System net υs, υm, υh Retail Higher
[59] 2023 Generalized WF-nets υs, υm Multi-agent systems Basic
[72] 2023 Multi-agent system net υh Healthcare & other Basic
[77] 2013 Integrated RM WF nets υm, υs, υr Logistics, Healthcare Basic
[75] 2020 Top-level process model υm Logistics Basic
[24] 2022 BPMN collab. diagram υm Healthcare & other Basic
[50] 2022 Industry net υm Theoretical Basic
[53] 2023 Composed RM WF nets Υ Healthcare Basic

Colliery [24], OCPD [8], and Agent Miner [72]. Although OCPD generally uses
higher-level net concepts, for our collaboration event logs cL (cf. Def. 7) OCPD
discovers models N that are weakly bisimilar to collaboration Petri nets in an
intermediate step of the technique as explained in more detail in Sect. 4.3. Taking
the intermediate representation for OCPD into account, all of the four CPD
techniques have the property Qdisocver and use the Inductive Miner for disc.

We evaluate in a controlled setting similar to [74] in which the true cPN
that generates cL is known. As the generation of various collaboration Petri
nets cPN is out of scope, an existing dataset consisting of multiple cPN and
cL is selected. Selection criteria are a diverse set of collaboration types and
collaboration patterns while maintaining a majority of the four CPD techniques
to be applicable. The dataset in [58] covers υm and υs in twelve collaboration
Petri nets each with a distinct collaboration pattern. The following datasets are
not selected: [53], [75], and logs from the Business Process Intelligence Challenge
as organized by the IEEE Task Force on Process Mining9 do not feature a true
collaboration Petri net, [24] only covers υm, and public OCEL logs10 only cover
υs. Our selected dataset means that Agent Miner is inapplicable, as Agent Miner
can only discover υh that is a special case of υm (cf. Sect. 3.1).

Our selected dataset models twelve multi-agent systems consisting of two
or three agents (|cc| = 2 or |cc| = 3 in Tab. 2) whose collaboration patterns
represent various (service) interaction patterns as specified in [16] and described
in [59]. Collaboration patterns vary along the number of message transmissions
via channel pac (trans in Tab. 2), the number of message exchanges classified
into one-way, two-way or multiple exchanges (# col.), and the relation one-to-one
(denoted by 1:1), one-to-many (1:n), and many-to-many (m:n) between sending
and receiving activities of the agents via channel pac (cf. act. rel.). For each
cPN , the dataset contains a collaboration event log cL with |cL| = 5000 traces
generated from cPN . Further metrics of cL are reported in Tab. 2.

9 https://www.tf-pm.org/competitions-awards/bpi-challenge
10 https://www.ocel-standard.org/event-logs/overview/

https://www.tf-pm.org/competitions-awards/bpi-challenge
https://www.ocel-standard.org/event-logs/overview/

Collaboration Petri Nets (Extended Version) 23

For each cL, we apply convert resulting in a collaboration event log cL′ that
is in the format required by the respective CPD technique. Note that we can
“apply” the simulation of collaboration type υm by υs also during conversion
to cL′, i.e., the OCEL cL′ for OCPD includes message object types such that
υm is simulated by υs on the log-level (cf. Sect. 4.1), but in a version that
does not properly simulate optional and repeated asynchronous collaboration.
The implementation of a construction that completely mirrors Theorem 2 on
the log-level is left to future work (cf. future work in Sect. 7). For CCHP and
Colliery simulation of types is not required, as they discover υm (cf. Fig. 2).
Due to Theorem 3, the reverse simulation is not possible, i.e., Colliery cannot
discover υs such that fitness is reduced.

Table 2. Comparing CPD techniques CCHP [53], Colliery [24], and OCPD [8] with
our discovery framework to the true cPN that generated cL [58,59].

Col. event log cL 1 2 3 4 5 6 7 8 9 10 11 12

Events 95052 149988 92668 102404 182452 123322 88068 157098 115000 102548 160000 88089
|cc| 2 2 2 2 2 2 2 3 2 2 2 2
Col. types υ υm υm υm υm υm υm υm υm υm, υs υm, υs υm, υs υm, υs

υm : trans. single single single single single single multi multi single single single single
υm: # col. one one one two two two two multi two two two two
υm: act. rel. 1:n m:n 1:1 m:n 1:n 1:n m:n m:n m:n m:n 1:n 1:n
Min. trace 17 29 17 18 36 24 8 30 23 20 32 17
Avg. trace 19 30 19 20 36 25 18 31 23 21 32 18
Max. trace 21 31 20 23 37 25 29 32 23 21 32 18

True
Fitness 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Precision 0.716 0.401 0.754 0.759 0.39 0.564 0.817 0.481 0.714 0.793 0.495 0.766
Sound yes no no no no yes yes yes yes yes yes yes

CCHP
Fitness ex ex 1.0 ex ex ex ex ex ex ex ex 0.384
Precision ex ex 0.765 ex ex ex ex ex ex ex ex 0.583
Sound no no no no no no no no no no no no

Colliery
Fitness 0.863 0.966 1.0 0.683 0.965 0.926 0.587 0.699 0.64 0.711 0.93 0.893
Precision 0.722 0.426 0.765 0.776 0.26 0.597 0.687 0.306 0.5 0.669 0.468 0.697
Sound no no no no no no no no no no no no

OCPD
Fitness 1.0 1.0 ex 1.0 1.0 ex 0.727 ex 1.0 1.0 1.0 0.818
Precision 0.876 0.351 ex 0.792 0.156 ex 0.956 ex 0.892 0.919 0.431 0.887
Sound yes no no yes no no no no yes no no no

To evaluate discover(cL′) = N , we construct cPN ′ with N ≈ cPN ′ (cf.
Sect. 4.3) and apply alignment-based fitness [4] and alignment-based precision
[12] as implemented in PM4PY. Although [63] propose monotone alternatives
to both alignment-based metrics, their computation with Entropia11 on cPN ′

resulted in > 16 GB heap space and execution times > 3 hours (more than [13]
allowed for their benchmark study), so we chose the more efficient alignment-
based metrics. With PM4PY’s soundness verification, we also report its results.
Additionally, we compute fitness, precision and soundness for the true collabo-
ration Petri net cPN from the dataset (True in Tab. 2).

11 https://github.com/jbpt/codebase/tree/master/jbpt-pm/entropia

https://github.com/jbpt/codebase/tree/master/jbpt-pm/entropia

24 J.-V. Benzin and S. Rinderle-Ma

As CCHP assumes a unique message channel pac per sending/receiving activ-
ity pair (1:1) and adds each channel with their respective arcs to the discovered
model cPN ′, their construction often results in a cPN ′ with [o] ̸∈ R(cPN ′), if
act. rel of υm is 1:n or m:n. Without [o] ∈ R(cPN ′), alignments fail, which we
report as ex in Tab. 2. Although Colliery assumes 1:1 for act. rel., it picks one
of the unique pairs and adds a message channel for this pair only, i.e., the con-
struction always results in [o] ∈ R(cPN ′) for the twelve cL, but with a reduced
precision. Additionally, Colliery does not discover a sound model given any of
the twelve logs cL. However, four of the twelve true models are not sound.

OCPD is the only CPD technique that discovers some sound models. Three
times, OCPD discovers cPN ′ with [o] ̸∈ R(cPN ′), because there is a choice be-
tween sending message via two channels pac and p′ac. Our currently implemented
construction to simulate asynchronous collaboration on the log-level does not
allow exclusive channels, i.e., two optional channels (pac, Ts, Tr), (p

′
ac, T

′
s, T

′
r) ∈

AC and no trace σ ∈ cL with m0
σ

=⇒ [o] in the true cPN exists such that
∃i,j∈{1,...,|σ|} σ(i) ∈ lu(Ts)∧σ(j) ∈ lu(T ′

s). As the implementation is missing the
skipping of optional asynchronous collaboration, the collaboration Petri net of
OCPD never reaches marking [o] in case of exclusive channels (cf. future work
in Sect. 7). Hence, no alignment is possible. If there are no exclusive channels,
OCPD often discovers the most fitting and the most precise models. Surpris-
ingly, for one of the unsound true cPN , OCPD discovers a sound model that is
not only as fitting as the true model, but even more precise.

To sum up, CCHP is sensitive to the relationship between sending and re-
ceiving activities per message channel. Colliery is the most robust technique, as
it always discovers a relatively fitting and precise model. OCPD is less robust
than Colliery due to exclusive channels, but discovers the most fitting models.

6 Related Work

First, [17] gives a recent overview and analysis of existing Petri net classes to
model collaboration processes that are alternatives to collaboration Petri nets.
[17] concludes that existing work in modeling of collaboration processes spans
many research areas (cf. Sect. 3.1) and is focused on a specific domain or type
of collaboration. Furthermore, multiple Petri net extensions are used such that
existing techniques are not applicable anymore, while no increased modeling
power is achieved (cf. [77,76,53]). An important distinction that holds for any
Petri net class is given in Sect. 5 and depicted for the models of CPD techniques
in Tab. 1: Basic vs. higher-level net concepts. Many classes with higher-level
net concepts exist [35,64], but for many collaboration processes these concepts
are not required (cf. Sect. 3.2). Collaboration Petri nets resemble characteristics
of the class in [76] as it is the first class with all four collaboration types and
of the class in [5] (cf. Sect. 3.2). Both classes are integrated into a single class
and extended with respect to their respective advantageous properties such as
collaboration types and conciseness. Also, a consistent labelling with silent ac-

Collaboration Petri Nets (Extended Version) 25

tions is introduced to formalize activities similar to [8] and to state a Petri net’s
semantics in an activity-centric manner.

Second, CPD techniques as depicted in Tab. 1 are to the best of our knowl-
edge not compared yet, because a standard with a theoretical foundation that
enables comparability was missing. Typically, CPD techniques compare with pro-
cess discovery techniques applied on the collaborating case [77,72,53] or do not
compare with any other discovery technique, but only via varying the technique-
specific parameters [69,24]. Third, process discovery techniques are extensively
compared in [27,23,20,13]. [13] is the most recent benchmark and does not need
to develop a theory to standardize Petri net classes to model process orchestra-
tions, as WF-nets were studied before and have emerged as the de-facto standard
already. In that regard, we study collaboration Petri net with the aim of bring-
ing CPD research to the same standardization as process discovery research al-
ready experiences. Fourth, collaboration event logs can be generated from other
generating models such as web service compositions [32,31], inter-organization
business processes [33], multi-agent systems [47,57], communicating resource sys-
tems [69], and process choreographies [18]. Despite the heterogeneity, we generate
collaboration event logs given a WF-net, i.e., the collaboration Petri net, and
the collaboration labelling. Hence, in the context of our representational bias
(cf. Sect. 3.2), it is possible to apply existing event log generators for WF-nets
[26,21] with minor adjustments on the labelling.

7 Conclusion and Outlook

In this paper, we presented collaboration Petri nets as a standard Petri net
class for modeling and discovery of collaboration processes along with formal
and empirical evidence to show that collaboration Petri nets meet the stan-
dard’s requirements in a balanced way. Modeling power is sufficient to represent
most collaboration processes that feature collaboration types Υ and occur in
the domains healthcare, web services, logistics, and multi-agent systems. While
collaboration processes with 1:n or m:n relationships between it’s collaboration
concepts cases can only be represented with extensions, collaboration Petri nets
with their WF-net structure benefit from decidability of (conventional) sound-
ness, recursive applicability to deal with various granularity levels, and the vast
body of knowledge, techniques, and tools available for WF-nets. Due to the
syntactic sugar for the asynchronous collaboration types, the sole reliance on
well-known, basic net concepts, and constructive proofs that enable comparabil-
ity between CPD techniques in our discovery framework, modeling convenience
is adequate. If a CPD technique discover has property Qdiscover, it discovers
labelled Petri nets N that are weakly bisimilar to collaboration Petri net. Since
at least the three existing CPD techniques CCHP, Colliery, and OCPD have
property Qdiscover, collaboration Petri net posses desirable relations to existing
model classes.
Outlook. Simulating asynchronous collaboration results in collaboration Petri
nets and logs that may present technical difficulties for empirical evaluation, so

26 J.-V. Benzin and S. Rinderle-Ma

we will propose a refined construction in our implementation that is not only
weakly bisimilar, but preserves reaching the global sink place as is theoretically
shown in Theorem 2. A more thorough, comparative maturity analysis of more
existing CPD techniques that possess Qdiscover with our discovery framework
brings collaboration mining closer to the state of process mining. Furthermore,
the framework in [15] achieves rediscoverability of typed Jackson nets by project-
ing onto the subset-closed set of type combinations. Their construction indicates
that our framework in Fig. 3 has to be extended to project onto the subset-closed
set of collaboration concept combinations to guarantee rediscoverability of col-
laboration Petri nets. Under what circumstances can we transfer the theory in
[15] to collaboration Petri nets remains to be investigated.

References

1. IEEE Standard for eXtensible Event Stream (XES) for Achieving Interop-
erability in Event Logs and Event Streams. IEEE Std 1849-2016 pp. 1–50
(Nov 2016). https://doi.org/10.1109/IEEESTD.2016.7740858, https://ieeexplore.
ieee.org/document/7740858, conference Name: IEEE Std 1849-2016

2. Aalst, W.M.P.: Verification of workflow nets. In: Goos, G., Hartmanis, J., Leeuwen,
J., Azéma, P., Balbo, G. (eds.) Application and Theory of Petri Nets 1997,
vol. 1248, pp. 407–426. Springer Berlin Heidelberg, Berlin, Heidelberg (1997),
http://link.springer.com/10.1007/3-540-63139-9 48, series Title: Lecture Notes in
Computer Science

3. van der Aalst, W.M.P.: On the Representational Bias in Process Mining. In: 2011
IEEE WETICE. pp. 2–7 (Jun 2011)

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying his-
tory on process models for conformance checking and performance analy-
sis. WIREs Data Mining and Knowledge Discovery 2(2), 182–192 (2012).
https://doi.org/10.1002/widm.1045, https://onlinelibrary.wiley.com/doi/abs/10.
1002/widm.1045,

5. van der Aalst, W.M.P.: Modeling and analyzing interorganizational workflows. In:
Proceedings 1998 ACSD. pp. 262–272 (1998)

6. van der Aalst, W.M.P.: Interorganizational workflows: An approach based on mes-
sage sequence charts and petri nets. Systems Analysis Modelling Simulation 34,
335–367 (1999)

7. van der Aalst, W.M.P.: Service Mining: Using Process Mining to Discover, Check,
and Improve Service Behavior. IEEE Trans. Serv. Comput. 6(4), 525–535 (Oct
2013)

8. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Funda-
menta informaticae 175(1-4), 1–40 (2020)

9. van der Aalst, W.M.P., van Hee, K.M., Massuthe, P., et al., S.: Compositional
Service Trees. In: Applications and Theory of Petri Nets. pp. 283–302. LNCS,
Springer, Berlin, Heidelberg (2009)

10. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans Knowl Data Eng 16(9), 1128–1142
(Sep 2004)

11. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational
Workflows. In: Advanced Information Systems Engineering. pp. 140–156. LNCS,
Springer, Berlin, Heidelberg (2001)

https://doi.org/10.1109/IEEESTD.2016.7740858
https://ieeexplore.ieee.org/document/7740858
https://ieeexplore.ieee.org/document/7740858
http://link.springer.com/10.1007/3-540-63139-9_48
https://doi.org/10.1002/widm.1045
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1045
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1045

Collaboration Petri Nets (Extended Version) 27

12. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Information Systems and e-
Business Management 13(1), 37–67 (Feb 2015). https://doi.org/10.1007/s10257-
014-0234-7, https://doi.org/10.1007/s10257-014-0234-7

13. Augusto, A., Conforti, R., Dumas, M., Rosa et al., M.L.: Automated Discovery
of Process Models from Event Logs: Review and Benchmark. IEEE Trans Knowl
Data Eng 31(4), 686–705 (Apr 2019)

14. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split
miner: automated discovery of accurate and simple business process mod-
els from event logs. Knowledge and Information Systems 59(2), 251–284
(May 2019). https://doi.org/10.1007/s10115-018-1214-x, https://doi.org/10.1007/
s10115-018-1214-x

15. Barenholz, D., Montali, M., Polyvyanyy, A., Reijers et al., H.A.: There and Back
Again. In: PETRI NETS 2023. pp. 37–58. LNCS, Springer, Cham (2023)

16. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) Business
Process Management. pp. 302–318. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (2005)

17. Benzin, J.V., Rinderle-Ma, S.: Petri Net Classes for Collaboration Mining: Assess-
ment and Design Guidelines (Sep 2023), arXiv:2309.06200 [cs], Accepted by ICPM
Workshops 2023.

18. Bischoff, F., Fdhila, W., Rinderle-Ma, S.: Generation and Transformation of Com-
pliant Process Collaboration Models to BPMN. In: Giorgini, P., Weber, B. (eds.)
Advanced Information Systems Engineering. pp. 462–478. Lecture Notes in Com-
puter Science, Springer International Publishing, Cham (2019)

19. Borkowski, M., Fdhila, W., Nardelli, M., Rinderle-Ma, S., Schulte, S.: Event-based
failure prediction in distributed business processes. Inf. Syst. 81, 220–235 (2019)

20. vanden Broucke, S.K., De Weerdt, J., Vanthienen, J., Baesens, B.: A comprehensive
benchmarking framework (cobefra) for conformance analysis between procedural
process models and event logs in prom. In: 2013 IEEE Symposium on Computa-
tional Intelligence and Data Mining (CIDM). pp. 254–261. IEEE (2013)

21. Burattin, A., Sperduti, A.: Plg: A framework for the generation of business process
models and their execution logs. In: Business Process Management Workshops:
BPM 2010 International Workshops and Education Track, Hoboken, NJ, USA,
September 13-15, 2010, Revised Selected Papers 8. pp. 214–219. Springer (2011)

22. Chu, X.N., Tso, S.K., Zhang, W.J., Li, Q.: Partnership Synthesis for Virtual En-
terprises. Int. J. Adv. Manuf. Technol. 19(5), 384–391 (Mar 2002)

23. Claes, J., Poels, G.: Process mining and the prom framework: an exploratory
survey. In: Business Process Management Workshops: BPM 2012 International
Workshops, Tallinn, Estonia, September 3, 2012. Revised Papers 10. pp. 187–198.
Springer (2013)

24. Corradini, F., Re, B., Rossi, L., Tiezzi, F.: A Technique for Collaboration Dis-
covery. In: Enterprise, Business-Process and Information Systems Modeling. pp.
63–78. LNBIP, Springer, Cham (2022)

25. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners
use conceptual modeling in practice? Data & Knowledge Engineering 58(3), 358–
380 (Sep 2006)

26. De Medeiros, A.A., Günther, C.W.: Process mining: Using cpn tools to create test
logs for mining algorithms. In: Proceedings of the sixth workshop on the practical
use of coloured Petri nets and CPN tools (CPN 2005). pp. 177–190. University of
Aarhus (2005)

https://doi.org/10.1007/s10257-014-0234-7
https://doi.org/10.1007/s10257-014-0234-7
https://doi.org/10.1007/s10257-014-0234-7
https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/s10115-018-1214-x
http://arxiv.org/abs/2309.06200

28 J.-V. Benzin and S. Rinderle-Ma

27. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Information systems 37(7), 654–676 (2012)

28. Decker, G., Weske, M.: Local Enforceability in Interaction Petri Nets. In: BPM
2007, vol. 4714, pp. 305–319. Springer, Berlin, Heidelberg (2007)

29. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Inf.
Syst. 36(2), 292–312 (Apr 2011)

30. Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and ab-
straction of event data for process mining. WIREs Data Mining and Knowledge
Discovery 10(3), e1346 (2020)

31. Dustdar, S., Gombotz, R.: Discovering web service workflows using web ser-
vices interaction mining. International Journal of Business Process Integration
and Management 1(4), 256 (2006). https://doi.org/10.1504/IJBPIM.2006.012624,
http://www.inderscience.com/link.php?id=12624

32. Dustdar, S., Gombotz, R., Bäına, K.: Web services interaction mining. Tech. rep.,
Technical Report TUV-1841-2004-16, Information Systems Institute, Vienna . . .
(2004)

33. Engel, R., Krathu, W., Zapletal, M., Pichler, C., Bose, R.P.J.C., van der Aalst,
W., Werthner, H., Huemer, C.: Analyzing inter-organizational business processes.
Information Systems and e-Business Management 14(3), 577–612 (Aug 2016)

34. Esparza, J., Nielsen, M.: Decidability Issues for Petri Nets. BRICS Report Series.
1(8), (May 1994)

35. Fahland, D.: Describing Behavior of Processes with Many-to-Many Interactions. In:
Application and Theory of Petri Nets and Concurrency. pp. 3–24. LNCS, Springer,
Cham (2019)

36. Farshidi, S., Kwantes, I.B., Jansen, S.: Business process modeling lan-
guage selection for research modelers. Software and Systems Modeling
(May 2023). https://doi.org/10.1007/s10270-023-01110-8, https://doi.org/10.
1007/s10270-023-01110-8

37. Fdhila, W., Indiono, C., Rinderle-Ma, S., Reichert, M.: Dealing with change in
process choreographies: Design and implementation of propagation algorithms. Inf.
Syst. 49, 1–24 (Apr 2015)

38. Fdhila, W., Rinderle-Ma, S., Knuplesch, D., Reichert, M.: Change and Compliance
in Collaborative Processes. In: 2015 IEEE SCC. pp. 162–169 (Jun 2015)

39. Fettke, P., Reisig, W.: Systems Mining with Heraklit: The Next Step (Jun 2022),
arXiv:2202.01289 [cs]

40. Gaaloul, W., Bäına, K., Godart, C.: Log-based mining techniques applied to Web
service composition reengineering. Serv. Oriented Comput. Appl. 2(2), 93–110 (Jul
2008)

41. Gaaloul, W., Bhiri, S., Godart, C.: Research challenges and opportunities in web
services mining. Proc of System and Information Service Web, INFORSID2006
(2006)

42. Garcia, C.d.S., Meincheim, A., Faria Junior, E.R., Dallagassa, M.R., Sato, D.M.V.,
Carvalho, D.R., Santos, E.A.P., Scalabrin, E.E.: Process mining techniques and
applications – A systematic mapping study. Expert Systems with Applications
133, 260–295 (Nov 2019). https://doi.org/10.1016/j.eswa.2019.05.003, https://
www.sciencedirect.com/science/article/pii/S0957417419303161

43. Garcia, E., Giret, A., Botti, V.: Designing normative open virtual enterprises.
Enterp. Inf. Syst. 10(3), 303–324 (Mar 2016)

https://doi.org/10.1504/IJBPIM.2006.012624
http://www.inderscience.com/link.php?id=12624
https://doi.org/10.1007/s10270-023-01110-8
https://doi.org/10.1007/s10270-023-01110-8
https://doi.org/10.1007/s10270-023-01110-8
http://arxiv.org/abs/2202.01289
https://doi.org/10.1016/j.eswa.2019.05.003
https://www.sciencedirect.com/science/article/pii/S0957417419303161
https://www.sciencedirect.com/science/article/pii/S0957417419303161

Collaboration Petri Nets (Extended Version) 29

44. Grefen, P., Mehandjiev, N., Kouvas, G., Weichhart et al., G.: Dynamic business
network process management in instant virtual enterprises. Comput. Ind. 60(2),
86–103 (Feb 2009)

45. Havey, M.: Essential business process modeling. ” O’Reilly Media, Inc.” (2005)
46. Indulska, M., Green, P., Recker, J., Rosemann, M.: Business Process Modeling: Per-

ceived Benefits. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira,
J.P.M. (eds.) Conceptual Modeling - ER 2009. pp. 458–471. Lecture Notes in Com-
puter Science, Springer, Berlin, Heidelberg (2009)

47. Ito, S., Vymětal, D., Šperka, R., Halaška, M.: Process mining of a multi-agent
business simulator. Computational and Mathematical Organization Theory 24(4),
500–531 (Dec 2018)

48. Jablonski, S., Bussler, C.: Workflow management: modeling concepts, architecture
and implementation. ITP New Media (1996)

49. Jensen, K.: Coloured petri nets and the invariant-method. Theor. Comput. Sci.
14(3), 317–336 (1981)

50. Kwantes, P., Kleijn, J.: Distributed Synthesis of Asynchronously Communicating
Distributed Process Models. In: Transactions on Petri Nets and Other Models of
Concurrency XVI, pp. 49–72. LNCS, Springer, Berlin, Heidelberg (2022)

51. Kwantes, P.M., Kleijn, J.: On the synthesis of industry level process models from
enterprise level process models. In: ATAED@ Petri Nets/ACSD. pp. 6–22 (2018)

52. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Event Logs - A Constructive Approach. In: Colom, J.M.,
Desel, J. (eds.) Application and Theory of Petri Nets and Concurrency. pp. 311–
329. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2013)

53. Liu, C., Li, H., Zhang, S., Cheng et al., L.: Cross-Department Collaborative Health-
care Process Model Discovery From Event Logs. IEEE Trans. Autom. Sci. Eng.
20(3), 2115–2125 (Jul 2023)

54. Mahulea, C., Mahulea, L., Garćıa Soriano, J.M., Colom, J.M.: Modular Petri net
modeling of healthcare systems. Flex. Serv. Manuf. J. 30(1), 329–357 (Jun 2018)

55. Meyer, A., Pufahl, L., Batoulis, K., Fahland, D., Weske, M.: Automating data
exchange in process choreographies. Inf. Syst. 53, 296–329 (Oct 2015)

56. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989), publisher: IEEE

57. Nesterov, R.A., Mitsyuk, A.A., Lomazova, I.A.: Simulating Behavior of Multi-
Agent Systems with Acyclic Interactions of Agents. Proceedings of the Institute
for System Programming of the RAS (Proceedings of ISP RAS) 30(3), 285–302
(2018), https://ispranproceedings.elpub.ru/jour/article/view/536, number: 3

58. Nesterov, R.: Compositional discovery of architecture-aware and sound process
models from event logs of multi-agent systems: experimental data. (May 2021).
https://doi.org/10.5281/zenodo.5830863, https://zenodo.org/records/5830863

59. Nesterov, R., Bernardinello, L., Lomazova, I., Pomello, L.: Discovering
architecture-aware and sound process models of multi-agent systems: a compo-
sitional approach. SoSyM (1), 351–375 (2023)

60. Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic Discovery of Data-
Centric and Artifact-Centric Processes. In: La Rosa, M., Soffer, P. (eds.) Business
Process Management Workshops. pp. 316–327. LNBIP, Springer, Berlin, Heidel-
berg (2013)

61. Peterson, J.L.: Petri Nets. ACM Computing Surveys 9(3), 223–252 (Sep 1977)
62. Peterson, J.L.: Petri net theory and the modeling of systems. Prentice Hall PTR

(1981)

https://ispranproceedings.elpub.ru/jour/article/view/536
https://doi.org/10.5281/zenodo.5830863
https://zenodo.org/records/5830863

30 J.-V. Benzin and S. Rinderle-Ma

63. Polyvyanyy, A., Kalenkova, A.: Monotone Conformance Checking for Partially
Matching Designed and Observed Processes. In: 2019 International Conference on
Process Mining (ICPM). pp. 81–88 (Jun 2019)

64. Polyvyanyy, A., van der Werf, J.M.E.M., Overbeek, S., Brouwers, R.: Informa-
tion Systems Modeling: Language, Verification, and Tool Support. In: Advanced
Information Systems Engineering. pp. 194–212. LNCS, Springer, Cham (2019)

65. Popova, V., Fahland, D., Dumas, M.: Artifact Lifecycle Discovery. International
Journal of Cooperative Information Systems 24(01), 1550001 (Mar 2015)

66. Rinderle-Ma, S., Reichert, M., Jurisch, M.: Equivalence of Web Services in Process-
Aware Service Compositions. In: 2009 IEEE ICWS. pp. 501–508 (Jul 2009)

67. Salah, M., Mancoridis, S.: Toward an environment for comprehending distributed
systems. In: 10th Working Conference on Reverse Engineering, 2003. WCRE 2003.
Proceedings. pp. 238–247. IEEE, Victoria, BC, Canada (2003)

68. Schulte, S., Hoenisch, P., Hochreiner, C., Dustdar et al., S.: Towards Process Sup-
port for Cloud Manufacturing. In: 2014 IEEE 18th EDOC. pp. 142–149 (Sep 2014)

69. Stroiński, A., Dwornikowski, D., Brzeziński, J.: A Distributed Discovery of Com-
municating Resource Systems Models. IEEE Trans. Serv. Comput. 12(2), 172–185
(Mar 2019)

70. Tan, W., Xu, W., Yang, F., Xu et al., L.: A framework for service enterprise
workflow simulation with multi-agents cooperation. Enterp. Inf. Syst. 7(4), 523–
542 (2013)

71. Tour, A., Polyvyanyy, A., Kalenkova, A.: Agent System Mining: Vision, Benefits,
and Challenges. IEEE Access 9, 99480–99494 (2021)

72. Tour, A., Polyvyanyy, A., Kalenkova, A., Senderovich, A.: Agent Miner: An Al-
gorithm for Discovering Agent Systems from Event Data. In: Di Francescomarino,
C., Burattin, A., Janiesch, C., Sadiq, S. (eds.) Business Process Management. pp.
284–302. Lecture Notes in Computer Science, Springer Nature Switzerland, Cham
(2023). https://doi.org/10.1007/978-3-031-41620-0 17

73. Van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in
bisimulation semantics. Journal of the ACM 43(3), 555–600 (May 1996).
https://doi.org/10.1145/233551.233556, https://dl.acm.org/doi/10.1145/233551.
233556

74. van der Werf, J.M.E.M., Polyvyanyy, A., van Wensveen, B.R., Brinkhuis et al., M.:
All that glitters is not gold: Four maturity stages of process discovery algorithms.
Inf. Syst. 114, 102155 (Mar 2023)

75. Zeng, Q., Duan, H., Liu, C.: Top-Down Process Mining From Multi-Source Run-
ning Logs Based on Refinement of Petri Nets. IEEE Access 8, 61355–61369 (2020)

76. Zeng, Q., Lu, F., Liu, C., Duan et al., H.: Modeling and Verification for Cross-
Department Collaborative Business Processes Using Extended Petri Nets. IEEE
Trans. Syst. Man Cybern.: Syst. 45(2), 349–362 (Feb 2015)

77. Zeng, Q., Sun, S., Duan, H., Liu et al., C.: Cross-organizational collaborative work-
flow mining from a multi-source log. Decis Support Syst 54, 1280–1301 (Feb 2013)

https://doi.org/10.1007/978-3-031-41620-0_17
https://doi.org/10.1145/233551.233556
https://dl.acm.org/doi/10.1145/233551.233556
https://dl.acm.org/doi/10.1145/233551.233556

	Collaboration Petri Nets: Verification, Equivalence, and Discovery (Extended Version)

