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Abstract—In order to allow Systems Engineers to utilize data
produced in cyber-physical systems (CPS), they have to cooperate
with data-scientists for custom data-extraction, data-preparation,
and/or data-transformation mechanisms. While interfaces in CPS
systems might be generic, the data that is produced for custom
application needs has to be transformed and merged in very
specific ways, to allow systems engineers proper interpretation
and insight-extraction. In order to enable efficient cooperation be-
tween systems engineers and data scientists, the systems engineers
have to provide a fine-grained specification that (a) describes all
parts of the CPS, (b) how they might interact, (c) what data is
exchanged between them, and (d) how the data inter-relates. A
data scientists can then iteratively (including further refinements
of the specification) prepare the necessary custom machine-
learning models and components. Therefore, this work introduces
a method supporting the collaborative definition of machine
learning tasks by leveraging model-based systems engineering
in the formalization of the systems modeling language SysML.
The method supports the identification and integration of various
data sources, the required definition of semantic connections
between data attributes and the definition of the data processing
steps within the machine learning support. Integrating machine
learning-specific properties in systems engineering techniques
allows non-data scientists to define a machine learning problem,
document knowledge on the data, and further supports data
scientists to use the formalized knowledge as input for an
implementation.

Index Terms—Model-Based Systems Engineering, SysML, Sys-
tems Engineering, Machine Learning, Knowledge Formalization,
Data-Driven Engineering, PLM

I. INTRODUCTION

Leveraging data to allow experts making informed decisions
during the product lifecycle of a product is recently defined
as data-driven engineering [1]. With data-driven engineering,
engineers are supported in the development and improvement
of products and gain more insights during the product life-
cycle. The knowledge required for implementing data-driven
engineering is two-fold. On the one hand, profound machine
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learning skills to process data and implement algorithms. On
the other hand, the domain knowledge of the product, pro-
cesses and related data generated during the product lifecycle
is required.

To connect the knowledge of the two disciplines, various
methods have been proposed in recently [2]–[4]. However,
these methods lack support for defining machine learning tasks
to drive the implementation from an engineering perspective.
Additionally, the methods mainly integrate engineering meth-
ods into data science methodologies supporting data scientists
rather than from an engineer’s perspective.

A recent industrial survey revealed that companies are
having fewer experts in the companies and too little knowledge
in data science and additionally, a little number of experts
are available on the market [5]. Therefore, this work aims to
integrate data science knowledge in systems engineering to
support engineers in the definition of data science tasks and
improve the efficiency and effectiveness of the implementation
and, ultimately, support the product development. Particularly,
means of model-based systems engineering (MBSE) [6] is
adapted to allow to define a task for data-driven engineering
by leveraging on data from the product lifecycle of a system.
The approach of this work builds upon the systems modeling
language SysML in Version 1.6 [7], a general-purpose mod-
eling language allowing to formalize a system from various
viewpoints of various disciplines.

This work lays a foundation for an interdisciplinary def-
inition of machine learning tasks by formalizing knowledge
from different involved disciplines in a single model-based
approach. Additionally, semantic connection of data from var-
ious PLM interfaces allows to communicate knowledge on the
origination and composition of data relations. With the entire
definition of machine learning tasks without programming,
this work is the foundation for future work to decompose the
SysML model to derive executable machine learning code that
is usable as a starting point for data engineers.

The contribution of this work is two-fold:
• A method for a formal model-based specification of
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machine-learning components for systems engineering,
utilizing SysML.

• A discussion of perceived advantages and dis-advantages
of such an approach.

The following section gives the background regarding
model-based systems engineering and data science. In section
III, the elaborated method is depicted aligned with a running
example. Finally, the findings are discussed in section IV and
summarized in a conclusion with future remarks in section V.

II. BACKGROUND

First, the concepts of model-based systems engineering and
the systems modeling language SysML are introduced. Next,
machine learning and the CRISP-DM [8] methodology are
introduced. Finally, related approaches are depicted and a
summary of the background is highlighted in section II-C.

A. Model-Based Systems Engineering and SysML

Systems engineering and particularly model-based systems
engineering (MBSE) aims in integrating different engineering
disciplines in the product development to establish a single-
source of truth by formalizing system requirements, behavior,
structure and parametric relations of a system. With a graphical
model-based approach, MBSE methods promise an increased
design performance while supporting the communication of
relevant stakeholders of a system [9], [10].

The general-purpose language SysML provides means to
formalize the required means to enable MBSE graphically.
The concepts to describe a model in a modeling language are
defined in the metamodel. To create a metamodel for a specific
group of use cases, either a new modeling language or an
extension using stereotypes can be introduced, often referred
to as domain-specific languages [11]. Additionally, approaches
solely relying on the metamodel of SysML are possible
without extending the metamodel for specific purposes [12].
However, it has been proven that the application of stereotypes
supports the understanding of a model [13]. The stereotypes of
a metamodel can be applied to blocks so to describe features
of a system, subsystem or component of interest. With a state
machine and state diagrams, the execution of one or multiple
activities can be triggered and detailed in an activity diagram,
defining the sequential execution of a block or other structural
elements [7].

In literature, methods for the integration of SysML and
computational methods have been proposed [14]–[16]. How-
ever, these methods introduce a new modeling semantic or
are dedicated to specific interests unlike the machine learning
task definition. Recently, [12] showed in an approach solely
relying on SysML modeling that a constraint satisfaction
problem can be entirely formalized. However, the application
for machine learning tasks is still different and requires further
investigation.

B. Data Science and Methodologies

Data Science and Business Intelligence refer to the ex-
traction of information and knowledge from data through

analysis to assist people with various types of insights, such
as analysis or prediction, among many others [17], [18]. The
digging of such information to derive knowledge is called
data mining [19]. One sub-field of data mining is machine
learning, which allows computer programs to automatically
improve through experience [20]. Machine learning algorithms
aim to learn to solve a (specific) problem so to eliminate the
need for being explicitly programmed [21]. Machine learning
methods are often categorized as supervised, unsupervised,
semi-supervised, and reinforcement learning [22]. In super-
vised learning, labeled input and output pairs are used to
extract patterns. Contrary, in unsupervised learning the data
is not labeled. In this work, the focus lies on supervised and
unsupervised learning. Therefore, the others are not depicted.

To support the implementation of machine learning ap-
plications, methodologies have been proposed in a general
manner [8], [23]. Additionally, extensions of such methods
with particular support for data science in the engineering
domain are introduced [2], [3]. In CRISP-DM, the core steps
are first to get an overview of the existing situation and
the business understanding, further initial data is collected to
understand the situation from a data point of view. Following
this, the so-called data pre-processing is used to prepare data
to be usable in a learning algorithm. Further, the algorithm is
modeled, evaluated and deployed. In practice, these steps are
iterative and multiple forth and back steps are taken.

C. Data-Driven Design and Summary

In literature, various approaches for the support of data-
driven engineering are given, e.g. [24]–[26]. These approaches
introduce specific metamodels or languages to describe a
data science task and eventually enable to derive executable
code. However, the approaches are not based on SysML and
mainly rely on the implementation aspects of data science
tasks without the integration in modeling practices of engi-
neering disciplines. Therefore, the integration in MBSE and
the interdisciplinary modeling is not depicted. Therefore, these
approaches are rather domain-specific languages than general-
purpose languages and do not support the communication
between different disciplines.

Although these methods support the implementation of
machine learning or data science applications, the support of
engineers and the integration in the semantics of SysML is as
of the authors’ knowledge not available.

III. METHOD

This section describes a method to integrate machine learn-
ing task definition into SysML. First, the metamodel support-
ing the integration and allowing to reuse of specific parts for
the modeling is depicted. Based on the metamodel, the imple-
mentation structure aligned with typical data science project
structures of CRISP-DM is illustrated. Next, the semantics and
syntax of the modeling approach are highlighted. In section
III-D, the integration of interfaces and the implementation of
the components so to use them in the machine learning task
is described. Finally, the integration of predefined stereotypes
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and the workflow modeling using means of state machines
relying on stereotypes is given.

A. Metamodel Extension

In SysML, packages are used to group and organize specific
aspects of a system. Figure 1 depicts the organization of
the metamodel, in common, general stereotypes are defined,
usable for other stereotypes as parent. Attributes describe basic
datatypes like Integer or Float with additional extension so to
allow to describe the data in detail, e.g. the range of values, the
format of the datetime. DataStorage defines available default
interfaces required for the loading and processing of data
from the PLM, e.g. SQL Servers, programmable application
interfaces or different file formats. Algorithm consists of
various groups of machine learning algorithms, e.g. Linear
Regression or K-Means. In PreProcessing, descriptions of
functions to convert or manipulate data are introduced, e.g.
various data conversions, date converters or cleaning missing
values. AlgorithmWorkflow consists of a stereotype for the
definition of the workflow using the state diagram, more
specifically described in section III-E.

Behind each package, specific stereotypes are defined so
to describe a specific aspect of the machine learning task.
More precisely, properties of interest are described to allow
the definition of a specific part of the machine learning task,
e.g. specific aspects of the pre-processing like in figure 2.
Additionally, figure 2 depicts the hierarchical composition of
the stereotypes. On top, there is the ML stereotype defined in
common, allowing to indicate all derived stereotypes belong to
the definition of machine learning tasks. This is useful in case
multiple metamodels are integrated in a modeling approach
and model transformations shall be applied to only machine
learning concerns. The layers below can be defined as abstract
(italic letter of the name) or black-box stereotypes, indicating
a functionality is not yet defined in detail and require further
investigation during the elaboration of the machine learning
task. With each layer, the following stereotype inherit the
attributes from the parents. With the inheritance and the black-
box stereotypes, the iterative investigation of the SysML model
can be achieved by various experts from different domains.
The described hierarchical definition of the stereotype is
applied in the other packages as well.

B. Implementation Structure

In CRISP-DM, each step represents a specific concern
required to implement machine learning. The knowledge
needed regarding business and data understanding is implicitly
formalized within the SysML model. The data understanding
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Fig. 3. The Implementation Structure Aligned with CRISP-DM

is partly modeled by the concerns of data interfaces as defined
in section III-D. Figure 3 shows the package structure aligned
with the phases of CRISP-DM. The business understanding
consists of diagrams representing the engineering viewpoint
of the system. The data understanding package consists of
blocks and block definition diagrams describing the interfaces
and related artifacts from the engineering system, e.g. specified
from stereotypes in figure 5. The next step of CRISP-DM
is one of the most crucial, the data pre-processing. In this
step, the data is transformed and rearranged for usage in the
modeling. Therefore, in this packages various methods on
transforming data are defined. The defined methods in figure
2 are just an example of the definition. The last packages
consist of algorithm modeling, describing available machine
learning methods, like linear regression. The evaluation pack-
age consists of mathematical proofs like mean average error
so to measure the success of the machine learning approach.
Finally, the workflow package puts the different parts in a
logical order of execution using a state machine.

C. Syntax and Semantics of the Implementation

The syntax of the implementation is derived from the
SysML syntax and therefore, connections between elements
are modeled accordingly [7]. Figure 4 depicts a sample of a
shared directed association between two parts of the system. A
shared association consists of a white tail diamond indicating
the whole component and a head with an arrow showing the
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Fig. 4. The applied Syntax derived from SysML and Semantics with custom
Stereotypes

connection is directed with the part component [7]. A directed
association indicate that the whole component is aware of the
part component but not vice-versa. The shared association is
used to indicate that a part component can still be valid without
the whole component, e.g. the date conversion on top right of
figure 4 consists of a CSV file shown on top left, which is still
a valid component even if the date conversion is not available
anymore. Figure 4 additionally shows the application of a
stereotype to define a specific behavior, e.g. output format of
the date conversion on top right or the property weather in the
encoded values block below originating from the Merge DF
block. Additionally, the application of specific datatypes in
the CSV block is shown. In the middle, the Merge DF block
shows that multiple connections can be drawn in case multiple
inputs are required. If a stereotype misses a property, the one
who formalizes the task in the model can add the property
to the block without extending the metamodel. Therefore,
flexibility and extensibility is given.

D. Sensor and Data Interface Modeling

In systems engineering, the integration of multiple system
configurations during the design phase might be required [27].
The configuration of a system is indicated with a variation
configuration stereotype as specified by [27] and depicted on
top of figure 5. This sample shows the readily integration of
multiple metamodels in the given approach. The configuration
properties can be interpreted as interfaces of the system since
the properties are either sensors or application programmable
interfaces (API). The definition of configurations is out of
scope. Still, if one adds properties to a configuration without an
interface, the property must not be reflected in the realization
of the machine learning task. The realization association,
depicted as a white dashed arrow defines the output of the
system, depicted as CSV files in this sample. With the realiza-
tion association, the bridge between system components and
data artifacts is established and the definition of the content
of the file or other data structure like SQL Servers or other
PLM systems is given.
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Fig. 5. Sample of the Mapping between Sensor Data and the File Format
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Fig. 6. Sample Implementation of an Algorithm

E. Integration of Predefined Methods and Workflow Modeling

Referring to the description of the metamodel extension in
section III-A, specific parts of a machine learning algorithm
can be predefined. These parts are used in the modeling of
a machine learning task so to define a particular behavior
and related activities to be done during the implementation of
the application. Figure 6 depicts a sample of the integration
of predefined stereotypes. The block on top right shows the
application of a regression algorithm, specified as random
forest regressor. The stereotype optionally defines properties
that guide a user to specify concerns of interest. However,
it is also possible to add user-defined properties to a block,
as shown in the block on the top right with the attribute
max depth.

The process of defining specific aspects of a machine
learning algorithm is executed iteratively. The last brick of
the method consists of modeling the execution path of the
machine learning application using workflows, formalized as
state machine. In this approach, state machines are used rather
than activities due to the level of abstraction required in
this development phase and the lower complexity for various
stakeholders to specify and understand the model. Each state is



Learning Workflow

«ML_Block_Connection»
Load_CSV1

«ML_Block_Connection»
Load_CSV2

«ML_Block_Connection»
Convert_Date

«ML_Block_Connection»
Merge_DFs

«ML_Block_Connection»
SplitInTrainTest

«ML_Block_Connection»
ML_Model_DecisionTreeRegressor

«ML_Block_Connection»
ML_Model_RandomForestRegressor

«ML_Block_Connection»
Predict_DecisionTree

«ML_Block_Connection»
MAE

«ML_Block_Connection»
Predict_RandomForest

«ML_Block_Connection»
Encode

 Start

 Done
 

 

 

 

 

 

 

 

 

 

 

 

   

 

  

 

    

 

Fig. 7. Sample Integration of the Workflow

connected using a stereotype with a block having a stereotype
inherited from ML from the common package. A sample of a
workflow for machine learning is depicted in figure 7. Each
block consists of a ML Block Connection stereotype, which
consists of a connection to the blocks like in figure 6. The
formalization of more detailed workflows can be modeled if
necessary using SysML activities and activity diagrams, which
is currently not part of this work.

IV. DISCUSSION

In this section, the newly introduced method is discussed.
The structure of the section is as follows: First, the extension of
the metamodel and the proposed structure of the implementa-
tion model are discussed. Next, the benefits and shortcomings
of the modeling semantic is assessed. Finally, the integration of
PLM interfaces and workflows using state machine diagrams is
discussed. Each section highlights necessary work to improve
the maturity of the approach by describing tasks for future
work.

A. Metamodel and Structure of Implementation

The integration of an extended metamodel in SysML has
been shown in a small sample. The generic hierarchical
structure allows the individual extension without the need
for defining any method or functionality that is required in
the future. Although various aspects of a machine learning
task definition can be reflected using parts from the machine
learning community, the complexity of understanding how
to program a machine learning application is still required.
With the given template for the structure of the machine
learning task definition, a first step towards supporting the
interdisciplinary and unified definition is done. However, fur-
ther investigation on the formalization is required to support
the advantage of black-box modeling further.

B. Complexity of Unambiguous Modeling

With the inherited syntax from SysML, a broad range of
rules and possibilities are defined, also applicable for the
definition of machine learning tasks. The introduced semantic
allows the interpretation of connections between different parts
of the model. However, with increasing data properties, the
number of blocks and subtasks to process the data increases
and therefore unwanted associations can be created. These
ambiguous associations harm the understandability and might
lead to complicated interpretations, e.g. application of date
conversion on a number of attributes without a date attribute.

The introduction of model validation to assess the connections
of a block with respect to the stereotypes could support to
avoid the fuzziness and inconsistency of the model. Although
the complexity increases with the number of data properties
and PLM interfaces, the formalization of machine learning
tasks supports the development of such computational support
due to the preservation of knowledge and the possibility to
reuse specific parts, which further leads to a reduction of
cost and risk in the design [28]. However, the impact of the
method in industry still needs to be proven. Additionally, the
integration of model transformation to decompose the SysML
model and derive executable machine learning code using
dedicated programming languages is open for future work.
This might lay a basis for the implementation and further
support the development of machine learning in practice.

C. Integration of PLM and Workflow Definition

The integration of data from various data sources allows
using the actual infrastructure. With the stereotype-based def-
inition of high-level interfaces like SQL server connections,
files or API interfaces can be integrated. The application of
state machines allows the readily definition of an executable
workflow of the defined functionalities. However, the pro-
gramming of the various steps is still required. Therefore,
future work consists of defining executable workflows with
the integration of workflow engines like centurio.work [29].
With the workflow engine, the automatic gathering of data is
enabled, which has been shown to be a core part for data-
driven design using data from shopfloors [30].

D. Potential Disadvantages

Specific technologies or proprietary interfaces might be hard
to describe, leading to additional effort, which can delay the
implementation of machine-learning components. In the long-
term this disadvantage might be an advantage, as it ensures
the proper documentation of the implemented technologies.
Furthermore, for huge projects, the complexity of the resulting
models might be very high, including potential errors in the
model, which might be very hard to find and thus lead to
additional communication effort. Again we think that, as the
models serve as the foundation for an implementation, and thus
as a documentation of the implementation, despite potential
additional effort, the benefits for replicability, maintainability
and thus flexibility in the long-run will trump short-term de-
lays. Finally, to leverage on the advantages of the model-based
approach, the implementation of advanced model lifecycle
management [31] is required so to support the working on
chunks of a model without blocking further implementation
and additionally, to allow the comparative work on various
versions of a model.

V. CONCLUSIONS

In this work machine learning task definition using means of
SysML is depicted. Particularly, the metamodel of SysML is
extended so to enable the integration of relevant concerns from
the data science community and the CRISP-DM methodology.



With the model-based systems engineering integration and the
involvement of various stakeholders from different disciplines,
an improvement in communication is expected. The approach
is explained using a running sample. Future work will consist
of validation in a case study and the applicability of model
transformation to derive executable machine learning code as
a basis for the implementation.
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[30] S. Rädler, J. Mangler, and E. Rigger, “Requirements for Manufacturing
Data Collection to Enable Data-Driven Design,” in 14th CIRP Confer-
ence on Intelligent Computation in Manufacturing Engineering, Gulf of
Naples, Italy, Jul. 2021, noCitationData[s0].

[31] A. Fisher, M. Nolan, S. Friedenthal, M. Loeffler, M. Sampson,
M. Bajaj, L. VanZandt, K. Hovey, J. Palmer, and L. Hart, “3.1.1 Model
Lifecycle Management for MBSE,” INCOSE International Symposium,
vol. 24, no. 1, pp. 207–229, 2014. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2014.tb03145.x


