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Abstract. Process compliance verification ensures that processes ad-
here to a set of given regulatory requirements which are typically as-
sumed to be available in a formalized way using, e.g., linear temporal
logic. However, formalized requirements are rarely available in practice,
but rather embedded in regulatory documents such as the GDPR, re-
quiring extraction and formalization by experts. Due to the vast amount
and frequent changes in regulatory documents, it is almost impossible
to keep formalized requirements up to date in a manual way. Therefore
this paper presents an approach towards compliance verification between
natural language text and event logs without the need for requirements
formalization. This enables humans to cope with an increasingly complex
environment. The approach focuses on quantitative temporal require-
ments (QTCR) and consists of multiple steps. First, we identify clauses
with temporal expressions from process descriptions. Second, we generate
a set of QTCR by mapping the retrieved clauses to event log activities.
Finally, in the third step, we verify that the event log is compliant with
the QTCR. The approach is evaluated based on process descriptions and
synthesized event logs. For the latter, we implement time shifting as a
concept for simulating real-life logs with varying temporal challenges.

Keywords: Compliance Verification · Temporal Compliance Require-
ments · Natural Language Text · Process Descriptions · Event Logs

1 Introduction

Business process compliance aims at ensuring that business processes adhere to
the constraints that are imposed on them and is a crucial task for companies
as non-compliance can lead to severe fines. Compliance verification as the task
of verifying process models or event logs against constraints and determining
compliance violations has therefore been addressed extensively in the literature.
However, most compliance verification approaches require already formalized
compliance constraints [4,17,27]. Consequently, compliance verification can be
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time-consuming, requires expert knowledge, and might hence be error-prone.
Therefore, it is desirable to directly verify compliance of event logs with the
source of compliance constraints which are natural language texts, e.g., process
descriptions, internal policies, or regulatory documents. Compliance assessment
between process models and natural language text has been addressed [28], but
approaches for direct compliance verification of natural language text with event
logs are, to the best of our knowledge, missing. Due to the complexity of textual
descriptions and their interpretation, in this paper, we focus on one aspect of
compliance requirements, i.e., temporal requirements, since “time is one of the
most important dimensions that a compliance rule language must tackle” [17] and
second most mentioned perspective in literature after control flow as stated in
[27]. Moreover, we consider process descriptions as representative of natural text
documents in order to tame the complexity of arbitrary regulatory documents.

The restrictions described in temporal compliance requirements are delimited
by temporal information, which is defined as the information used to sequence
events and quantify their duration or gaps between them. Temporal information
can contain both quantitative and qualitative temporal expressions or relations
between these types of expressions [17,20]. An example of a requirement in-
cluding a qualitative temporal expression is: activity A must be executed before
activity B. This emphasizes the importance of arranging activities in the proper
sequence within the process control flow. Our paper focuses on quantitative
temporal expressions, which gave rise to the concept of Quantitative Tempo-
ral Compliance Requirements (QTCR) which augment activity executions with
temporal conditions, e.g., activity A must be completed within 10 days. A QTCR
must contain a quantitative temporal expression, however, might not contain
qualitative temporal expressions or relations between both of them. This paper
aims to explore how to directly verify quantitative temporal compliance require-
ments expressed in natural language texts over event logs.

The approach takes a process description in natural language text and an
event log as input and outputs a set of QTCR violations. The identification of
QTCR is a challenging task that involves i) generating one QTCR, which consists
of the temporal expression and its related activities, for each temporal expression
extracted from the process description, and ii) utilizing event log information to
extract a set of unique labels from the label attribute. The QTCR are then paired
with the most similar label from this set. Once the QTCR are built, the event
log is used to extract the desired set of violations, taking into consideration the
label, timestamp, and life cycle transition of each event. The latter is essential
for reasoning the duration of activities.

The remainder of the paper is structured as follows. First, the problem state-
ment and challenges are outlined in Sect. 2, followed by the foundations for
identifying QTCR from natural language texts in Sect. 3. The verification ap-
proach is described in Sect. 4 and evaluated in Sect. 5. Sect. 6 discusses the
evaluation results and limitations of the approach, while Sect. 7 outlines related
work. The paper concludes in Sect. 8.
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2 Problem Illustration and Challenges

Figure 1 depicts an artificial running example illustrating the problem addressed
in this paper, i.e., extracting QTCR from a process description (top left) and
verifying whether they were violated or not based on an event log (bottom left).
The corresponding process model is depicted on the right and will be picked up
in the data generation section in Sect. 5.
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Process Description

The quince harvesting process takes place in October and November.
Every day, from 7am the manager checks that the plantation has not 
been affected by codling moth. If it is affected that day's production is 
interrupted. The employees begin to pick the fruits at 8am, when the 
quinces have almost no dew. If the workers have not taken a break 
before 1pm, the manager reminds them that they should take a 
break soon. 7 hours after the employees started picking the 
fruits, the trucks come and the employees load them at most until 5pm.
The supervisor notes down the spoiled fruit not later than 30 minutes after
the trucks have been loaded. In the evening, the supervisor reports the total
number of kilos collected and the hours the employees have worked.

Event Log

Case ID

Event Attributes

Timestamp Activity Lifecycle Transition

03-11-2022T16:00 load trucks startC1

...

...
03-11-2022T17:27 start spoiled fruit

data collection
startC1

C1 03-11-2022T16:57 load trucks complete
30

minutes

...

04-11-2022T16:00 load trucks startC2

04-11-2022T18:36 start spoiled fruit
data collection

startC2

C2 04-11-2022T16:42 load trucks complete
114

minutes
x

BPMN Process Model
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Fig. 1. Running Example: Agriculture Logistics Process

In Fig. 1 all quantitative temporal expressions present in the process de-
scription are marked in bold font, e.g., before 1 pm. Temporal expressions in our
context are parts of text containing temporal information. QTCR are in turn
temporal expressions combined with information on activities they refer to. In
order to enable compliance verification of QTCR based on an event log, we, first
of all, have to identify all sentences containing temporal expressions from the
process description. Afterwards, the sentences are processed in order to process
activities and their temporal relations resulting in the desired QTCR.

To illustrate this, consider the sentence marked in orange: The supervisor
notes down the spoiled fruit not later than 30 minutes after the trucks have been
loaded.. The relevant elements for QTCR verification are: i) (not later than) 30
minutes after, ii) trucks have been loaded, and iii) the supervisor notes down the
spoiled fruit. This leads us to Challenge 1: How to extract and normalize temporal
expressions from text, where first, we need to determine the type of temporal
statement which can be either explicit, implicit, relative, or unspecified (for
details cf. Sect. 3, Tab. 2). In the example, the temporal expression is relative
because the timestamp is built by counting 30 minutes after the trucks have
been loaded, indicating the duration of the time lag between two activities (load
trucks and start spoiled fruit data collection). However, if the QTCR would
be: after 4 pm, the supervisor notes down the spoiled fruit, then it will be an
explicit temporal expression, determining the starting of an activity. Together
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with the temporal extraction, normalization is required, which makes temporal
expressions comparable. For instance, the system should automatically deduce
that 30 minutes and half an hour represent the same temporal expression. Once
temporal expressions are extracted and normalized, we tackle Challenge 2: How
to extract activities that are related to temporal expressions and their temporal
relations. Some temporal restrictions affect the whole process, a single activity
or, as in the example, a set of activities, where in this case, in addition, we
need to consider specific signal words like before and after in order to derive the
relations between activities. This challenge also covers identifying the involved
life cycle transitions, e.g., 30 minutes after refers to the completion of an activity
(load trucks), but also indicates the starting of another (start spoiled fruit data
collection).

When having extracted activities and their temporal relations from the tex-
tual source, we scan the log for corresponding events. Hereby, we cannot assume
to have exactly the same labels in the event log as in the process description.
Therefore, we need to cope with text similarity aspects. (→ Challenge 3: Include
a notion of label similarity). From the event log perspective, at least the event
attributes event label, timestamp, and eventually, life cycle transition start and
complete must be present in order to enable compliance verification. All three
attributes are described within the XES standard [2] and constitute rather ba-
sic assumptions. Once we have mapped all relevant elements from the process
description onto corresponding events of the event log, we can verify the QTCR.

3 QTCR Elicitation from Natural Language Text

One prerequisite of the presented approach is to identify how QTCR are phrased
in natural language texts. In order to come up with a holistic view of this aspect
we consider multiple sources to derive a set of possible QTCR phrases in natural
language texts. In the following, we study literature on patterns for quantitative
temporal expressions, also called time patterns, in the business process manage-
ment and medical context, elicit and compare those time patterns with process
descriptions, and propose to use an extension of Heideltime [25] for extracting
time patterns from natural language text.
Process time patterns. [26] presents 15 temporal compliance rules (Petri Net
oriented) and [16] 10 time patterns (workflow patterns) where [16] covers all
the patterns presented in [26] and includes two additional patterns, i.e., Time-
Dependent Variability, and Periodicity, that cannot be fully represented based
on Petri Nets. [12] introduce multiple time patterns for BPMN, e.g., Shifted
Duration of an Activity with Reset (Hospitalization must last between 24 and 36
hours. If the patient has a fever after 30 hours, the duration count is reset and will
re-start after fever disappears.[12]), and Shifted Duration of an Activity (Effective
antibiotic therapy for endocarditis should last between 2 and 6 weeks, which are
counted starting from the first day of negative cultures.[12]). These patterns can
be constructed as the combination of patterns presented in [16,26], plus an extra
constraint that shifts the starting reference to count time, demonstrating the
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complexity of temporal constraints. The semantic analysis of the predicates with
quantitative temporal constraints is not considered in [12,16,26].
Process descriptions. [14,15] provide a set of well-established process descrip-
tions. First, we select the process descriptions containing QTCR and identify
common process time patterns among them. The patterns found in the process
descriptions cover 9 out of 10 time patterns presented in [16], and all patterns
provided in [26] (cf. Tab. 1). Note that in [16] the Pattern Time Lag is split
into two patterns, Time Lag Between Events and Time Lag Between Activities.
However, in our case, we have considered them together since in our setting we
are abstracting to event labels.

Time Pattern Example taken from Process Description

Time Lag If no response is received after five days, a reminder is
sent to the claimant.

Duration
If the request is not finished within 30 days, then the
process is stopped and the employee receives an email
cancellation notice and must re-submit the expense report.

Fixed Date Halfway the week, on, a staff meeting of the
entire medical team takes place.

Schedule Restricted
Every morning, the files which have yet to be processed
need to be checked, to make sure they are in order for the
court hearing that day.

Time-Based In a small claims tribunal, callovers occur once a month,
to set down the matter for the upcoming trials.

Validity Period
Every day, from 7am the manager checks that the
plantation has not been affected by codling moth, if it is
affected that day’s production is interrupted.

Cyclic Elements On Day 14, the Internet service is suspended until
payment is received.

Periodicity
The process starts periodically on the first of each
month when Assembler AG places an order with the
supplier in order to request more product parts.

Table 1. Time Patterns Retrieved from the Set of Process Descriptions

According to Tab. 1, each morning is classified within pattern Schedule Re-
stricted because it refers to a fixed schedule. However, by analyzing the phrase
semantically it could also be classified as Periodicity because it refers to a peri-
odical recurring process element. Further, we can observe that five days, belongs
to Time Lag, it corresponds to the time between activities, but it could also be
seen as a Validity Period because after those five days, the reminder is sent.

From the natural language processing point of view, these patterns help to
understand the type of data we have, but they do not allow us to reach an
automatic classification. Besides, they do not follow a standard temporal pat-
tern nomenclature, which makes it unfeasible to compare with other temporal
patterns proposed in the past. [16] emphasize that time constraints often come
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as a side note, or as text added to the process specification, and might change
depending on the process implementation.

Medical domain. For these reasons, we consider literature outside the busi-
ness process management community. In the medical domain, the TimeML [21]
(ISO-TimeML [22] based on the TIDES standard) has been consolidated, which
is used to extract and normalize temporal information, events, and their rela-
tions. It follows Allen’s interval algebra [13] for reasoning about quantitative
temporal information, which defines the 13 possible temporal relationships that
exist between two temporal intervals [7]. Temporal information is well defined
when, given two points in time or two intervals, the relationship between them
can be recognized. [6] survey diverse methods and corpora for the extraction of
temporal relations in clinical-free texts. In this survey, those who obtained the
best results made use of TimeML, and Time Ontology in OWL [1], among other
time-related schemas and ontologies. In [5], they present an ontology of temporal
concepts that extend Allen’s interval algebra to handle uncertain time intervals,
making it possible to solve some of the problems presented in [16].

In order to take advantage of the research done in the medical domain and
align the common objectives of both communities, we decided to extract the
quantitative temporal expressions from the text following the TimeML patterns,
in particular, by following TIMEX3, its sub-standard that describes time. Within
the tools used to extract temporal annotations, the following stand out: Heidel-
time [25] (rule-based), SUTime[11] (rule-based), and spaCy’s extension timexy1.
The last one is not evaluated yet in the existing datasets, such as TempEval-32

from SemEval workshop, therefore we excluded it. We used the web interface
presented in [8] to test Heideltime and SUTime. The one that was able to iden-
tify temporal expressions from [14,15] with a higher scope was Heideltime. To
improve the results given by Heideltime, a set of new rules was added, to cover
temporal expressions which can be found in the context of business process man-
agement, e.g., first working day of the month or day 1. The new set of rules can
be found in the repository. Heideltime introduces the concept of Realization of
point expression [25], which encompasses all possible temporal expressions that
can be found in natural language, allowing its normalization. Tab. 2 shows an
example of each type of realization, together with the four different found types.

Realization Compliance Requirement TIMEX3 Normalized

Explicit staff meeting on Wednesday DATE 2022-11-23
Implicit in the evening, the supervisor reports it TIME XX-XXTEV
Relative 30 minutes after the trucks have finished DURATION PT30M
Unspecified callovers occur once a month SET P1M

Table 2. Realization and TIMEX3 Annotation Example

1 https://pypi.org/project/timexy/, last access: 2023-03-24
2 https://paperswithcode.com/dataset/tempeval-3, last access: 2023-03-24

https://pypi.org/project/timexy/
https://paperswithcode.com/dataset/tempeval-3


Verification of Quantitative Temporal Compliance Requirements 7

TIMEX3 of type DATE are points of granularity day, month, or any greater,
while the type TIME refers to a granularity smaller than a day (e.g., minutes).
The type SET represents a periodical aspect of an event, describing a set of
times or dates, or frequency within a time interval (e.g.,once a month). Explicit
realizations of point expressions correspond to DATE s or TIME s, they do not
need further knowledge to be normalized. However, implicit expressions need a
point from which to normalize, as for example in the temporal expression in the
evening it is required to know from and until when is considered to be evening,
they must be defined by a user. Furthermore, in our particular use case, it is
common to see expressions like working days, they must be defined by an user.
Relative types cannot be normalized unless there is context information, as we
can see in Tab. 2 it is necessary to know when the trucks have finished.

4 QTCR Verification Approach

Figure 2 depicts the proposed QTCR verification approach. The first step in-
volves annotating temporal expressions from the process descriptions. These can
be defined as abstract concept that contains the title of the process description,
the original sentence, the identified time together with its TIMEX3 type, and
its normalized value. Afterwards, we create one QTCR per annotated tempo-
ral expression through several intermediate steps (cf. sub-process in Fig. 2).
Within this sub-process until the fifth step the knowledge from the event log is
not required. In the last step, we determine QTCR violations. The approach is
illustrated based on the running example presented in Sect. 2.

Step 1: Build
Annotated
Temporal

Expressions

Process
Description

Create One Requirement per Temporal Expression

Step 2:
Identify

Reference
Time

Step 4:
Identify
Process
Element
Scope

Process
Scope?

Step 5:
Extract Set of
Unique Event

Labels

Step 6: Map
Clauses and
Event Labels

Step 7:
Extract Linked

Signals and
Negation

Prepared
Event Labels

Step 3:
Identify Type

of Clause

Step 8:
Determine

QTCR
Violations

Event Log

Prepared
Event Labels

ye
s

Fig. 2. Overview of QTCR Verification Approach

Step 1 - Build Annotated Temporal Expressions. Within this step, we,
first of all, identify all sentences containing at least one temporal expression, i.e.,
in the case of the running example presented in Sect. 2 all sentences containing
terms in bold font. Phrases without temporal expressions are not considered. We
annotate each temporal expression using our extended version of Heideltime, as
described in Sect. 3, resulting in a set of annotated sentences. Consider, e.g., the
sentence from the running example: The supervisor notes down the spoiled fruit
not later than 30 minutes after the trucks have been loaded. As we can deduce
from Tab. 2, the identified time 30 minutes will be annotated as DURATION,
with a normalized value equal to PT30M. In the next step, we underline that, in
order to complete its normalization in this case, context information is needed.
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Step 2 - Identify Reference Time. At the end of Sect. 3, it was indicated that
the relative realizations of point expressions, those of DURATION type, require
a reference time in order to be correctly normalized. In our running example, the
reference point is the instant (timestamp) corresponding to the activity when
the trucks have been loaded (life cycle transition equaling complete). However,
if we find expressions, implicit or unspecific, it is not necessary to calculate the
reference point because their normalized temporary expressions already contain
enough information. In this case, the beginning of each instance of the event log
is taken as the reference point, e.g., if the first activity in the event log started on
the 21st of November of 2022, then the expression Wednesday will be normalized
as 23-11-2022. Step one and two address Challenge 1.

Step 3 - Identify Type of Clauses. Time constraints that are contained
within conditional clauses have to be treated differently than those contained
in declarative clauses. Conditions represent decisions that vary the control flow.
This prompts us to differentiate between declarative, condition, and consequent
clauses. By looking at the running example, in the sentence: If the workers have
not taken a break before 1 pm, the manager reminds them that they should take
a break soon, we can see that the manager reminds the workers, after 1 pm,
to take a break only if the workers have not taken a break before 1 pm. This
means that if they took the break before 1 pm they should not be reminded.
Our approach splits this sentence into two clauses, one containing the condition
clause and the other containing the consequence clause. In the following, steps
is shown how each of those clauses is mapped with their corresponding activities
and restricted time expressions (i.e. a temporal expression plus a signal). From
this step until step number seven the Challenge 2 is addressed. As mentioned in
[16], temporal restrictions can be adjusted to different process elements (single
activity, activity set, process model, or set of process instances), if the sentence
has any conditional clause then the time restriction will affect a set of activities.

Step 4 - Identify Process Element Scope. Temporal expression boundaries
can also refer to the general scope of the process by limiting the start and
completion time of the first or last activity, e.g., the quince harvesting process
takes place in October and November. It is clear that the temporal expressions
October and November constitute a boundary for the duration of the process.
By looking at Fig. 2, we can see that when the QTCR delimits the full process,
then steps five and six of the approach are not needed because for instance, the
only involved activities are the first, the last activity, or both. Otherwise, if the
sentence refers to a specific activity then steps 5 and 6 cannot be left out.

Step 5 - Extract Set of Unique Event Labels. This step takes the event log
as input and identifies all possible unique event labels from all traces. Moreover,
the labels are transformed into a lemmatized bag-of-words representation. In the
running example, the event label load trucks is transformed into {load, truck}. As
during the next step, i.e., the mapping, we make use of similarity computations
between activity and event labels, we ensure via such pre-processing, that noise
is reduced and only relevant terms contribute to the comparison. The prepared
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labels can now be compared with the clauses present in the sentence containing
the temporal expression in the next step.

Step 6 - Map Clauses and Event Labels. After extracting the set of unique
event labels from the event log, and identifying the different types of clauses
present in each temporal expression sentence, each clause is turned into a lemma-
tized bag-of-words representation. The mapping between the lemmatized clauses
and lemmatized event labels is performed by computing the cosine similarities
between the embedding of tokens from all the event labels (from the event log),
and the clauses (from the sentences containing a temporal expression). This task
addresses Challenge 3 and was carried out by using BERTScore3 [29], a method
used for automatically evaluating the performance of text creation systems. The
running example sentence contains these two clauses the supervisor notes down
the spoiled fruit and the trucks have been loaded. If we look at the event log label
candidates extracted for the first clause the first top two are Collect Spoiled Fruit
Data and Start Spoiled Fruit Data Collection, while for the second clause, they
are: Trucks Arrive (3 pm) and Load Trucks. After identifying which event log
label each clause belongs to, we proceed to identify signal words and whether or
not negative constraints are present (e.g., the staff meeting is never on Wednes-
day).

Step 7 - Extract Linked Signals and Negation. After knowing which ac-
tivities are detected for each temporal expression, we proceed to extract their
relations. This step is taken after the others in order to know to what activity
or temporal expression belongs to each relation, otherwise in cases where in the
same sentence there are more than one temporal expressions we could not dis-
tinguish between the relations from each of them. For example in the sentence
7 hours after the employees started picking the fruits, the trucks come and the
employees load them at most until 5 pm, the signal after will be linked with the
activity started picking the fruits and the temporal expression 7 hours, while the
signal until will be linked to load trucks and 5 pm. We summarize the signals in
three categories: AFTER, BEFORE, and IN, which represent all of them. Then
we check if the clause is negated to see if the temporal requirement has to be
excluded, e.g., this must not happen in October. Lastly, we identify based on the
extracted data the life cycle transition (start, complete, or both) corresponding
to each QTCR.

Step 8 - Determine QTCR Violations. This step takes as input the event
log and the extracted requirements and delivers all QTCR violations. For each
requirement, it must be verified that the process or activities belonging to the
consequence or declarative type have the desired timestamps and states, other-
wise, they are considered violations. Consider again the running example Fig. 1.
The extracted temporal requirement identified contains the temporal expression
of 30 minutes (of type DURATION, and norm. PT30M ) Tab. 2, and the follow-
ing activities involved Tab. 3. This allows to automatically check if the event log
trace meets the requirement of: by counting 30 minutes from the timestamp cor-

3 https://github.com/Tiiiger/bert_score, last access: 2023-03-24

https://github.com/Tiiiger/bert_score
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responding to the complete state of the load tracks activity, all the traces from
start spoiled data fruit collection (both started and finished) should be before.

Event Log Label Type Status Signal Reference

truck load declarative complete in true
start spoiled data fruit collection declarative start & complete before false

Table 3. Requirement Extracted from Running Example (short version)

5 Evaluation

The QTCR verification approach is prototypically implemented4 in Python 3.10
using the tools and packages mentioned in Sect. 4 and additionally using NLTK 5

and the Python Heideltime Wrapper6. The data set7 for evaluating the approach
is based on 14 process descriptions from [14,15] and the running example. The
data generation part is outlined in Sect. 5.1 and the evaluation results are de-
tailed in Sect. 5.2. Each of the 8 steps in the approach has been evaluated inde-
pendently and in addition, we provide an overall end-to-end evaluation result.

5.1 Data Generation

For the data generation part, we started by modeling the process descriptions
using the Cloud Process Execution Engine8 (CPEE) [18,19,24]. For each of the
scenarios, we created executable models with the following properties: i) the
labels follow the text as close as possible, ii) the duration of tasks is correct in
relation to each other, but is scaled down to seconds, iii) the duration of tasks
slightly varies so that both successful executions as well violations are possible
(according to the scenario text), and iv) we included some plausible data flow,
to aid future work based on the generated logs.

Based on these simple models, which albeit only span the duration of some
seconds, we introduced a time-shifting mechanism, to generate logs that span a
realistic time frame based on the description in the scenarios. The time-shifting
algorithm works based on a set of annotations to the process model:

– Start Event:
• Multiplication Factor (MF): how much should the duration in seconds

be scaled up, e.g., if the value here is "1 hour" then every second is scaled
up to one hour.

4 https://www.cs.cit.tum.de/bpm/software/, last access: 2023-03-24
5 https://www.nltk.org/
6 https://github.services.devops.takamol.support/PhilipEHausner/python_
heideltime, last access: 2023-03-24

7 https://www.cs.cit.tum.de/bpm/data/, last access: 2023-03-24
8 https://cpee.org, last access: 2023-03-24

https://www.cs.cit.tum.de/bpm/software/
https://www.nltk.org/
https://github.services.devops.takamol.support/PhilipEHausner/python_heideltime
https://github.services.devops.takamol.support/PhilipEHausner/python_heideltime
https://www.cs.cit.tum.de/bpm/data/
https://cpee.org
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• Starting Point (SP): a natural language expression for shifting the start
of the process, e.g., an arbitrary date and time might be used as a start.
Another important requirement is, that this expression can be dynam-
ically set when instantiating this process, to allow for the creation of a
series of logs for different days or months.

• Random +/- Starting Shift (R): a small piece of code that returns the
amount of time to add or subtract from the starting point. As this can
include logic for random values, instantiation the process multiple times
leads to variations in the resulting logs.

– Activity:
• Type (T): an activity might either be shifted to have (a) a specific du-

ration (DUR), or (b) a specific end (END). For both cases all the sub-
sequent task start events have to be shifted, for case (b) the duration of
the task has to be adjusted accordingly.

• Expression (E): a natural language expression. Again code snippets can
be provided, to realize randomness.

For the running example presented in Fig. 1, the following values were chosen:
1 utilizes a fixed (MF) of 1 hour, a fixed starting last (SP) (e.g., 2022-11-01),

and a random starting shift (R) of 15 minutes. In 2 (T) is set to (END) and
(E) to a random range of 0 to 15 minutes after 08:00. In 3 (T) is set to (END)
and (E) to 13:00. Finally in 4 (T) is set to (END) and (E) is set to 15:00 plus
a random range of 0 to 15 minutes. We then executed this file 50 times, which
resulted in a varied set of logs, which contain both violations and successful
executions (see footnote 7).

5.2 Evaluation Results

In order to cope with the fact that errors can add up throughout the approach,
we provide intermediate results for each of the steps taken in the approach as
presented in Sect. 4. To do so, we define the following evaluation targets. We
measure precision, recall, and F1 score for temporal expression extraction and
annotation with evaluation targets a) original Heideltime rules and b) including
the updated Heideltime rules covering Step 1. Moreover, we evaluate c) the
identification of reference time for Step 2, d) the type of clause for Step 3, e)
process element scope for Step 4, f) event log labels mapping for Steps 5 and 6,
g) signals and negations for Step 7, and h) identification of QTCR violations for
Step 8.

All 14 selected process descriptions from [14,15] as well as the running ex-
ample are used for evaluating a) and b). For evaluation target a), i.e., using the
original version of Heideltime we received a precision of 0.9091, recall of 0.6452,
and F1 score of 0.7547. Updating the Heideltime rules ( 7→ b)) results in a pre-
cision of 0.9744, recall of 0.9268, and F1 score of 0.9500. Those scores are an
average overall of 15 process descriptions. The included rules provided support
for temporal expressions found in business process descriptions, where they talk
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about workdays, processing times, etc. However, the new rules do not completely
allow for the identification of temporal expressions that refer to past or future
activities, such as at the same time as the next activity is being executed.

Considering the temporal patterns and their possible phrasing as outlined
in Sect. 3, we selected 4 process descriptions (including the running example)
that are covering all possible QTCR phrases and are therefore representative for
further evaluating targets c) to h). For each process description, we generated
synthesized event logs with 50 traces each, as stated in Sect. 5.1.

After the evaluation of c) we observed that we were able to distinguish be-
tween the requirements that refer to the start or completion of another activity,
an activity including shifting, or the starting of the process. In all the scenarios,
the different types of clauses (i.e. declarative, condition, and consequence) were
identified ( 7→ d)), even for cases where a sentence contained multiple clauses
accompanied by conjunctive and disjunctive operators. Moreover, our approach
was able to differentiate whether the requirement was referring to the full pro-
cess or not (7→ e)). However, this could bring further challenges e.g., the case of
evaluating the events of the log of a sub-process that is embedded in the event
log of a general process, where not only the starting and completion of the main
process is relevant but also the related sub-process.

Process Description f) g) h)

Quince Harvesting 0.72 0.81 0.89
Meeting Related Activities 1.00 1.00 1.00
Billing Process of ISP 0.57 1.00 0.10
Expense Report 0.75 0.80 1.00

Table 4. Precision for Targets f), g), and h)

The precision scores for evalua-
tion targets f), g), and h) are sum-
marized in Tab. 4. It can be deduced
that the approach delivered in gen-
eral satisfying results. In particular,
for evaluation target f) the preci-
sion evaluates on average 0.76. The
score for Billing Process of ISP is no-
tably lower and that is due to the
appearance of sentences with similar
semantics, the differences in meaning are almost negligible even for an expert in
the field (e.g., charge late fee, debit outstanding amount). For the evaluation of
target g) we have at least a precision of 0.80 for the Expense Report example and
for half of them, we achieved again a precision of 1. The cases that failed were
due to the combination of signals, as in the case of not later than 30 minutes
after. Of the 200 traces used to evaluate h), 20% of them violated a QTCR. In
three of the scenarios, the precision was at least 0.89, however, in Billing Process
of ISP the performance was affected by the presence of incorrect labels and an
unusual QTCR that contained a compound noun referring to data attributes, i.e.
on Day 10, the transaction that failed on Day 8 is re-attempted demonstrating
the accumulation of errors within the pipeline.

The evaluation results demonstrate how our approach is capable of satisfac-
torily identifying temporal expressions (7→ a) and b)) in business process de-
scriptions along with the reference time ( 7→ c)). Each extracted expression gives
shape to a QTCR and in all the cases mentioned in Tab. 4, the clauses and the
process element scope, i.e., boundaries of the temporal expression, were correctly
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identified ( 7→ d) and e)). In the last three steps, the extraction of signals, nega-
tions, mapping between extracted clauses with the labels presented in the log,
and identification of events that violated the QTCR were evaluated (7→ f), g),
and h)). Taking the average precision obtained to evaluate these three aspects,
Billing Process of ISP was the case delivering the lowest precision accounting
to 0.55. The case with the highest precision was Meeting Related Activities ac-
counting for 1.00. The overall average precision when taking into account all four
cases is 0.80.

6 Discussion and Limitations

The applicability and limitations of the approach are discussed below.
Applicability. In the domain of process compliance verification, the applicabil-
ity of this approach is particularly relevant for organizations that need to ensure
their processes adhere to regulatory requirements embedded in natural language
text documents, such as the GDPR. For instance, consider the GDPR’s require-
ment for timely notification of data breaches to relevant authorities within 72
hours. By focusing on QTCR, the approach can efficiently identify clauses with
temporal expressions, map them to event log activities, and verify compliance
without relying on the manual formalization of these requirements. Time-shifting
can be used in this context to simulate real-life logs by introducing variations in
the time taken for organizations to report breaches, assessing the proposed ap-
proach’s ability to identify compliance issues accurately. This approach is appli-
cable to a wide range of industries and organizations, allowing them to cope with
increasingly complex regulatory environments. The evaluation using synthesized
event logs and the implementation of time-shifting demonstrate the potential
applicability to real-world scenarios, offering a more adaptable way of verifying
process compliance and addressing the challenges associated with the manual
formalization of regulatory requirements. Additionally, the manual creation of
formal rules can be error-prone and time-consuming, making it challenging to
maintain up-to-date compliance requirements, further emphasizing the need for
an automated solution like the one proposed in this paper.
Generalizability. One crucial part of the approach consists of identifying QTCR
from natural language text. In that regard, we need to cope with natural lan-
guage flexibility and a potential lack of comprehensiveness w.r.t. covering all
possible formulations of temporal compliance requirements. In particular, when
considering more complex documents like regulatory documents, we might lack
generalizability as the possibilities of how QTCR are formulated can be more di-
verse. During the mapping, one limitation of the approach relates to too similar
event labels, e.g., remind of break and take break as well as insufficient length of
event labels in the event log. For the latter consider again the running example,
i.e., the label in the event log reflecting the activity of the workers needing to
take a break is just given as break. Such short event labels make it almost impos-
sible to detect the correct mapping between event labels and activities from the
process description. This could be overcome by, e.g., including more information
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from the log file like additional event attributes, in this case, the organizational
resource. A similar observation holds for including data attributes which can
contribute to extending the semantics of the labels to enhance the mapping.
Ambiguity and lack of contextual information. Moreover, as we realized
during modeling the process descriptions for the log generation, missing activity
links and references in the texts make it almost impossible to clearly determine
which activities are involved in a temporal compliance requirement and what are
the reference points to measure compliance violations. Furthermore, according
to [9], there is a lack of objectivity in process descriptions, resulting in modelers
adopting diverse modeling styles.

7 Related Work

This paper bridges the gap between multiple topics. First, related work on
extracting process-related information from natural language text. Imperative
model extraction resulting in BPMN models is presented in [15], while [3] ex-
tract Declare models from process descriptions and [23] focus on decision model
extraction. Most recent approaches exploit deep learning, in particular, GPT-3
models for business process entity and relation extraction from natural language
texts [10]. However, those papers do not explicitly address the extraction of
quantitative temporal aspects from process descriptions as it is one of the aims
of this paper. Moreover, those works solely focus on extracting process models
from natural language text and do not touch upon compliance verification at all.
Another aspect this paper addresses is ex-post quantitative temporal compliance
verification. [4] present an LTL checker. [26] formalize 15 temporal compliance
rules allowing for checking temporal compliance rules on a process execution log
using alignments. In both cases, the formalization needs to be done manually,
i.e., compared to the presented approach it is crucial to have experts formalize
the rules based on the given natural language text. As compliance regulations
can change frequently, existing approaches such as [4,26] are not as flexible as
the approach presented in this paper since both require frequent re-formalization
and adding of newly formalized rules. For related work on extracting temporal
aspects from natural language text in the medical domain, we refer to Sect. 3.

8 Conclusion and Future Work

Compliance verification constitutes a crucial task within business process com-
pliance management. Typically compliance requirements are formalized in, e.g.,
linear temporal logic and then checked against an event log. In order to reduce the
manual effort, and errors that can arise during the formalization and cope with
an increasingly complex regulatory environment subject to frequent changes, we
have presented an approach that directly verifies quantitative temporal compli-
ance requirements in natural language text over event logs. For this, we employed
a multi-step approach based on natural language processing and evaluated it on
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a set of well-established process descriptions. The corresponding event logs were
generated using the novel concept of time shifting for the cloud process exe-
cution engine. For future work, we plan to extend the approach towards more
complex documents such as regulatory documents, data constraint verification,
and compliance monitoring at run-time, i.e., on process event streams.
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