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Abstract. Decision rules play a crucial role in business process execu-
tion. Knowing and understanding decision rules is of utmost importance
for business process analysis and optimization. So far, decision discovery
has been merely based on data elements that are measured at a single
point in time. However, as cases from different application areas show,
process behavior and process outcomes might be heavily influenced by
additional data such as sensor streams, that consist of time series data.
This holds also true for decision rules based on time series data such as
‘if temperature > 25 for more than 3 times, discard goods’. Hence, this
paper analyzes how time series data can be automatically exploited for
decision mining, i.e., for discovering decision rules based on time series
data. The paper identifies global features as well as patterns and intervals
in time series as relevant for decision mining. In addition to global fea-
tures, the paper proposes two algorithms for discovering interval-based
and pattern-based features. The approach is implemented and evaluated
based on an artificial data set as well as on a real-world data set from
manufacturing. The results are promising: the approach discovers deci-
sion rules with time series features with high accuracy and precision.

Keywords: Decision Mining · Time Series Data · Process-Aware Infor-
mation Systems · Process Mining · Process Analysis

1 Introduction

Process mining encompasses process discovery, conformance checking, and pro-
cess enhancement [1]. An important aspect of process discovery is decision min-
ing, which focuses on discovering decision points in processes and the underlying
decision rules based on event logs [15]. Existing decision mining algorithms de-
tect decision rules including data elements [13], overlapping rules [16] as well as
incorporating linear relationships between variables [14].
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However, these approaches do not take into account time series data3. Time
series data is especially relevant as many application domains collect context
data outside the process as well as inside the process in the form of time series
data, i.e. sensors, such as in [7], that might influence the process behavior to a
great extent [5], e.g., causing concept drifts [23] and driving decisions [6].

Use cases for discovering decision rules based on time series data exist in
different domains. In healthcare, for example, blood values may be decisive for
the further treatment of the patient. However, not the last blood value alone
might be important, but the overall trend of the blood samples, i.e., was the
value decreasing or increasing over time. Another example which will be used as
running example throughout the paper stems from the logistics domain and is
loosely based on the use case mentioned in [6]. The corresponding process model
can be seen in Fig. 1. Temperature sensitive cargo is loaded onto a transporter
and moved to a destination, where the cargo is unloaded and transferred to the
customer. During the transportation, the temperature is measured 15 times4. As
the transporter reaches the destination, it is checked if the temperature exceeded
25 degrees for more than three times. If that was the case, the goods are ‘NOK‘
and have to be discarded, otherwise they will be transferred to the customer.

Fig. 1. BPMN model of logistics use case (modeled using Signavio©).

The corresponding decision rule looks like follows:

Rule Running Example:

IF temperature > 25 FOR number measurements > 3 THEN discard goods.

Despite the high relevance of contextual data for process behavior [5, 4, 22,
23, 7], only [6] has addressed decision rule discovery based on time series data

3 Time series are defined as a sequence of time-stamped, or at least ordered, data with
real-valued attribute values. Note that in this paper, we do not assume equidistant
observation times.

4 Note, that the ‘Measure Temperature’ task is modelled explicitly here for illustration
purposes. However, it could also stem from an external source.
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so far, but in an interactive, non-automated way. Hence, this work tackles the
following research question:

RQ: How to discover decision rules based on time series data with high
accuracy and high precision in an automated way?

When exploiting time series data in decision mining approaches, it is im-
portant to achieve high accuracy and precision for the extracted rules, i.e., the
goal is to discover rules that represent the underlying ground truth as closely as
possible. This is important to achieve validity and robustness of the discovered
rules as well as to provide interpretable, expressive rules, and transparency [20].

To answer RQ, we first derive three decision rule patterns based on an anal-
ysis of time series patterns and existing classification techniques from literature
and use cases. In addition to the provision of necessary preprocessing steps,
this paper contributes algorithms for the discovery of the derived decision rule
patterns based on global and interval-based features as well as pattern-based
features. The output are textual decision rules that take time series data into
account. The overall approach is prototypically implemented and evaluated on
synthetic data of the running example and real-world data from the manufac-
turing domain, i.e., production of a workpiece with accompanying sensor data.
On both data sets, the approach yields decision rules with time series data at
high accuracy and precision.

Section 2 features three decision rule patterns with time series data based on
a literature analysis and use cases. Section 3 exploits the results of this analysis
to provide an approach for discovering time series based decision rules, which
is evaluated in Sect. 4 and discussed in Sect. 5. An overview of related work is
given in Sect. 6 and a conclusion is provided in Sect. 7

2 Time Series Based Decision Rules - Analysis

For building the basis for discovering decision rules with time series data, this
section analyzes literature on time series patterns and classification of time series
data, with focus on expressive, interpretable decision rules. Interpretability is
an important aspect in decision mining to provide transparent and explainable
results [12]. The results of this analysis allow for the definition of three time
series dependent decision rule patterns.
Time Series Patterns: Time series are classified into different categories, e.g.,
discrete or continuous time series, univariate or multivariate time series [11, 17].
For this paper we focus on discrete, univariate time series where separate mea-
surements are recorded on specific points in time. Multivariate time series, i.e.,
multiple time series, potentially influencing each other, will be part of future
work. Especially interesting are time series patterns, as these might be insight-
ful for underlying decision rules. In literature, different time series patterns are
defined: stationary, random fluctuations, trends, level shifts, periods/cycles/sea-
sonal variations or combinations of patterns [17]. Looking at process mining use
cases, as well as the running example in Sect. 1, we add ‘thresholds’ as a time
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series pattern. Thresholds can occur once, which is a straightforward condition,
or have to be met a certain amount of times to be decision relevant.

This leads to the following comprehensive, but not complete, list of deci-
sion relevant patterns: Stationarity, Trends, Periods/Cycles/Seasonal Varia-
tions, Shifts, Thresholds, and Pattern Combinations., cf. Fig. 2.

Fig. 2. Time Series Patterns.

Stationarity refers to a time series, where the mean stays constant over time.
A Trend is defined by an increasing or decreasing mean value. Both of these
patterns follow a linear trend. Periods/Cycles/Seasonal Variations are similar
in that the values repeatedly fluctuate over a specific time span. There are dif-
ferences, for example, cycles usually refer to longer time spans than seasonal
variations. However, for this paper, it is seen as one category, i.e., Seasonal, as
they can be analyzed similarly. If a sudden, but lasting increase or decrease oc-
curs in the recorded values or the mean changes abruptly, a Shift was detected.
In contrast, Thresholds refer to sudden, non-lasting increases or decreases. Dif-
ferent Combinations of these patterns and combinations of time series dependent
rules and other decision rules can occur as well.

Existing Approaches for Time Series Data Classification: Decision min-
ing can be understood as a classification problem, as the path that a particular
process instance takes can be seen as a category and the decision rule as classifier
[15]. Hence, we regard approaches for classification of time series data as suit-
able input for our further considerations. The simplest time series classification
approach is to treat each value of time series as a separate feature. However,
valuable information might be lost. A common approach is distance-based clas-
sification, i.e. calculating the distance between several time series and clustering
them based on the calculated distance [2]. However, for decision mining, we do
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not want to classify instances into the right category, but extract the distinguish-
ing features to formulate textual decision rules.

Other approaches focus on extracting characteristic features from time series
data to classify the instances. Which kind of features are used varies and can
be calculated either on the whole time series or only on specific parts [9]. The
generation of these features leads to a reduction in dimensionality which enables
the application of already existing classification algorithms. As additional fea-
tures enable interpretability as well as the application of existing decision mining
algorithms, these approaches seem more applicable. [3] gives a comprehensive
overview of existing classification algorithms for time series data. These algo-
rithms are classified into six categories: time domain distance-based classifiers,
differential distance-based classifiers, dictionary-based classifiers, shapelet-based
classifiers, interval-based classifiers and ensemble classifiers. The first two classi-
fiers fall into the distance-based category and are therefore not relevant for our
purpose. Shapelet-based classifiers try to identify subsequences in a time series,
that are decisive for the classification. Dictionary-based classifiers, transform
time series into representative words and subsequently compare the distribution
of words. Both of the latter approaches therefore explicitly take the distribution
of values into account. Interval-based classifiers, split the time series into inter-
vals and calculate different features on top of these intervals. Ensemble classifiers
combine the previously described approaches. In addition, several deep learning
methods [8] have been proposed. However, as we want to generate human read-
able, interpretable rules [20], we need interpretable approaches, i.e., standard
deep learning methods are not applicable. This also applies to ensemble clas-
sifiers, as they do not provide the decisive features. Shapelet-based approaches
allow to visualize the important subsequences of time series. However, they also
do not allow for the extraction of expressive, textual decision rules.

Therefore, feature-based approaches, e.g., dictionary or interval-based clas-
sifiers, are suitable for decision mining, as they enable the generation of inter-
pretable decision rules. Following the described techniques, the features can be
generated on the entire time series or on specific intervals, also including the
specific distribution of values.
Decision Rule Patterns: The description of patterns in combination with the
described techniques allows to define some discriminating features that can be
used to search for decision relevant patterns. For example, both a trend as well
as stationary data can be defined by the overall slope or the overall percentage
change. However, this is not applicable for the other patterns, as for example in
a seasonal pattern, the overall slope is not informative, but rather the slope of
parts, i.e., intervals of the time series. In a threshold pattern, we might rather
look at the distribution of individual values, compare the running example, where
specific values and their number of occurrence are the decisive characteristic.
To discover combinations of patterns, combinations of these features might be
necessary. These observations lead to the definition of decision rule patterns 2
- 4 in comparison to the baseline decision rule pattern 1, that can be typically
seen in decision rules.
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Decision Rule Pattern 1 (Baseline Decision Rule)

IF v(ariable) op(erator) c(onstant) THEN class x

with op ∈ {<,>,≤,≥, 6=,=} and c ∈ R

An example for a baseline decision rule is ‘IF measurement x > 2.5 THEN NOK’.

Decision Rule Pattern 2 (Global feature-based decision rule)

IF global feature(v) op c THEN class y

Global features are summary features, that can be calculated over the entire time
series. This rule pattern will be especially useful if the underlying time series is
either stationary or includes a trend.

Decision Rule Pattern 3 (Interval-based decision rule)

IF (feature(v) in interval n) op c THEN class x

Interval-based features, refer to the same features as the global feature, but these
calculations are applied on individual intervals instead of the entire time series.

Decision Rule Pattern 4 (Pattern-based decision rule)

IF v op c FOR {n times, timerange} THEN class x

Pattern-based features take into account the distribution of values in a time
series. This can be applied globally or on each interval of a time series.

Decision Rule Patterns 3 and 4 are mostly used for more complex time se-
ries, i.e., ones with seasonal variations, shifts, thresholds, or combinations of
patterns. In general, decision rules can be based upon the presence or absence
of a particular time series pattern.

3 Approach - EDT-TS

Based on Decision Rule Patterns 2 – 4 (cf. Sect. 2), we propose the Extended
Decision Tree - Time Series (EDT-TS) approach. We base the EDT-TS approach
on a decision tree as this enables the generation of interpretable rules. To allow
the integration of time series data, additional features are generated, according
to the analysis of decisive features in Sect. 2.

The approach involves a preprocessing stage, a feature generation stage,
where additional features are created using three techniques as well as a rule
extraction stage, where the actual discovery of decision rules takes place. These
stages are described in more detail in the following subsections.
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3.1 Preprocessing

In this paper, we assume that the time series data is part of an event log, either
in form of separate, repeated tasks with one value each (cf. Tab.1) or one task
with a list of measurement data (cf. Tab.2). Other ways of integrating sensor
data into event logs are conceivable, such as aggregating sensor data based on
task annotations [7], but outside the scope of this paper. For preprocessing the
event logs are read and converted into a tabular form, specifically a Dataframe5,
where each row refers to one instance. To specify the candidate variables for
time series analysis, all reoccurring, numeric variables are identified, these are
then used as input for the feature generation. The preprocessing step has to
be adapted for different use cases, as different actions have to be performed to
convert an event log into a suitable dataframe. However, from this point on, the
process remains the same for multiple use cases.

Table 1. Event log including
measurements in one task.

UUID Task Data

0001 Measure 10,15,14,16,10,10,14,12,14
0001 Measure 12,13,14,12,10,11,13,15,12

Table 2. Measurements as separate tasks.

UUID Task Timestamp Data

0001 Measure 2019-11-15 14:35 10
0002 Measure 2019-11-15 16:40 12
0001 Measure 2019-11-15 14:45 15
0001 Measure 2019-11-15 14:52 14
0002 Measure 2019-11-15 16:55 13
0002 Measure 2019-11-15 17:10 14

3.2 Feature Generation

After the preprocessing step, additional features are generated.
Global features are calculated for the whole time series. They can consist

of simple values, for example the mean, variance, slope, percentage change or
the number of peaks/lows in the time series. In addition, more complex values
can be computed, e.g., a Fourier transform or auto-regressive coefficients. These
global features are calculated for the time series data of each instance and added
as additional features.

For interval-based features, the time series is split into intervals and global
features are calculated for each interval. Figure 3 depicts the first interval and
the n-th interval of a time series where features like the mean or percentage
change vary greatly.

The split of the time series can be done according to measurement points (as
in this paper) or time spans. It is important to set the interval size appropriately,
as this can have an effect on the resulting decision rules as well as the time

5 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.

DataFrame.html
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complexity of the algorithm. For this implementation we chose to split the time
series into 2, 5, and 10 intervals. However, the interval size can also be chosen
manually for use cases where other interval sizes may be optimal. The generation
of global features is done using an existing library, the generation of interval-
based features can be seen in Alg. 1.

Algorithm 1 EDT-TS, interval-based features

Input: event log as dataframe, candidates, number of intervals n
Output: dataframe with added generated features

1: for instance in event log do
2: split candidates into n intervals
3: end for
4: for interval in intervals do
5: for feature in features(mean, minimum, maximum, slope,...) do
6: calculate feature
7: add result as additional feature
8: end for
9: end for

10: return dataframe with added columns, i.e. the generated features

Fig. 3. Time series intervals.

Pattern-based features consider the
distribution of values in a time series. For
these features, the actual values and their
number of occurrence is important. This en-
ables for example the discovery of threshold
patterns as we can identify values that occur
significantly more often in one class than in
the other.

Different algorithms and approaches can
be subsumed under pattern-based approaches
and there exists a variety of already imple-
mented algorithms, e.g., dictionary-based ap-
proaches. However, dictionary-based approaches combine multiple values into
one letter or word and therefore loose some informative value in favor of com-
putational complexity. In addition, existing algorithms often do not enable the
extraction of the original feature-value distribution, before it was converted to
a word which makes it harder to extract textual rules. Therefore, Alg. 2 is pro-
posed to identify possible thresholds of values based on the distribution of values
in series. Note that Alg. 2 currently works on the whole time series. However,
it can also be easily adapted to work on intervals which allows to discover even
more fine-grained patterns.
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Algorithm 2 EDT-TS, pattern-based features

Input: dataframe, candidates, output from Alg.1
Output: dataframe with added generated features

1: split instances by the result category, i.e. in ‘OK’ and ‘NOK’
2: for category in categories do
3: calculate all values and number of occurrence in candidate variables
4: store in array
5: end for
6: compare value distributions of categories
7: store all values distributions (measurement, amount) that only occur in one cate-

gory in array candidate threshold
8: for c in candidate threshold do
9: add c as new column in dataframe

10: for i in instance do
11: if c.measurement occurs in i more or equal times than c.amount then
12: set value for c of i ”True”
13: else
14: set value for c of i ”False”
15: end if
16: end for
17: end for
18: return dataframe with added columns, i.e. the generated features

3.3 Rule Extraction

After the additional features are created, a decision tree is applied to build the
decision rules. The decision tree parameters are optimized to provide the best
precision values, i.e., splits in different classes. Feature selection is used to obtain
a maintainable amount of features. The last step is to output the decision tree
results in human readable, textual form. This is done by following the nodes of
the decision tree down for each individual class and concatenating the conditions
to formulate a rule. Therefore multiple decision rules can be obtained, if different
condition combinations can lead to the same class.

4 Evaluation

The approach has been implemented as a proof-of-concept prototype using Python.
To generate the global features the ‘tsfresh’ module6 is used, that allows to auto-
matically create global features of a time series. To generate the decision rules, a
decision tree from the ‘scikit-learn’ module [18] is used. In addition to the imple-
mentation of Alg. 1 and 2, a script was written to obtain textual rules from the
resulting decision tree. The implemented approach was tested on two datasets,
a synthetic dataset and a real-life dataset from the manufacturing domain. Th
The generated decision rule for each of the feature generation approaches (global

6 https://tsfresh.readthedocs.io/
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features, interval-based and pattern-based) can be seen in the full result report
online, here only the resulting, combined decision rule is shown. To test the ac-
curacy, the data was split into a test and training set (80% training, 20% test).
To calculate the accuracy, the following definition is used:

Accuracy :=
Number of correctly classified instances

Total number of instances

In addition to the accuracy, the precision of the result is calculated as well,
using the following definition:

Precision :=
Total number of instances correctly classified in category

Total number of instances classified as that category

This definition leads to a precision value for each category, i.e., for ‘OK’ and
‘NOK’. The depicted rules for both datasets, only contain the rules for the class
‘NOK’, as we assume that all instances that do not belong to ‘NOK’ are auto-
matically classified as ‘OK’. Accuracy and precision are choosen as evaluation
metrics, as accuracy enables an intuitive assessment of the ability to identify
correctly classified instances and precision, especially precision per class, pro-
vides information if the classification is imbalanced towards one class. This is
especially relevant for the ‘Manufacturing Dataset’, as it is preferable that all
‘NOK’ pieces are detected early on. However it is more important that no ‘OK’
pieces should be wrongly disposed.

Running Example For the running example, synthetic data was generated. In
total 5000 instances for the process model shown in Fig. 1 were created, where
about 50% of these instances are ‘OK’ (2589 instances), i.e. the cargo can be
transferred to the customer, and 50% are ‘NOK’ (2411 instances). The temper-
ature was randomly generated (values between 10 and 30) for 15 measurement
points for each instance. Figure 4 shows the measurement time series data for
two instances. It is noticeable that the ‘NOK’ instance reaches higher temper-
atures more often. However no explicit decision rule could be derived from this
figure alone. The result for the baseline approach can be seen below. The feature
‘temperaturelast’ refers to the last temperature measurement.

The resulting decision tree contains 41 nodes in total, however most con-
ditions are redundant, therefore the depicted decision rule was simplified. The
precision of 59% for the class ‘NOK’ can be interpreted as 59% of all instances
classified as ‘NOK’ are actually ‘NOK’. The same applies for the ‘OK’ precision
with a ratio of 56%.

Rule Running Example, Baseline:

If temperaturelast > 25.50 THEN class: NOK/Discard Goods

Accuracy: 59%
Precision: NOK - 68%, OK - 56%
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Fig. 4. Running example: visualisation of two instances. Red: ‘Discard Goods’/‘NOK’
, Green: ‘Transfer Goods’/‘OK’.

Rule Running Example, EDT-TS

If temperaturelist.count(26.0)>= 4.0 == True THEN class: NOK/Discard

Goods

Accuracy: 100%
Precision: NOK - 100%, OK- 100%

The resulting rule contains a pattern-based feature, i.e., the temperature
value of 26 has to occur equal or more than 4 times, which accurately represents
the underlying rule. This reflects in the high accuracy and precision values.

Fig. 6. Manufacturing processes (modeled using Signavio©).

Fig. 5.

Valve Lifter.

Manufacturing Dataset To evaluate the applicability of the
presented approach on a real world dataset, a manufacturing
dataset from the production of valve lifters for gas turbines,
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see Fig. 5, is used. This dataset is an extension of the data
used in [23] and was also used in [7].
Figure 6 shows the process model. Workpieces, i.e., the valve
lifters are produced using a turning machine. Subsequently,
the diameter of the workpieces is measured using the silhouette of the work-
piece, the ‘Keyence’ measurement .This takes only a couple of seconds, but the
results are not always accurate. Therefore, the workpieces are transferred to a
second measuring machine, called ‘MicroVu’, that can measure more quality-
relevant features, e,g., surface quality and flatness, resulting in more precise re-
sults. However, this step takes a couple of minutes for each workpiece. Therefore,
a goal is to focus on the first decision point and filter most ‘NOK’ workpieces
using the first measuring step. The first measuring data for two instances can
be seen in Fig. 7. The diameter value is shown as a time series of values. The
first part where the diameter is between 15-20mm is the thicker part of the valve
lifter, whereas the second part where the measurements are around 5-10mm is
the thinner end. The highest values at the end, technically do not belong to the
workpiece, but the robot gripper that holds the workpiece through the measure-
ment process. The dataset consists of 88 workpieces (36 - ‘NOK’, 52 - ‘OK’).
The baseline approach yields the following decision rule:

Fig. 7. Manufacturing dataset: visualisation of two instances.

Manufacturing, Baseline:

IF casename <= 2242.5 AND casename <= 2179 AND casename <= 1932.5

AND data diameterlast <= 27.25 THEN class NOK

Accuracy: 45%
Precision: NOK - 16%, OK - 80%

The resulting decision tree contains 17 nodes, only one applicable rule is
shown here, however it is representative of the other rules. We can see that in
addition to the last measurement value, the ‘casename’, which just refers to the
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instance identifier was used. However, this should not have any impact on the
actual quality of the workpiece, which also reflects in relatively low accuracy and
precision values.

Manufacturing, EDT-TS - Combined

IF data diameterlist2 percentchange > 0.16 THEN class NOK

Accuracy: 91%
Precision: NOK - 100%, OK - 90%

The EDT-TS generated rule only has one interval-based condition that refers
to the percentage change in the second interval and achieves an accuracy of 91%,
as well as precision values of 100% in the ‘NOK’ class and 91% in the ‘OK’ class.
A high precision value for the ‘NOK’ class is especially important for this use
case, as we want to filter out all ‘NOK’ pieces beforehand, without unintention-
ally discarding ‘OK’ workpieces. The 100% precision value here means that only
‘NOK’ workpieces are actually classified as ‘NOK’.

5 Discussion

Prerequisites for our approach are the existence of a decision point and the
availability of process data up to this decision point. Therefore we do not need
a complete process model to extract decision rules. The evaluation shows that
EDT-TS is feasible and achieves high quality results in terms of accuracy and
precision for the used datasets. The approach extracts time series based decision
rules and provides them in textual form to the user. For the running example,
where the actual decision rule is known, EDT-TS discovers the rule. For the
manufacturing dataset the underlying rule is not known, but there are indica-
tions that the decision might depend on chips on the workpieces, influencing
the quality of the produced parts. Especially the high precision for the ‘NOK’
is important, as the goal is to discover as many ‘NOK’ workpieces as possible,
without discarding parts that are actually ‘OK’. EDT-TS is able to include mul-
tiple independent time series and additional numeric data attributes. In terms of
generalisability and comprehensiveness, the approach should be able to handle
different decision rules that contain a variety of the mentioned decision patterns.
Patterns and use cases for the mentioned patterns might exist that are not cov-
ered by the proposed approach yet. Additional feature generation techniques,
e.g., additional pattern-based techniques, can be added accordingly.
Limitations and threats to validity: We assume that the measurements are
part of an explicit task and can therefore be extracted from the event logs and
assigned to the correct process instance. Currently time series with separable
effects are taken into account, working with intermingled effects adds another
level of complexity as there is no explicit decision point and time series length
may vary. So far, the robustness of the approach against noise in the data as
well as the computational complexity was not taken into account. Future work
will address these limitations. Additionally, future work will focus on including
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relational rules, e.g. the threshold of a time series is not a fixed value but a
variable. Another general limitation is the availability of data. However, as de-
scribed in Sect. 1 multiple use cases exist, where time series data is logged, but
not explicitly part of the event log or not used as time series data.

6 Related Work

Decision mining was coined by [19], describing how to discover decision points
in processes. [15] gives an overview of the state-of-the-art, e.g., [13] for the basic
approach, [16] for detecting overlapping rules, and [14] for discovering the re-
lationship between variables. These approaches have not considered time series
data for decision mining yet. In general, for process mining [22] differentiates
between top-down approaches where process mining is applied on process log
data augmented with event data, and bottom-up approaches that apply process
mining to event data in combination with complex event processing techniques.
We can classify our previous work [6, 23, 7] into the top-down category. [6] fo-
cuses on how to merge time series data with event logs. The approach relies
on manually adding features that seem relevant based on visualisations of the
time series. By contrast, EDT-TS specifies textual decision rules instead of clus-
tering instances or calculating the impact of a specific value on the end result.
[23] uses time series data, in form of sensor data, to detect concept drifts dur-
ing runtime, using Dynamic Time Warping and clustering. [7] uses time series
data in form of sensor data to predict the process outcome, using manually
added, global features as input for the proposed algorithms. Also other recent
approaches consider “exogenous data” in combination with process mining. [4]
propose an approach to slice time series data and adding the resulting values
to specific events as data elements, as well as transformations of this data using
global features which is done manually. Bottom-up approaches are proposed by,
e.g., [21, 10]. The goal here is to discover or enhance process models based on
sensor data. Such approaches can be seen as complementary to EDT-TS.

7 Conclusion

EDT-TS is an approach to discover time series dependent decision rules. Com-
mon time series patterns as well as classification algorithms for time series data
are analyzed. The analysis results in the definition of three time series depen-
dent decision rule patterns: global feature-based decision rules, interval-based
decision rules and pattern-based decision rules. EDT-TS includes three stages.
Firstly, the dataset has to be preprocessed, potential time series data elements
are found and added as candidate elements. The second phase, generates ad-
ditional features from these candidate elements, including global features that
summarize the entire time series, interval-based features that calculate features
for subsequences of the time series and pattern-based features that include the
distribution of values in a time series. Decision rules are then built using the
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generated features and a decision tree. Lastly, the rules are transformed to tex-
tual form. The evaluation on two datasets shows high accuracy (91% and 100%)
and high precision (between 90% and 100%) values. In future work, we want to
address the limitations discussed in Sect. 5, with a special focus on including
intermingled effects and multivariate time series as well as making the approach
more robust against noise. In addition, runtime detection of decision rules in-
cluding decision rules based on time series, with changing rules and exceptions,
will be part of future work.
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