Mathias Weske, Judith Michael (Hrsg.): Modellierung 2024,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2024 197

Model-Driven Engineering for Machine Learning Code
Generation using SysML

Simon Ridler! Matthias Rupp? Eugen Rigger? Stefanie Rinderle-Ma*

Abstract: The complexity of engineering products increases due to more functions, components,
and the number of involved disciplines. In this respect, Data-Driven Engineering (DDE) aims to
integrate machine learning to support product development and help manage the increasing complexity
of engineered systems. Still, the potential and opportunities of DDE are not entirely reflected in
practice, which among others originate from the rarely available machine learning experts on the
market and the effort for the implementation in practice. In this respect, this work depicts an approach
based on model-driven engineering, allowing to automatically derive executable machine learning
code based on machine learning task formalization using the general-purpose modeling language
SysML. The main focus of the approach is on the generality of the model transformation using
templates so that extensions and changes to the code generation can be integrated without requiring
profound modifications to the code generator. The approach is evaluated in a use case in the domain
of Cyber-Physical Systems, i.e., weather forecast prediction based on data from a Cyber-Physical
weather system. The derived executable code promises to reduce the time for the implementation and
supports the standardization of machine learning implementations within a company due to templates.

Keywords: Model-Driven Engineering; Machine Learning; Model Transformation; SysML

1 Introduction

Engineering systems are getting more complex due to the number of functions, components
and the involvement of various engineering disciplines, e.g. involvement of software,
electronics and mechanical engineering subsystems in Cyber-Physical (Production) Systems
(CPS) [Be14]. To manage the knowledge of various disciplines during development, systems
engineering and in particular, model-based systems engineering methodologies have been
proposed, promising to increase development performance [HS21, HS19]. Besides the
increased development performance, model-based methodologies are intended to create
an authoritative source of truth, aiming to ensure the credibility and coherence of a digital
artifact that its creators share with a variety of stakeholders>. To support engineers in design
decisions and to allow the improvement of a product or production line, use-case-oriented

! Technical University of Munich, Germany; TUM School of Computation, Information and Technology;
Department of Computer Science simon.raedler@tum.de

2 Vorarlberg University of Applied Sciences

3 Zumtobel Lighting GmbH

4 Technical University of Munich, Germany; TUM School of Computation, Information and Technology;
Department of Computer Science stefanie.rinderle-ma@tum.de

5 https://www.omgwiki.org/MBSE/doku.php?id=mbse:authoritative_source_of_truth

ClOC)

https://creativecommons.org/licenses/by-sa/4.0/
mailto:simon.raedler@tum.de
mailto:stefanie.rinderle-ma@tum.de
https://www.omgwiki.org/MBSE/doku.php?id=mbse:authoritative_source_of_truth

198 Simon Radler et al.

collection of data from the product lifecycle and the utilization of data-driven algorithms
have been defined as data-driven engineering, recently [Tr20]. We have recently proposed
an approach to integrate data-driven algorithms and the substeps of the implementation
into a model-based systems engineering approach [Rd22]. Although this approach supports
the formalization of machine learning tasks using SysML, there is still a gap between
the formalized knowledge within the SysML model and the actual implementation in
dedicated programming languages such as Python. Fig. 1 depicts a sample implementation
cycle of a real-world CPS, e.g. a robot or manufacturing machine. The real-world CPS is
abstracted in the first step so that it can be represented as a model using the general-purpose
language SysML, e.g. to describe structural, behavioral or functional components. Next,
the formalized system is enhanced with data science formalization, e.g. requirements, data
transformation or machine learning algorithms. Actually, the formalized knowledge must
be manually implemented using dedicated programming languages such as Python to gain
insights and improve a real-world CPS or product. In this respect, this work aims to introduce
an automatic generation of the implementation to reduce the necessity to implement it
manually.

Model-Based Systems
Engineering

Data Analytic
Real World Formalization

Implementation

Fig. 1: Running Sample of Code Generation Cycle

With the automatic derivation, effort reduction for machine learning programming is
expected, which contributes to an increasing development performance and reduces the
number of data scientists, which are barely available on the market [RR22].

Concerning this, the following research questions are elaborated in this work: Given a system
model representing a product’s design and manufacturing environment within an enterprise:
1) What model characteristics can be used to automatically derive machine learning models
to enable model-driven engineering? 2) What means of software engineering allows to
extend and maintain the machine learning derivation without profound software changes?
Therefore, in this work, a method is developed allowing to automatically derive executable

MDE for ML Code Generation using SysML 199

machine learning code based on machine learning task formalization using SysML. The code
derivation is based on model transformation, supported by small and generic code chunks
that facilitate the transformation’s extensibility and maintainability. From a more general
point of view, this work contributes by improving the efficiency and effectiveness [Du05] of
the development of machine learning in the context of systems engineering. Additionally, the
implementation effort for machine learning experts is reduced, supporting the integration
in the industry due to the rarely available experts on the market [RR22]. This method
promises to be beneficial for communication in an interdisciplinary field and supports
the integration of machine learning in the early development of complex systems to build
faster and better products. The method is evaluated with a smart weather station, allowing
prediction of weather forecasts based on collected weather data. Future work aims to
integrate a closed-loop process that automatically propagates information back from the
derived and possibly changed programming code. The closed-loop process is promising to
enable traceability, reproducibility and an authoritative source of truth for machine learning
task definition in SysML.

2 Background

In the following, relevant background concerning Model-Based Engineering (MBE), SysML
and a basic understanding of the machine learning modeling method published in [Rd22].
Additionally, comparable approaches are discussed.

2.1 Model-Based Engineering & Model Transformation

The core of Model-Based Engineering includes the pillar concepts of models, metamodels,
and model transformation [BCW17]. Depending on the applied domain, the involved
engineering concepts (e.g. software, hardware, systems engineering) and the degree of
automation, various acronyms are typically used for model-based engineering®. Model
transformation can be characterized as the mapping between an input and one or multiple
output models. Particularly, the mapping is defined on the metamodels, not on the actual
instances of a model to allow reuse and generality. Model transformation aims to achieve the
highest degree of automation by mapping artifacts [BCW17]. The transformation can either
be programmed manually using any programming language or using appropriate languages
provided by the model-driven software engineering domain, e.g. ATL7, Epsilon?, etc. Model
transformations can be classified as model-to-model or model-to-text transformations,
depending on whether the transformation output is another model(s) or text [BCW17].

6 See https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/ for a discussion.
7 https://www.eclipse.org/atl/

https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
https://www.eclipse.org/atl/

200 Simon Radler et al.

2.2 Machine Learning Task Formalization using SysML

SysML is a general-purpose modeling language allowing to describe a system of interest
with machine-readable artifacts. Its metamodel consists of definitions to describe a system
from various (engineering) viewpoints and enables to represent the knowledge of various
disciplines. SysML is a standardized language, being one of the core modeling languages in
the context of model-based systems engineering and allows the description of functional,
behavioral, and structural aspects of a system [OMO7]. In preliminary work, the concept of
machine learning task definition is depicted based on extensions of the SysML metamodel
and the usage of core concepts of associations and generalization of SysML. In the following,
the ML modeling approach’s core concept is depicted according to [Rd22]. A stereotype is
a concept allowing to extend the semantics of a metamodel. Each stereotype describes a
specific function used in the machine learning task definition, e.g. loading a data file such
as CSV depicted in Fig. 2b. Based on the steps of the CRISP-DM methodology [Ch00],
a package structure is introduced in SysML to organize the machine learning stereotypes,
depicted in Fig. 2a.

«Stereotype»
BlackBox_Storage

N

«Stereotype»
Text_File
=]+ Path: String
&1 + Encoding: String

Zlk

«Stereotype»
CSV
&l + Delimiter: String
=)+ SkipNrOfLines: Integer
| | | =)+ GenerateTimestamp: Boolean

E3 Common | =] Attributesl 3 Algorithms |

£ DataStorage 3 PreProcessing L E3 AlgorithmWorkflow

(a) Package Structure based on CRISP-DM Methodology (b) Sample Stereotype Describing the
Text and CSV Data

Fig. 2: Package Structure with Hierarchical Stereotypes

The stereotypes within the packages are hierarchically organized, allowing to extend the
approach readily and enable to inherit from high-level stereotypes, e.g. the stereotype
CSV in Fig. 2b inherits the attributes of the Text_File and BlackBox_Storage stereotypes,
respectively. The advantage of inheritance is to allow to define specific attributes, valid
for multiple stereotypes, only once. Similarly, a data type can be stereotyped, allowing to

MDE for ML Code Generation using SysML 201

describe an attribute in more detail. In the referenced approach, the stereotypes for the data
type description are added to depict details of an input value for the machine learning. An
example is shown in Fig. 3, where the date attribute in the CSV_I block on top left has
a stereotype Datetime. The actual attribute type is String, describing that the attribute is
represented as String in the CSV file and mapped during the import in the implementation
to a Datetime format. For the implementation, the format of the Datetime is specified within
the stereotype.

«Block, CSV» «Block, DateConversion»
% CSsv_1 % Format_Date
attributes 1 attributes
=] «Datetime» + date: String [1]
=] «Float» +wind: Real [1] p< operations
= «Float» +temp_min: Real [1] 1
=] «Float» +temp_max: Real [1]

= «Float» + precipitation: Real [1]

operations 1
Block, DataFrame_Merge»
H « ‘7’5 =
=] Merge _DF «Block, Encoding»
«Block, CSV» 1 attributes 2! Encoded_Values
El csv2 attributes
attributes 1
[«String» +weather: String [1] 1 operations
=) «Datetime» + date_date: String [1:I.< Y 1 operations
1
operations

Fig. 3: Implementation of Pre-Processing Steps

Fig. 3 additionally depicts associations between blocks. With the associations, the structure
of a function is described on a modular level, e.g., the Format_Date Block consists of the
CSV_I block, describing that the function requires the CSV_I formalization to be defined in
detail. For modeling the execution order of subtasks of a machine learning algorithm, state
diagrams are used. A sample state diagram with stereotypes and relations to the modeled
subtasks is depicted in Fig. 4.

2.3 Related Work and Research Gaps

The concept of model-driven software engineering with a special focus on machine learning
concerns can be found in literature. In [Mo022], an extension of the CPS modeling framework
ThingML [Hal6] is proposed. The extension ThingML+ allows to model machine learning
aspects using a textual domain-specific language. The extension focuses on modeling
supervised machine learning, and the xtext-based transformation generates both Java and
Python code. Still, unsupervised and semi-supervised are possible. The Python code is used
for machine learning and the Java code puts the Python machine learning application in an

202 Simon Radler et al.

Learning Workflow

«ML_Block_Connection «ML_Block_Connectiony] «ML_Block_Connection

C Jﬁ Load_CSV1 Load_CSV2 Convert_Date
Start

«ML_Block_Connection» «ML_Block_Connectiony] «ML_Block_Connection) «ML_Block_Connection
ML_Model_DecisionTreeRegresso SplitinTrainTes Encode Merge_DFs

«ML_Block_Connection» «ML_Block_Connection) l«ML_Block_Connection)) «ML_Block_Connection
ML_Model_RandomForestRegresso Predict_DecisionTree Predict_RandomForest MAE Done

Fig. 4: Workflow Defining the Execution Order of a Machine Learning Algorithm

IoT-specific application. Instead of a standardized general-purpose modeling language like
SysML, a custom domain-specific modeling language is used. Customization and extension
of the code generation or adding additional machine learning algorithms require extending
the source code by adding specific algorithms.

In [Bh19], a platform supporting the integration of machine learning in a cloud application
by experts called “Stratum” is proposed. The domain-specific modeling language allows
the modeling of machine learning pipelines and models. The models and functions can
be enriched with parameters, such as hyper-parameters for the learning approach. Various
machine learning frameworks are integrated and code can be generated. By using WebGME3
as a base, a graphical modeling interface is available. The extension and customization of
the code generation require code extensions. A shortcoming of the approach is the stiffness
of the templates for the code generation, making it hard to use the generator for approaches
other than the proposed case study.

In [Ku19], textual modeling is used to describe a neural network. The approach mainly
focuses on artificial neural networks. Other modeling approaches of the umbrella-framework
MontiAnna are used to describe the components&connectors. The approach requires
considerable effort to add new algorithms. Additionally, mechanical or electrical engineering
artifacts are separated from machine learning, making it hard to synchronize changes among
the disciplines.

Summarizing the literature, machine learning code generation based on model-driven
approaches is actually under development and state of the art. The approaches mainly rely
on custom domain-specific languages that define machine learning tasks using models.
However, the given approaches are stiff regarding extensions due to the encapsulation of
the machine learning algorithms in the source code of the code generation. Additionally,
the integration of knowledge from intersecting domains is not given, making it hard to
synchronize changes or transfer knowledge. In this respect, in Sect. 3, a method is proposed

8 https://webgme.org/

https://webgme.org/

MDE for ML Code Generation using SysML 203

allowing to define model transformation from the SysML to any programming language of
choice that shall be used to implement the machine learning solution.

3 Method

A preliminary work defined a method to describe all relevant information for implementing
a machine learning approach using SysML [R&22]. Particularly, the model represents all
information concerning the composition of various relevant systems, their related data
collection and the formalization of relevant data transformation and machine learning-related
tasks on a single step (subtask) level. Additionally, the execution order of the machine
learning tasks in the implementation is formalized using state diagrams. Each state of
the diagram describes a set of sub-activities, e.g. a sequence of python functions with a
dedicated purpose, such as the transformation of Datetime into another format. More details
can be found in related literature [R422] and Sect. 2.2.

To enable the decomposition of the SysML model, the elaborated approach relies on
templates, defined as code snippets in a dedicated programming language and a mapping
from a stereotype to a template. In this respect, each task of the machine learning algorithm,
such as date conversion, requires a custom stereotype. The stereotype is used to identify the
correct template, which is a code snippet equipped with arbitrary placeholders, defined as
a named variable exchanged during the model transformation using values of stereotype
attributes.

In the template, it is possible to set default values if an attribute is not set in the formalization.
If no default value is given, the attribute is mandatory. Since a function in a code snippet can
have countless attributes, not all attributes can be defined in a stereotype and it would not
make sense due to the complexity for the user. Therefore, additional properties can be added
to the instance of a block without being defined in the stereotype. The additional properties
are added to a specific position in the template indicated by an anchor-indicator such as
**kwargs. So that an additional property is usable for the algorithm, the additional property
name is required to be similar to the parameter name of the dedicated programming language
function but with two tailing stars, e.g. if a parameter of a diagram printing function in
Python calls X-Axis Name, the attribute in the block must be named **X-Axis Name.

In case a a new function needs to be defined, a new stereotype can be added to the metamodel.
To add a template for the newly defined stereotype, the model transformation does not
require any changes. The transformation is generic enough that a mapping between the
stereotype and the template can be defined using the JSON data format. The definition of
the JSON mapping is depicted in Listing 1.

Particularly, the JSON is defined as follows: First, the mapping allows to define whether
empty lines shall be trimmed during the generation of the Jupyter Notebook or not (Line 2 in
Listing 1). Second, the definition of constant values allows reusing specific strings as static

204 Simon Radler et al.

N=lie i e R

WL W RN NN NN N R D) = e e e e e e e e e
23S X AL EON—~,S0®adn b ®R— O

"trimEmptyLines": <true||false>,
"constants": {
"<TemplateVariableName>": "<ConstantValue>",

1,
"stereotypeMappings": {
"<StereotypeName>": {

"template": "<TemplateName>",
"properties": {
"<stereotypeAttributeName>": "<TemplateVariableName>",
1,
"modelCommands": {
"<ModelCommandKeywordCombination>": "<TemplateVariableName>",
}

s
"nameMappings": {
"<BlockName>": {

"template": "<TemplateName>",
"properties": {
"<PropertyOrStereotypeAttributeName>": "<TemplateVariableName>",
1},
"modelCommands": {
"<ModelCommandKeywordCombination>": "<TemplateVariableName>",
}

List. 1: JSON Mapping Structure

MDE for ML Code Generation using SysML 205

text, e.g. as a global variable for all templates (Line 3-6 in Listing 1). The stereotype mapping
(Line 7-18 in Listing 1) allows specifying which template to use for a stereotype. Within
the stereotype mapping (Line 10-13 in Listing 1), the mapping of stereotype properties to
template variables is defined. A command can be defined (Line 14-17 in Listing 1) and
mapped to a variable by using the following keywords to collect information:

1. THIS: the information can be found on the block with the stereotype

2. CONNECTED[Name=, Nr=0, StereotypeName=, AttributeValue=Attribute-
Name'': , OUTPUT_Name=]: the information can be found on an associated block
based on a search query, e.g. CONNECTED[Name="CSV_1"] for Format_Date in
Fig. 3

3. BLOCK: the information is stored on the block directly

4. STEREOTYPE[SStereotypeName'']: the information is stored on a specifically
applied stereotype (blocks can inherit from multiple stereotypes)

5. NAME: the information is the name of the block specified by the preceding keywords
6. ATTRIBUTES: the information is a list of attributes defined in a specific block

7. STEREOTYPEofATTRIBUTE[AttributeName'']: the information is stored in a
data stereotype of an attribute, e.g. Datetime stereotype of the date attribute of the
CSV_I block in Fig. 3

8. OUTPUT: the information is the last declared variable name of the template, which
refers to the block specified by the preceding keywords

The command’s syntax consists of at least three keywords, separated by a period. The first
keyword is either THIS or CONNECTED with a selector to choose the correct connected
block. The second keyword is either BLOCK if the information is directly stored on
the block or STEREOTYPE with a parameter specified for the stereotype name if it
does not belong to the block itself. The third parameter is depicted in the enumeration
list of keywords above with the item numbers 5-8. After the last keyword, it is always
possible to select a value if the result is a list using square selector [Nr.]. After the
ATTRIBUTES and STEREOTYPEofATTRIBUTE, it is possible to use either ATTRIBUTES
or STEREOTYPEofATTRIBUTE again, to dig deeper into specific information. The OUTPUT
value is one of the most important values to connect a code block with the result of a
previous one. Similar to stereotype mapping, name mapping is available, enabling to specify
a mapping for a specific block via the name. The only difference is that properties defined
in the mapping can also be properties of the block itself, not just the stereotype. Name
mappings take precedence over stereotype mappings if both apply for a block.

With the JSON description, all necessary pre-conditions are depicted. The execution of the
model transformation itself is as follows: First, each state of the state diagram is collected

206 Simon Radler et al.

and ordered ascending concerning the order of execution. Second, the connected blocks
of each state with stereotypes and attributes are collected. Next, information is extracted
via a model-to-model transformation to merge the state diagram and the blocks in a single
representation with all information in one place. The source metamodel is SysML and the
target metamodel a custom one, referred to as “block context” in the following. The block
context consists of the following parts: First, a reference to the original block in the SysML
model to allow change tracking. Second, a list of rich-text that can be rendered as text
before a code block, modeled as owned comments in the SysML model. Third, references to
connected block contexts based on the qualified name, which is a unique identifier for named
SysML elements. Due to the uniqueness of the qualified name, it can be used as an identifier
for attributes, blocks, etc. Fourth, a list of block and stereotype attributes with their values.
If a value is a primitive type, the value is used, otherwise, the qualified name is stored and
translated to a value during the mapping. Finally, an integer represents the execution order
in the state diagram. The transformation is executed for each block connected to a state and
each block connected to such a block. Care is taken not to execute the transformation for the
same block more than once.

The list of block contexts created in the previous step is then iterated. The information is
combined with the template specified by the mapping configuration and the block context.
Rich-text information is directly converted to a rich-text cell, while the template variables are
replaced as defined in the mapping configuration, based on the name (for properties defined
in the mapping) or the collected information from the model commands. Template-based
code generation produces the output code, which is then put into a source-code cell. Each
block context from the state machine gets one source code cell and, optionally, one rich-text
cell. After all block contexts are iterated over, the cells are put together as a single file,
leading to an executable Jupyter Notebook file. Finally, the notebook syntax is validated, so
the execution is ensured. The validation for semantics is considered out of scope.

4 Use Case

The approach is evaluated based on an open dataset® concerning weather prediction based
on data collected with a smart weather station, which is from the domain of Cyber-Physical
Systems. In the following, the use case is introduced from a general point of view. Next,
an excerpt of the modeling is depicted, which is available online as Proof of Concept
implementation©.

4.1 Scenario - Data-Driven Weather Station

A weather station allows for observing weather conditions and meteorological data. Weather
and meteorological data are typically recorded using a set of sensors. The combination

9 https://www.kaggle.com/datasets/ananthrl/weather-prediction
10 https://github.com/sraedler/MDE_for_ML_Generation

https://www.kaggle.com/datasets/ananthr1/weather-prediction
https://github.com/sraedler/MDE_for_ML_Generation

MDE for ML Code Generation using SysML 207

of multiple sensors is a complex CPS. Each sensor or system has at least one interface to
store or report the data to an online station. Additionally, online data might be collected to
complete the data set.

In this sample, a weather system consists of three offline and one online sensor, an application
programming interface (API) for weather forecasts. One of the offline sensors contains
a subsystem, which is depicted but not of special interest for the use case. The CPS is
formalized in SysML with the output of each subsystem from a data perspective, as depicted
in Fig. 5. The system itself is also formalized in the SysML model, but will not be depicted
here, because it is not of special interest.

~ «Block»
l‘—é‘ Weather_System

1

«Block, Variation» «Block, VariationConfig»
l%j Precipation_Sensor @ Weather_System_01 1 «Block, Variation»
attributes T~ attributes 1 (=] Wetter_Online_API
|=) + Precipation_mm: Real 1 0 atiributes
\F_y—l_? =) + Date: String
1 =)+ Weather: String
«Block, Variation» «Block, Variation»
1%’4 Wind_Sensor @ Temperature_AVG_Sensor
attributes attributes «Block, Variation»
=1+ Windspeed: Real =+ Max_Temperature: Real E;l Temperature_Sensor_Celsius
(=) + Min_Temperature: Real attributes
=)+ Interval: Integer =+ Temperature: Real

Fig. 5: The Formalized Weather System with Output Data as Attributes

The purpose of the use case is to build an application capable of learning to forecast the
weather condition based on the collected data of the weather system.

4.2 Excerpt of the Model Transformation

Fig. 6 depicts a sample model transformation in an activity-like diagram. The workflow
describes the model transformation of the loading of a CSV file formalized in SysML into an
iPython Notebook. Starting with a SysML block, indicated by @ on the left of Fig. 6: The
SysML block contains a stereotype CSV, whose properties are annotated on top of the block.
After the ML block is identified, ML properties are read from the Model. Each attribute of a
block has a value describing a characteristic required for loading the file. The values of the
model have various data types, such as boolean, integer, string or a list of strings, depending
on the required type in the derived code chunk. The attribute Encoding has no value,
meaning the default value for encoding is used, as described later. The DateTimeColumn
is a list of column names with the specified format of DateTime. The value could also
be automatically gathered from the defined attributes and the related attribute stereotype.
However, with the automatic collection, custom code is required, making the approach

208 Simon Radler et al.

less generic since it only applies to the collection of DateTime attributes. Below the CSV
stereotype attributes, the value attributes of the CSV file are depicted, describing the values
in the file. Each attribute consists of an attribute type representing the value type in the
original file. The attribute stereotype depicts the data format in the implemented Jupyter
Notebook file with additional characteristics, such as the format of the DateTime value.
The mapping between the block stereotypes and the template is indicated with @ in Fig.
6. The hierarchical composition of the stereotypes in Fig. 2b is described, allowing to
map from the model to the template. Due to the hierarchical structure, values of the CSV
stereotype, such as Encoding in line 14, are not defined in the CSV mapping but in the
parent stereotype Text_File. In Line 25, the keyword THIS.BLOCK.NAME is used to get the
block’s name and map it to the template value varname. Further details on the mapping
in Sec. 3. @ in Fig. 6 illustrates the template for loading a CSV file. Each variable is
highlighted with the marker ${}. If one value is given, the model must define the attribute
value. A default value is available if two values are given, e.g. UTF-8 for the encoding. The
tailing **kwargs indicates that additional properties defined in the block attributes with no
reference in the stereotype and without an attribute stereotype are rendered with the format
attribute_name = attribute_value. The result of the model transformation is depicted in
Fig. 6 indicated by @ Each attribute value of the model is mapped to the template, and the
default value for the encoding is taken from the template due to the missing specification in
the SysML model.

@ import pandas as pd @
¢ ${varname} = pd.read csv(" ",
BEaYesy 1 fvasnan sep=" , encoding= "UTF-
c'svj O . " skiprows=${skip}, parse_dates=§{date}, §${**
Delimiter=, Text_£i kwargs})
SkipNrOfLines=0 : text_filevat, |
GenerateTimestamp=false
Encoding=
Path=absolute\path\file.csv
Online_Accessable=false
T oplate*: “csv_load. v, import pandas as pd @
= «Datetime» + date: String 1 3 "delin® = pd.read "absolute/path/file.csv"
(5 «Float» + wind: Real eakip®, CSV-1 = pd.read_csv(/path/ : '
=) «Float> + temp_min: Real t =nerateTinestanp” sep=",", encoding="UTF-8",
) «Float» + temp_max: Real . KiDPOWS= - = "
[«Float» + precipitation: Real skiprows=0, parse_dates=["date"])

% Ell) rﬁ?
) , Read Machine
Q—{'figﬁ',fi’ngaaﬁl"f P'-r:’:‘ri"i‘egs]—'Select TemplateH Generate Code]—» m O
J

T Another Block?

Fig. 6: A Sample Model Transformation to Load a CSV File.

Fig. 4 shows the execution order of the workflow steps of the presented approach. In Fig. 6,
the first state of the workflow is depicted. In the following, the train-test-split is described,
which is step number 6 in the sample workflow.

In Fig. 7a, two blocks connected with a composition and a comment are modeled. This
sample shows how previous transformations and compositions are propagated among
the execution workflow and the integration of comments and related rendering in the
notebook depicted in Fig. 7d. In the block for the train-test-split, no additional attributes
for hyper-parameter tuning, etc. are given. With the connection to the block Merge_DF,

MDE for ML Code Generation using SysML 209

the input data frame for the split is defined as shown in line 1 of Fig. 7d. Fig. 7b defines
two modelCommands, the first to get the name of the actual block and the second one to
collect the output of the previous block. Particularly, it collects the name of the new data
frame in the block Merge_DF'. In this specific sample, it would also be possible to reference
the name of the block Merge_DF, since the name is used in its template as the output
variable. However, this makes the approach less generic and leans on mapping the merging
template. Fig. 7c depicts the template for the train-test-split, showing that a variable defined
in the mapping can be used multiple times and filled with the same value. The result of the
transformation in Fig. 7d has the same format as the template. Additionally, the markdown
comment connected to the block in the SysML model is inserted before the code block.

"Train Test split": {
"template”: "train test split.vm",

«Block, DataFrame_Merge» «Block, Train_Test_Split» " -
[%] Merge_DF 1 =] Trainsplit pkup%].tl%ﬁ : N { . .
MergeOn=[date, date_date] o< TrainTestSplitSize=0.7 " Feﬂat]‘,“;e“—x . f('s'atix ’ "
How=inner Features_X=[precipitation, P]‘eclll‘t L lpredﬁy o
0.1 | temp_max, temp_min, "TrainTestsplitsize": "split"
wind] I
Prediction Y=weather "modelCommands": {
! "THIS.BLOCK.NAME": "split name",
. . "CONNECTED[0] .BLOCK.QUTPUT": "new name"
Train-Test-Split —
Here a comment on the train and test split.) 1
’
(a) Train Model (b) Train Mapping

Train-Test-Split

Here a comment on the train and test splitting.

from sklearn.medel_selection import train_test_split

X=Merge_DF[["precipitation”, "temp_max", “"temp_min", "wind"]]
1 from sklearn.model_selection import train_test_split y=Herge_DF.weather
2 X=${new_name} [${feat_x}] TrainSplit_train_X, Trainsplit_test_X, \

3 y=S${new_name}.S${pred_y} o q o q q _

4 ${split_name} ${TRAIN}_${X}, ${split_name} S{TEST}_${X}, \ TrainSplit_train_y, TrainSplit_test.y =\

5 I${split_name} S${TRAIN}_S${Y}, ${split_name} S${TEST}_${¥} = \ train_test_split(X, y,random_state = 8, train_size=6.7)
train_test_split(X, y,random state = 0, train_size=§{split})

(c) Train Template (d) Train Result
Fig. 7: A Sample Model Transformation to Split a Dataset for the Training and Testing.

5 Discussion

The derivation of machine-readable artifacts, more precisely SysML models, seems promis-
ing to reduce the implementation time in programming. Therefore, it supports reducing the
effort of machine learning experts, which are rarely available on the market [RR22]. Due to
the creation of executable code, the approach allows validating the SysML model from the
machine learning point of view. Particularly, with the execution of the machine learning
commands, the formalization in SysML can be validated and an authoritative source of
truth is enabled. In this respect, the approach allows building a proven model library of
machine learning code, which supports reducing the effort for further implementations
and standardizing machine learning implementation within a company’s infrastructure.

210 Simon Radler et al.

The standardization is additionally fostered by the application of generic templates and
the integration in a model-driven approach. The application of templates and small code
chunks further supports debugging and fast integration of small new features. Additionally,
the formalization acts as a graphical documentation that is beneficial for communication
among disciplines, while the Jupyter Notebook helps experts to prove the correctness and
additionally allows to add their expert knowledge during product development within a
discipline-spanning communication tool. Moreover, fast prototyping can be integrated
to validate various scenarios with little programming effort, formalized by non-machine
learning experts.

Although the approach is beneficial for standardization and code generation contributes
to efficiency and effectiveness, it may not be suitable for approaches with large-scale
problems, as pre-processing is too time-consuming. For example, special transformation
and the creation of advanced templates might be a complex task requiring similar effort
to the programming itself. Therefore, the effort of non-experts might be shifted to the
preparation of templates. However, the resulting templates are standardized and reusable
within multiple projects, which might lead to a benefit in future. Additionally, the definition
of alternative templates and approaches promises to lead to a well-debugged and reusable
code basis that supports standardization. The model library potentially adds a foundation for
an authoritative source of truth. However, the unidirectional transformation probably leads
to changes in the derived file format without synchronization back to the SysML model.
In this respect, future work consists of adding an information back-flow from the Jupyter
Notebook file to the SysML model capable of tracking changes and supporting the trust in
the correctness of modeled information. Additionally, focus is put on optimizing the ML
task formalization since it is the foundation for the model transformation and potentially is
the root of issues. Finally, the performance of the approach requires to be measured in a
user study to enable improvement and evaluate the benefits in practice.

6 Conclusions

This work presented a model-based approach to derive executable machine learning code
based on machine learning task definition using the general-purpose modeling language
SysML. The derivation is enabled by generic templates providing small code chunks
mapped to stereotypes in the SysML formalization. The predefined stereotypes describe key
characteristics of the templates and the related programming function(s) behind them. The
derived executable code proves the modeling, reduces the time for the programming and
the effort for rarely available machine learning experts and supports the standardization
of machine learning implementations within a company. The approach is validated in a
use case regarding weather prediction using data from a weather system. Future work will
include elaborating an information back-flow from the derived and potentially changed code
to the SysML model to introduce a truly authoritative source of truth. Further, the approach
will be validated in an industrial case study to improve the modeling and strengthen its
applicability and usability in practice.

MDE for ML Code Generation using SysML 211

Acknowledgments

This work has been partially supported and funded by the Austrian Research Promotion
Agency (FFG) via theAustrian Competence Center for Digital Production"(CDP) no. 881843

Bibliography

[BCW17] Brambilla, Marco; Cabot, Jordi; Wimmer, Manuel: Model-Driven Software Engineering in

[Bel4]

[Bh19]

[Ch00]

[Du05]

[Hal6]

[HS19]

[HS21]

[Kul9]

[Mo22]

[OMO7]

Practice. Synthesis Lectures on Software Engineering 4. Morgan & Claypool Publishers,
San Rafael, Calif., second edition, 2017.

Beihoft, B.; Oster, C.; Friedenthal, S.; Paredis, Christiaan; Kemp, D.; Stoewer, H.; Nichols,
D.; Wade, J.: A World in Motion — Systems Engineering Vision 2025. Technical report,
INCOSE, San Diego, California, 2014.

Bhattacharjee, Anirban; Barve, Yogesh; Khare, Shweta; Bao, Shunxing; Kang, Zhuangwei;
Gokhale, Aniruddha; Damiano, Thomas: STRATUM: A BigData-as-a-Service for Lifecycle
Management of IoT Analytics Applications. In: 2019 IEEE International Conference on
Big Data (Big Data). IEEE, Los Angeles, CA, USA, pp. 1607-1612, December 2019.

Chapman, Pete; Clinton, Julian; Kerber, Randy; Khabaza, Thomas; Reinartz, Thomas;
Shearer, Colin; Wirth, Riidiger: Step-by-Step Data Mining Guide. SPSS inc., 1.0:76, 2000.

Duffy, Alex H. B.: Design Process and Performance. In: Engineering Design-Theory and
Practice. A Symposium in Honour of Ken Wallace, Cambridge, U.K., pp. 76-85, 2005.

Harrand, Nicolas; Fleurey, Franck; Morin, Brice; Husa, Knut Eilif: ThingML: A Language
and Code Generation Framework for Heterogeneous Targets. In: Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Languages and
Systems. ACM, Saint-malo France, pp. 125-135, October 2016.

Huldt, T.; Stenius, L.: State-of-Practice Survey of Model-Based Systems Engineering.
Systems Engineering, 22(2):134-145, March 2019.

Henderson, Kaitlin; Salado, Alejandro: Value and Benefits of Model-based Systems
Engineering (MBSE): Evidence from the Literature. Systems Engineering, 24(1):51-66,
January 2021.

Kusmenko, Evgeny; Pavlitskaya, Svetlana; Rumpe, Bernhard; Stuber, Sebastian: On the
Engineering of Al-Powered Systems. In: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering Workshop (ASEW). IEEE, San Diego, CA, USA, pp.
126-133, November 2019.

Moin, Armin; Challenger, Moharram; Badii, Atta; Giinnemann, Stephan: A Model-Driven
Approach to Machine Learning and Software Modeling for the IoT: Generating Full Source
Code for Smart Internet of Things (IoT) Services and Cyber-Physical Systems (CPS).
Software and Systems Modeling, January 2022.

OMG: , OMG Systems Modeling Language (OMG SysML™, Version 1.0), 2007.

212 Simon Radler et al.

[Rd22]

[RR22]

[Tr20]

Ridler, Simon; Rigger, Eugen; Mangler, Jiirgen; Rinderle-Ma, Stefanie: Integration of
Machine Learning Task Definition in Model-Based Systems Engineering Using SysML.
In: 2022 IEEE 20th International Conference on Industrial Informatics (INDIN). Perth,
Australia, July 2022.

Rédler, S.; Rigger, E.: A Survey on the Challenges Hindering the Application of Data
Science, Digital Twins and Design Automation in Engineering Practice. Proceedings of
the Design Society, 2:1699-1708, May 2022.

Trauer, Jakob; Schweigert-Recksiek, Sebastian; Onuma Okamoto, Luis; Spreitzer, Karsten;
Mortl, Markus; Zimmermann, Markus: Data-Driven Engineering — Definitions and Insights
from an Industrial Case Study for a New Approach in Technical Product Development. In:
Balancing Innovation and Operation. The Design Society, 2020.

