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Abstract. Business processes consist of process activities that must be
executed to reach a business goal. The processing times of process activ-
ities, as well as the waiting times preceding them, are often influenced by
inherent uncertainties, resulting in variability in the overall processing
duration of the business process. Current data-driven business process
simulation approaches utilize historical data of waiting and activity pro-
cessing times to fit simple single-peaked probability distributions, from
which samples are drawn during the simulation. Such probability dis-
tributions might be too simplistic and lead to poor simulation results.
Probabilistic learning techniques enable the modeling of uncertainties
as non-parametric probability distributions, whose shapes dynamically
adapt to influencing factors. This work examines the applicability of a re-
cently proposed probabilistic learner, DR-BART, to express uncertainties
of activity processing and waiting times. We train multiple DR-BART
models using different combinations of input features on different data
sets and sample from these models in a business process simulator. We
compare the simulation results with those obtained by sampling from
parametric probability distributions. Our results show that DR-BART
models can be used to improve business process simulation.

Keywords: Probabilistic Learning · Business Process Simulation · Busi-
ness Process Management · Process Mining

1 Introduction

During their execution, business processes (processes for short) are exposed to
uncertainties caused by internal and external reasons such as resource unavail-
abilities or compliance constraint violations [21]. Often, uncertainties are time-
related, e.g., it cannot be predicted (with certainty) when an external stake-
holder will deliver a part, or how long a resource will take to conduct a process
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activity. Quantifying such temporal uncertainties appropriately is key for dif-
ferent tasks of process intelligence, i.e., business process simulation (BPS) [1]
and predictive process monitoring (PPM) [22]: In BPS and generative PPM
approaches, processing times of activities and waiting times preceding their exe-
cution are typically modeled as probability distributions from which samples are
drawn to simulate the further course of a process. Modeling the processing times
of activities is challenging, especially when human resources conduct them [1].
Data-driven BPS approaches use historical data to set up simulation models. To
express the uncertainty inherent to the processing time of an activity, current
data-driven BPS approaches take the historical processing times of that activity
to fit a simple single-peaked parametric probability distribution [15, 20].

In reality, such simple probabilistic models might not fit the underlying data
well. Consider a process as depicted in Figure 1 with three activities. The first
activity waits for all parts to arrive, which are delivered by a parcel delivery
service that arrives every morning at around 9 a.m. The resulting activity com-
pletion times can be described by a multi-peaked probability distribution, as
shown below the activity. Assume further that the quality control activity can
be executed faster with every time it is executed again, e.g. because less checks
have to be done in consecutive executions. Then, a fitting probability distribu-
tion would not only depend on the name of the activity but also on its previous
number of executions in the running process (see distribution below the activity).

Fig. 1. Historical samples of the processing times of two activities and probability
density functions

In this work, we address the learning of probability distributions for process-
ing and waiting times of process activities on historical process data. Learning
probability distributions has been addressed in statistics and machine learning
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as distribution(al) regression [12, 13], or probabilistic learning [12]. Klein [12]
distinguishes the term probabilistic learning from distributional regression by
its ability to learn higher-order dependencies inherent in the data by employing
machine learning techniques.

A recently proposed probabilistic learning model is Density Regression -
Bayesian Additive Regression Trees (DR-BART) [19]. DR-BART is a non-parametric
tree-based ensemble model. For a given input, DR-BART yields a Gaussian
Mixture Model (GMM), which can approximate any smooth probability den-
sity function to a desired degree. Furthermore, due to its tree-based structure,
DR-BART can “capture complex, nonlinear relationships and interactions” [19]
in the input data that may influence the distributions of processing or wait-
ing times. Because DR-BART can learn multi-peaked probability distributions
whose shapes can depend on context data, DR-BART has the potential to over-
come the aforementioned limitations of current approaches.

However, training probabilistic DR-BART models on process data can be
challenging in practice due to the following reasons: First, DR-BART requires
fixed-sized input data. Traces in process event logs reflecting the execution of
different process cases can be of varying length due to, e.g., alternative branch-
ings or loop structures in the underlying process models. Hence, it is unclear how
process traces should be encoded to function as input to DR-BART models. Sec-
ond, because real-world event logs can consist of large numbers, e.g. millions, of
events, it is unclear whether this results in intractable training times for DR-
BART models. Third, because DR-BART is a non-parametric Bayesian method,
i.e., it can adapt the numbers of parameters during training, it can be prone to
overfitting. DR-BART utilizes regularization hyperparameters to mitigate over-
fitting, but the impact of these parameters has been subject to limited empirical
investigation [12].

In this work, we examine the applicability of DR-BART models for sampling
processing and waiting times in BPS models. We propose to apply feature en-
coding techniques to encode event log data to a fixed-sized input size. We then
use different combinations of features from the encoded data to train multiple
DR-BART models on three different event logs and apply the trained DR-BART
models for sampling processing and waiting times in processes. We evaluate the
application of our trained DR-BART models in a BPS model by comparing our
DR-BART models with currently used (parametric models) for sampling process-
ing times and waiting times. Our results show that DR-BART can improve the
precision of a BPS model when appropriate features are encoded to DR-BART.

This work is structured as follows: In Section 2, we present related work and
fundamentals. We present our process data encoding approach for the application
of DR-BART in Section 3 and describe our evaluation method for examining
the applicability of DR-BART in BPS in Section 4. Afterwards, we present our
results in Section 5 and discuss the results and conclude our work in Section 6.
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2 Related Work

This section discusses existing work on uncertainties, probabilistic learning, and
BPS and introduces fundamentals required for the proposed approach.
Uncertainties: In machine learning, a distinction has been made between two
types of uncertainties, i.e., aleatoric and epistemic uncertainties [11]. Aleatoric
uncertainties are considered irreducible as the uncertainties stem from inherently
random effects. In contrast, epistemic uncertainties are referred to as “uncertainty
due to a lack of knowledge about the perfect predictor” [11] and hence are con-
sidered reducible uncertainties. Epistemic uncertainties can be further divided
into approximation and model uncertainties. Approximation uncertainties refer
to uncertainties due to a lack of data for selecting appropriate parameters for a
predictor model. In general, approximation uncertainties can be reduced by ob-
taining more training samples. Model uncertainties refer to uncertainties due to a
model’s insufficient approximation capabilities. Models with high capacity allow
more flexibility which can lead to disappearing model uncertainties [11]. How-
ever, approximation uncertainty can be challenging when training models with a
high capacity. As models with little capacity make stronger model assumptions,
i.e., stronger assumptions about the underlying data, they can require less data
to fit the model. Different representations for aleatoric uncertainties exist, where
probability distributions are the most general and complex representation [7].
Probabilistic Learning aims at learning aleatoric uncertainties by leveraging
machine learning techniques to capture complex interactions of the input data
[12]. The goal of training probabilistic models is usually to minimize a specific
loss function, which is often based on proper scoring rules [11].
DR-BART is a recently proposed non-parametric tree-based ensemble learning
method for training probabilistic models [19]. It yields a continuous probability
distribution for a given input data. The returned continuous probability distri-
bution of DR-BART is a GMM, which can approximate any smooth probability
density function to a desired degree.

A DR-BART model combines two tree-based ensemble models: The leaves
in the first tree-based ensemble model represent mean values of Normal dis-
tributions, while the leaves of the other tree-based model represent variances.
DR-BART leverages a latent variable such that multiple pairs of means and vari-
ances can be returned for a given input data, which then constitute the normally
distributed components in the returned GMM. In each of the two tree-based en-
sembles, DR-BART uses a predefined number of trees: In the implementation
from Orlandi et al. [19], the default number of mean trees is set to mmean = 200,
and the number of variance trees to mvar = 100.1

For training a DR-BART model, the likelihood of the training samples is
maximized via Gibbs sampling. At each Gibbs step, one of four possible modi-
fications (a grow, prune, change, or swap modification) to a tree in the ensem-
ble tree models is proposed and tested. Since maximizing the likelihood alone
would quickly result in overfitting and degenerate Gaussian components where,
1 https://github.com/vittorioorlandi/drbart/

https://github.com/vittorioorlandi/drbart/
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e.g., each training sample has its distinct leaf with a matching mean value and
zero variance, DR-BART regularizes the tree structure and requires a minimum
amount of observations in every leaf node. In the implementation of Orlandi
et al. [19], at least 5 observations are required in every leaf node. The tree struc-
ture is regularized via α and β parameters (see [5]). Orlandi et al. [19] use in
default α = 0.95 and β = 2, which rewards a “bushy” tree shape [5].

DR-BART itself is an extension to BART [6], which is a tree-based ensemble
learning model for mean regression tasks. For BART, it is acknowledged that
due to its multi-tree structure, it is robust against converging to local minima
during training [6]. Therefore, running the Gibbs sampler once for sufficiently
many iterations seems sufficient for training a DR-BART model.

Business Process Simulation (BPS) is considered one of the “most estab-
lished analysis techniques” [2] in Business Process Management. As setting up
simulation models by hand can be cumbersome, data-driven BPS approaches
leverage historical process data to learn a BPS model using process mining tech-
niques. In their seminal work on data-driven BPS, Rozinat et al. [20] consider
several process perspectives separately, i.e., they discover the control-flow, deci-
sion points, roles, and processing and waiting times and integrate them into a
single BPS model. In their work, they exclusively fit Normal distributions to the
processing and waiting times of each activity. However, they note that it might
be meaningful to train different distributions [20].

Martin et al. [16] reviewed data-driven BPS approaches: They notice that pro-
cessing times in BPS models are either sampled from a parametric probability
distribution or from mathematical expressions, i.e., formulas that yield a deter-
ministic value. They suggest combining these approaches such that processing
times of some components are calculated based on mathematical expressions and
drawn from probability distributions for other components. Some recent data-
driven BPS approaches have built upon this concept: For example, Meneghello
et al. [17] propose a BPS approach in which processing and waiting times are
derived from either probability distributions or obtained from mathematical ex-
pressions that take multiple input variables into account. In the simulator used
in [14], mean regression is first used to predict the expected processing times of
an activity. Then, a normally distributed error term is added to the prediction
to account for variability.

In a recent work, López-Pintado et al. [15] build on the assumption that
an activity’s processing time is affected by the resource performing it. They fit
multiple (single-peaked) probability distributions for each resource-activity com-
bination and select the best-fitting one. They refer to this approach as resource
differentiation. This differentiation approach could be adapted to other factors,
e.g., case attributes or context data, but combining multiple factors would pose a
challenge: Due to the curse of dimensionality, the number of observations would
rapidly decrease. Furthermore, differentiation does not work directly for contin-
uous attributes, necessitating a binning strategy and appropriately chosen bin
sizes.
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To the best of our knowledge, probabilistic learning has not been used to
learn processing or waiting times in BPS.

3 Data Encoding

In this section, we present our approach for aggregating sequence-based data
into a fixed-sized input that can be used to train DR-BART models.

3.1 Event Log Data

Table 1. Example event log

case timestamp label resource
1 2024-10-31 07:00 A Bob
1 2024-10-31 07:15 B Alice
1 2024-10-31 08:30 B Felix
2 2024-10-31 09:00 A Alice
2 2024-10-31 09:15 B Felix
1 2024-10-31 09:45 C Bob

Historical process data is often represented in event logs [3]. In this work, we
assume that an event has at least three attributes, i.e., a case identifier which
links an event to a process case, a timestamp attribute which expresses the time
at which an event happened, and an event label which links the event to a class
of event types, such as to the start or completion of a distinct process activity.
An exemplary event log can be seen in Table 1. Take the event in the first row:
It occurred when executing case 1, refers to an activity with label A, and was
processed by resource Bob.

3.2 Feature Engineering and Prefix Encoding:

The event log data needs to be transformed for training and inferring probability
distributions from DR-BART models. In particular, we derive the target data,
the processing and waiting times from the event log, and apply feature engi-
neering techniques to obtain additional features. Additionally, we apply prefix
encoding techniques to encode the history of a case into the feature data.

Deriving processing and waiting times: Many event logs only record the
completion of activities. When only completion timestamps (or conversely, only
the start timestamps) are available, it can become challenging to obtain the ac-
tual processing time of an activity and its preceding waiting time. Intuitively, the
timestamp of an event and the timestamp of its preceding event from the same
case can be taken to obtain a duration. Taking this duration as processing time
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comes with three problems: First, this approach assumes that the activities are
executed in a sequential order. If activities are actually performed in parallel, the
calculated duration may underestimate the actual processing time. Second, it is
not possible to determine the duration of the first activity. Third, the durations
may include both waiting times and actual processing times. Henceforth, special
care must be taken when working with such event logs: For example, activities
that run in parallel must be identified, and the duration must be taken between
the activities’ actual preceding activities. Other works have addressed decom-
posing the duration between the completion of two activities into a waiting and
processing time [23].

Other event logs store each activity’s internal state. Oftentimes, event logs
are stored in the eXtensible Event Stream (XES) standard and use the XES
lifecycle extension. The XES lifecycle extension itself implements the Business
Process Analytics Format (BPAF) state model [18]. In the BPAF state model,
it is, e.g., logged when an activity is ready for execution and when the execution
has started and ended. When event logs use the XES lifecycle extension, we
derive processing or waiting times, respectively, by calculating the time between
the lifecycle transitions of an activity.

Prefix encoding: To encode the history of a running case, but reduce the
sequence-based event log data to a fixed-sized input, required for DR-BART, we
use prefix encoding techniques. Verenich et al. [22] identify two prefix encoding
techniques that are applicable to DR-BART: Last m-states encoding and ag-
gregation encoding. In the last m-states encoding, the m variable specifies the
number of previous events of a case that are encoded. However, [22] note that
the majority of publications choose m = 1, i.e., do only encode the most recent
event and no previous events. We also select m = 1 in this work, as choosing
a larger m would strongly increase the input size. We provide information on
previous events instead by using aggregation encoding.

Aggregation encoding adds additional attributes to the event log that ag-
gregate information about the case’s previous events. For example, information
about a numerical attribute can be aggregated by adding a new attribute that
represents, e.g., the sum, average, minimum, or maximum value of the previous
values. For categorical attributes, for each value, an additional column can be
created with the number of occurrences of the categorical attribute value. In
this work, we examine count aggregations for activity and resource attributes.
In Table 2, the columns A, B, C represent count aggregations on the activity
label attribute, and the columns Bob, Alice, Felix count aggregations on the
resource attribute.

Feature engineering Additionally, we apply feature engineering, i.e., obtaining
new feature attributes from other features in the event log. In particular, we
conduct feature engineering based on the timestamp attributes. As performances
of human resources have been shown to differ over time [1], or as waiting times
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might also depend on the time, we added the day of the week and the seconds
in the day attributes.

Table 2 shows the encoded event log from the original event log in Table 1.

Table 2. Encoded event log

case timestamp_start timestamp_end label res. A B C Bob Alice Felix seconds
in the day

day of
week dur.

1 2024-10-31 07:00 2024-10-31 07:15 B Alice 1 1 0 1 1 0 25200 4 900
1 2024-10-31 07:15 2024-10-31 08:30 B Felix 1 2 0 1 1 1 26100 4 4500
1 2024-10-31 08:30 2024-10-31 09:45 C Bob 1 2 1 2 1 1 30600 4 4500
2 2024-10-31 09:00 2024-10-31 09:15 B Felix 1 1 0 0 1 1 32400 4 900

4 Evaluation Method

In this section, we describe our method to evaluate the applicability of DR-BART
models in BPS. First, we describe the event logs that we used for training DR-
BART models and how we applied the DR-BART models for BPS. Second, we
describe the metrics we used to evaluate the simulation results. We implemented
our approach and the evaluation in Python, which is publicly available.2

4.1 Evaluation Datasets

To evaluate the applicability of DR-BART models for expressing waiting and
processing times, we train DR-BART models on one artificial and two real-life
data sets. Properties of the three data sets are depicted in Table 3.

The artificial data (AR)3 set describes a sequential process with three activ-
ities, resembling a repair shop in the manufacturing domain. It has five different
resources that have different properties: Some resources are faster at conducting
tasks in the morning; some resources occasionally take breaks during the pro-
cessing of a task that is not logged, but this increases the processing times; two
resources are not able to work well with each other. If the other resource has
conducted a previous activity, the resource is likely to take longer on a subse-
quent task. Because the data set is artificial, we can compare DR-BART to an
optimal probabilistic model.

The second data set (PCR)4 is a real-world data set of a coronavirus testing
laboratory that conducts Polymerase Chain Reaction (PCR) tests. This process
has been under the active control of a workflow engine, and an explicit process
model exists. The resources that have conducted activities have not been tracked
for this data set.
2 https://github.com/ltsstar/TaskExecutionTimeMining/
3 AR: https://github.com/ltsstar/TaskExecutionTimeMining/blob/main/data/
artificial_event_log_2.xes

4 PCR: https://doi.org/10.5281/zenodo.11617408

https://github.com/ltsstar/TaskExecutionTimeMining/
https://github.com/ltsstar/TaskExecutionTimeMining/blob/main/data/artificial_event_log_2.xes
https://github.com/ltsstar/TaskExecutionTimeMining/blob/main/data/artificial_event_log_2.xes
https://doi.org/10.5281/zenodo.11617408


Probabilistic Learning of Temporal Uncertainties in Business Processeses 9

The third data set (BPIC-2017)5 is a real-world data set from the financial
domain. It is a loan application process from a Dutch bank and has been widely
investigated in the Business Process Intelligence Competition (BPIC) 2017. It
consists of more events, cases, and resources than the other two data sets.

Table 3. Dataset Properties

Case Length Case Duration
Cases Events Variants Event labels Resources Mean (Std.Dev.) Mean (Std.Dev.)

Artificial 1802 16 209 1 3 5 9.00 (0.00) 12.18 (5.49) hours
PCR 6166 117 703 1213 8 - 19.09 (3.37) 5.52 (7.74) hours
BPIC-17 31 509 1 202 267 15 930 26 159 38.16 (16.72) 21.9 (13.17) days

To examine whether DR-BART models will overfit the event log data, we
conduct a train/test split based on the process case identifiers, such that 80% of
the cases were assigned to the training data set and 20% to the testing data set.
The evaluation was then conducted on both the test and the training data sets.

4.2 Training Probabilistic Models

The encoded training data sets are used to train DR-BART models. We train
models with different combinations of attributes and two different numbers of
iterations. For each data set, we select the number of training iterations such
that on recent hardware, the models with few iterations could be trained within
a few hours, and the models with a larger number of iterations within a few
days. The number of iterations can be seen in Table 4. On the BPIC-2017 data
set, some DR-BART models could not be trained: Four models ran into an error
during the training due to numerical instabilities, and for the larger model, two
attribute combinations were shown to be computationally infeasible, i.e., they
could not be trained within a week. The long training durations for the two
models are possibly due to a growing number of Gaussian components in the
DR-BART models, which leads to overly long evaluation times on the training
samples.

For comparison, we train resource-differentiated probabilistic models as pro-
posed in [15], using their publicly available implementation.6 Additionally, we
use the same code to train probabilistic models for each activity, i.e., without
the resource differentiation. For the AR data set, we know the underlying prob-
abilistic model and hence also evaluated on that model for comparison.

4.3 Business Process Simulator

We apply our trained probabilistic models in a BPS model. In particular, we
sample from the probabilistic models to simulate cycle times of process cases,
5 BPIC-17: https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
6 https://github.com/AutomatedProcessImprovement/pix-framework

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://github.com/AutomatedProcessImprovement/pix-framework
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i.e., the time from the beginning to the end of process cases. As we focus on
uncertainties of processing and waiting times in this work (and do not address
control flow or resource uncertainties), our simulator replays the events of a
process case and samples the processing or waiting time for each event from
the used probabilistic model. Similarly, when an event has a resource label, that
resource is passed to the probabilistic model.

In the AR and the BPIC-2017 data set, the simulator obtains a cycle time
by summing up the processing and waiting time samples of the replayed events.
Since an explicit process model exists for the PCR data set, where some process
activities are executed in parallel, we leverage this information to aggregate
processing times: E.g., when two process activities are in parallel, processing
time samples are drawn from both activities and proceed with the sample with
the higher value.

4.4 Monte Carlo Sampling

Deriving a probability distribution of cycle times analytically can quickly become
computationally intractable. Therefore, we use Monte Carlo (MC) sampling to
approximate a probability distribution of cycle times.

Because sampling sufficiently many MC trials is crucial for MC sampling, we
chose to draw 10 000 MC samples for evaluating the PCR and AR data sets.
On the BPIC-2017 data set, this number has proven to be computationally too
expensive: Because we replay every event in a data set, choosing 10 000 MC trials
on the BPIC-17 data set means sampling 1 202 267 × 10 000 = 12 022 670 000
times from each of the tested probabilistic models. For each of these samples,
the individual trees of the DR-BART model have to be traversed to eventually
draw a value. Therefore, we reduced the number of MC trials to 1000 for this
data set.

4.5 Evaluation Metrics

We evaluate how the sampled process cases’ cycle times align with the actual
cycle times by using two common proper scoring rules, which “assess the quality
of probabilistic forecasts, by assigning a numerical score based on the predictive
distribution and on the event or value that materializes” [9]. Traditional BPS
evaluation metrics compare only a single sampled outcome of a process case with
its true outcome [4]. As we sample multiple scenarios for a single process case,
we apply different metrics.

The first metric we use is the average log-likelihood, where higher average log-
likelihood values are desirable. We obtain the average log-likelihood by averaging
the log sum of the probabilities of the true cycle times on the sampled cycle times.
To obtain the probability of the true cycle time xa on the sampled cycle times
X = (x1, ..., xn), we conduct kernel density estimation on X. We use Gaussian
kernels and Silverman’s rule to estimate the bandwidth parameter h.

f̂(X,xa) =
1

n

n∑
i=1

N (xi − xa, h) (1)
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The second metric we used is the average continuous ranked probability score
(CRPS), where a lower CRPS is desirable. Unlike the average log-likelihood
metric, the CRPS is sensitive to the distance of the predicted case cycle times
to the true cycle time. We adapt the notation of [10] and define the CRPS
as a distance between the empirical cumulative density function FX(x) of our
sampled cycle times, where X = (x1, ..., xn) denotes our samples, and Fxa

as the
shifted Heaviside function, shifted by the true cycle time xa.

CRPS(X,xa) :=

∫ ∞

−∞
[FX(u)− Fxa

(u)]2du

FX(x) :=
1

n

n∑
i=1

1(Xi ≤ x)

Fxa(x) :=

{
0 if xa > x

1 if xa ≤ x

(2)

5 Results

The evaluation results on the two metrics across the data sets and models can
be seen in Table 4. The results show that the performance of simulation models
that sample activity processing and waiting times from i) our herein presented
DR-BART approach with different metrics; ii) the resource differentiation ap-
proach from [15]; and iii) an approach were probability distributions were fit
only to activity names (without differentiating for resources) by using the PIX
framework.

Not surprisingly, the performance of the DR-BART approach depends on the
selected attributes: Selecting only a few attributes, e.g., only the activity label,
leads to poor results for all data sets. However, selecting too many attributes
also leads to degrading performances across all data sets.

AR On the AR data set, DR-BART could achieve the best results when the
right attributes were selected. While it could leverage the seconds in day and re-
source count information to yield better results than the differentiated resources
approach, its performance decreases when trained for more iterations, indicating
an overfitting of the models.

PCR On the PCR data set, which does not come with resources, DR-BART
could clearly outperform the approaches where only a single-peaked probability
distribution was fit for each activity. Training DR-BART with the activity count
attribute leads to degrading performances, while the seconds in day attribute
seems to have an impact on the performances. As in the AR data set, training
with more iterations decreases the performance for most DR-BART models.

BPIC 2017 The BPIC 2017 data set is the only one in which the differentiated
resources approach consistently outperforms DR-BART. However, the difference
between the differentiated resources and the simple activity-based probability
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Table 4. Results DRB = DR-BART, PIX = PIX-Framework from [15], Opt. = Actual proba-
bilistic model, a = activity, r = Resource, ac = activity count, rc = resource count, s = seconds in
day, d = day of week, Training: (burn in iterations / kept iterations / thinning interval, Samples
= Number of samples for a process case, underscored scores: best DR-BART scores, bold scores:
overall best scores, - = training error due to numerical instabilities, * = training computationally
infeasible

Training: 100,000/100/100 Training: 1,000,000/100/100
AR Samples: 10,000 Samples: 10,000

Train Test Train Test
a r ac rc s d LL CRPS LL CRPS LL CRPS LL CRPS

DRB x - - - - - -1.83 1.02E+04 0.15 9.96E+03 -0.03 1.45E+04 -0.11 1.45E+04
DRB - x - - - - 0.06 1.43E+04 0.05 1.37E+04 -0.15 1.79E+04 -0.14 1.78E+04
DRB x x - - - - 0.07 1.04E+04 0.30 1.00E+04 -0.00 1.30E+04 0.04 1.30E+04
DRB x x - - x - 0.16 1.01E+04 0.33 9.65E+03 0.21 1.21E+04 0.21 1.21E+04
DRB x x x - x - 0.09 1.34E+04 0.14 1.26E+04 -1.58 1.01E+04 -1.83 1.01E+04
DRB x x - x x - 0.26 8.25E+03 0.40 8.05E+03 0.33 1.04E+04 0.32 1.04E+04
DRB x x x x x - 0.36 9.69E+03 0.37 9.35E+03 0.29 1.14E+04 0.29 1.13E+04
DRB x x - - x x 0.20 1.21E+04 0.23 1.15E+04 -1.21 1.03E+04 -1.28 1.03E+04
DRB x x x x x x 0.32 9.58E+03 0.39 9.21E+03 0.28 1.16E+04 0.27 1.16E+04
PIX x - - - - - 0.28 9.88E+03 -1.75 1.01E+04 0.28 9.88E+03 -1.75 1.01E+04
PIX x x - - - - 0.34 9.62E+03 -0.41 9.80E+03 0.34 9.62E+03 -0.41 9.80E+03
Opt. x x - x x - 0.50 7.97E+03 0.54 7.97E+03 0.50 7.97E+03 0.54 7.97E+03

Training: 10,000/100/100 Iter.: 100,000/100/100
PCR Samples: 1000 Samples: 1000

Train Test Train Test
a r ac rc s d LL CRPS LL CRPS LL CRPS LL CRPS

DRB x - - - - - 0.66 1.25E+04 0.69 1.18E+04 0.13 1.55E+04 0.17 1.52E+04
DRB x - - - x - 0.80 1.15E+04 0.70 1.10E+04 0.61 1.25E+04 0.63 1.20E+04
DRB x - x - x - 0.22 1.57E+04 0.32 1.53E+04 0.54 1.42E+04 0.51 1.37E+04
DRB x - - - x x -3.96 9.67E+03 1.20 8.83E+03 -2.47 1.03E+04 -0.36 9.79E+03
PIX x - - - - - -8.62 1.15E+04 0.14 1.08E+04 -8.62 1.15E+04 0.14 1.08E+04

Training: 750/5/5 Training: 7500/50/50
BPIC 2017 Samples: 1000 Samples: 1000

Train Test Train Test
a r ac rc s d LL CRPS LL CRPS LL CRPS LL CRPS

DRB x - - - - - -70.71 2.46E+64 -70.67 2.41E+64 * * * *
DRB - x - - - - - - - - * * * *
DRB x x - - - - - - - - - - - -
DRB x x - - x - -20.44 5.98E+21 -20.44 5.81E+21 - - - -
DRB x x x - x - -9.70 4.23E+13 -9.74 8.98E+13 -7.58 1.29E+13 -7.60 1.17E+11
DRB x x - x x - -5.43 4.33E+06 -5.45 4.32E+06 -7.07 2.54E+20 -7.06 1.45E+13
DRB x x x x x - n.a. 3.00E+17 n.a. 6.14E+16 -11.17 3.49E+12 -11.18 3.32E+12
DRB x x - - x x -16.11 2.09E+19 -16.17 1.89E+19 -4.29 8.56E+05 -4.26 8.55E+05
DRB x x x x x x -9.77 2.85E+17 -9.86 3.80E+16 -10.94 2.18E+12 -11.00 1.11E+12
PIX x - - - - - -4.30 8.33E+05 -4.45 8.31E+05 -4.30 8.33E+05 -4.45 8.31E+05
PIX x x - - - - -4.22 8.34E+05 -4.58 8.33E+05 -4.22 8.34E+05 -4.58 8.33E+05
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distribution approach is only marginal, indicating that the processing and wait-
ing times in this data set depend only little on the tested attributes. Moreover,
when trained for only 750 iterations, most DR-BART models show distinctively
worse results than when trained for 7500 iterations. While training for many
more iterations proved computationally intractable with the current DR-BART
implementation, it remains unclear whether extending training to more itera-
tions would have yielded better results.

Overall, the results show that DR-BART is able to outperform the other ap-
proaches in two of the three tested data sets when meaningful feature attributes
are selected. The longer-trained models on the AR and PCR data sets show
a decreasing performance. This could be due to overfitting of the DR-BART
models to the individual processing and waiting times.

6 Discussion & Conclusion

In this work, we examined the applicability of a probabilistic learner, DR-BART,
for learning probabilistic models that represent activity processing times and
waiting times in business processes. We used feature encoding and engineer-
ing techniques to encode sequential data into fixed-sized input data required by
DR-BART. We then compared the performance of sampling processing and wait-
ing times using DR-BART models with sampling from traditional probabilistic
models. Our results show that DR-BART models can contribute to better BPS
models than the currently used probabilistic models.

DR-BART models were able to outperform the performance of existing ap-
proaches in two of three data sets, when meaningful feature attributes were
selected. The selection of irrelevant features for DR-BART has been shown to
degrade the model’s predictive performance. Similarly, when only a few features
were selected for training DR-BART models, the models’ performance decreased
in most cases when training for many iterations (e.g., for one million iterations
on the AR data set). This indicates that our trained DR-BART models tend to
overfit. Selecting only a few feature attributes has been shown to cause prob-
lems training DR-BART models on the BPIC 2017 data set. This issue is likely
due to the model performing excessive splits on its latent variable, resulting
in probability distributions that consist of many Gaussian components for each
data sample. These complex distributions might then increase the computational
cost for calculating the likelihood of the training samples and, at the same time,
decrease the model’s predictive performance due to overfitting.

Future work should address the computational issues and overfitting prob-
lems of DR-BART, which might be achievable by different means: First, the
training process of DR-BART itself could be enhanced by applying hyperparam-
eter search techniques, or implementing early stopping or restarting techniques.
Second, it might be meaningful to add additional regularization to DR-BART
models. For example, the number of splits on the latent variable could be regu-
larized to avoid overly complex and overfitting models. Third, instead of training
a single DR-BART model for processing and waiting times of all known activ-
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ities, it might be meaningful to apply bucketing techniques [22] and, e.g., train
individual DR-BART models for each activity, or one DR-BART model for wait-
ing times and one for processing times. Fourth, the DR-BART implementation
could be heavily parallelized. Currently, the DR-BART implementation uses only
a single CPU core. Calculating the likelihood of the individual training samples,
on which most of the time during training is spent, could be parallelized, such
that, e.g., multiple CPU cores are utilized.

A future use case for DR-BART could involve testing for undesired influ-
ences of different process attributes and contextual data on processing and wait-
ing times. For example, an organization might be interested in whether daily
working hours or the time of day affect the processing times of activities. Our
approach could help answer this question and assist the organization in mitigat-
ing undesired influences, such as by limiting working hours.

While we have focused on training DR-BART models in this work, future
work should test the applicability of other probabilistic models. Neural network-
based models, such as Bayesian Neural Networks (BNNs), or BNN approxima-
tion techniques, e.g., Monte Carlo (MC) dropout as Bayesian approximation [8],
appear promising because, on the one hand, they can learn complex non-linear
relationships and, on the other hand, they can approximate any probability dis-
tribution, when the neural network has sufficient capacity.

The presented results are limited to the use of a simplified business process
simulator. Our simulator simulated the individual cases independently from each
other, ignoring that the performances can depend on other running cases, e.g.,
because resources work on multiple cases simultaneously [16].

In this work, we examined the applicability of probabilistic learning for pro-
cessing and waiting times in business processes using DR-BART. Our results
show that DR-BART models can contribute to better BPS models than the
currently used probabilistic models when meaningful feature attributes are se-
lected.
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