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Abstract
Technical systems are becoming increasingly complex due to the increasing number of components, functions, and involve-
ment of different disciplines. In this regard, model-driven engineering techniques and practices tame complexity during the
development process by using models as primary artifacts. Modeling can be carried out through domain-specific languages
whose implementation is supported by model-driven techniques. Today, the amount of data generated during product devel-
opment is rapidly growing, leading to an increased need to leverage artificial intelligence algorithms. However, using these
algorithms in practice can be difficult and time-consuming. Therefore, leveraging domain-specific languages andmodel-driven
techniques for formulating AI algorithms or parts of them can reduce these complexities and be advantageous. This study
aims to investigate the existing model-driven approaches relying on domain-specific languages in support of the engineering
of AI software systems to sharpen future research further and define the current state of the art. We conducted a Systemic
Literature Review (SLR), collecting papers from five major databases resulting in 1335 candidate studies, eventually retaining
18 primary studies. Each primary study will be evaluated and discussed with respect to the adoption of (1) MDE principles
and practices and (2) the phases of AI development support aligned with the stages of the CRISP-DM methodology. The
study’s findings show that language workbenches are of paramount importance in dealing with all aspects of modeling lan-
guage development (metamodel, concrete syntax, and model transformation) and are leveraged to define domain-specific
languages (DSL) explicitly addressing AI concerns. The most prominent AI-related concerns are training and modeling of
the AI algorithm, while minor emphasis is given to the time-consuming preparation of the data sets. Early project phases that
support interdisciplinary communication of requirements, such as the CRISP-DM Business Understanding phase, are rarely
reflected. The study found that the use of MDE for AI is still in its early stages, and there is no single tool or method that is
widely used. Additionally, current approaches tend to focus on specific stages of development rather than providing support
for the entire development process. As a result, the study suggests several research directions to further improve the use of
MDE for AI and to guide future research in this area.

Keywords Model-driven engineering · Artificial intelligence · MDE4AI · Domain-specific language · SLR · Literature
review · Machine learning
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1 Introduction

Engineering systems are becoming more complex due to
the increasing number of components, functions, and the
involvement of several disciplines [7]. To address this com-
plexity, the integration of model-driven engineering (MDE)
is promising [44, 46, 58].
MDE aims to support the engineering of systems by provid-
ing and maintaining information for the development using
models rather than documents [44].Models are enrichedwith
information, shared among stakeholders, and manipulated
by Computer-Aided Software Engineering (CASE) tools,
aiming at the highest possible degree of automation, e.g.,
via model transformations. Consequently, MDE techniques
allow informed decisions by producing and consumingmod-
els as machine-processable artifacts.
Although the models are enriched with information, MDE
techniques lack the means to gather sufficient knowledge
from more extensive data, e.g., Big Data or data col-
lected from complex (software) systems. In this respect,
means of artificial intelligence (AI) and its subdisciplines,
namely machine learning (ML) and deep learning (DL), are
beneficial to exploit the information hidden in data [69]. Inte-
grating data-driven methods to support engineering tasks has
recently been defined as data-driven engineering [84]. It has
proven to be beneficial in several engineering areas such as
manufacturing [31], aerospace industry [17] or other indus-
trial applications [10, 34, 79].
AI integration is mainly case-specific, and thus there are
several methods supporting the implementation of AI in lit-
erature [4], e.g., Cross Industry Standard Process for Data
Mining (CRISP-DM) [87], which support the development
of AI tools by providing support for the specific development
steps typically applied to AI projects. The incorporation of
methods such as CRISP-DM and MDE capabilities is rarely
considered in the literature, even though the need for experts
to implement data-driven solutions is increasing due to the
requirement to integrateAI into existingmethods [25] and the
implementation effort is decreasing by applying MDE prin-
ciples and practices to the development of AI capabilities.
In recent times, a series of workshops has been initiated,
focusing on the intersection of model-driven engineering
(MDE) techniques and artificial intelligence (AI) [19, 20,
22]. Specifically, these workshops explore the use of MDE
practices to define AI methods (referred to as MDE4AI) and
to provide AI support for MDE (AI4MDE). The goal is to
enhance software development by automating engineering
activities through techniques like code generation. The cur-
rent state of practice and state-of-the-art MDE approaches
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Table 1 The overall research goal

Purpose Collection and comparison of studies on

Issue model-driven approaches leveraging suitably designed
domain-
specific languages that explicitly address the
engineering of

Object software systems leveraging AI/ML

Viewpoint from the point of view of researchers

that facilitate the implementation of AI capabilities remain
insufficiently explored.
In this context, the overall research goal (RG) of our sys-
tematic study can be defined as presented in Table 1. The
definition of the RG aligns with the Goal/Question/Metric
perspective, as proposed by Basili et al. [5].
We define the following overarching research question (RQ)
based on this research goal:

Main RQ What is the current state of the art for model-
driven engineering with extensions to formalize
artificial intelligence methods and applications?

To address the main research question, various refined and
more fine-grained RQs are introduced in Sect. 3.
For this reason, we conducted a systematic literature review
according to the guidelines set out by [51] to address the
identified research questions [65] and spotlight model-driven
approaches that leverage suitably designedDSLs to automate
the engineering of systems with AI capabilities, specifically
emphasizing MDE4AI, and ii) the support to data min-
ing steps. Accordingly, AI techniques for enhancing MDE
approaches fall outside the scope of our work.
The contributions of this SLR comprise:

• Collection and analysis of state-of-the-art model-driven
approaches adopting specialized DSLs for AI applica-
tions in (software) system engineering.

• Quantitative assessment criteria for model-driven
approaches for AI.

• Quantitative assessment of existing approaches with
derived research opportunities.

The remainder of the paper is organized as follows. Sec-
tion2 provides background on terms such as MDE and
AI. Section3 introduces the research methodology, i.e., the
paper search and selection process. Section4 presents the
approaches aligned with the data extraction strategy of the
SLR protocol in Sect. 3. Section5 answers the research ques-
tions, discusses the keyfindings, and depicts implications and
future research. Section6 assesses the quality and limitations
of the current SLR using threats to validity analysis. Finally,
Sect. 7 summarizes the paper.
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2 Background

This section presents relevant background on MDE and AI.
The focus is on fundamentals that support understanding of
the SLR results and is not intended to reflect the current state
of the art in each research area.

2.1 Model-driven engineering

The core ofMDE includes the pillar concepts ofmodel,meta-
model, and model transformation [13, 74].
Models are machine-readable artifacts representing particu-
lar concerns of a system under study, such as design-time
information like software architecture or hardware platform,
or operational information like monitored data. Metamodels
define the modeling concepts and their relationships, pro-
viding an intentional description of all possible models that
must conform to the associated metamodel. From a language
engineering perspective, ametamodel represents the abstract
syntax of a modeling language.Metamodels definemodeling
languages conceptually and are independent of any concrete
representation. The concrete syntax of a language assigns
graphical or textual elements tometamodel elements that can
be understood by users and edited throughmodel editors [13,
74]. As models in MDE are considered machine-readable
artifacts, so-called model transformations apply to modify-
ing existing or generating new engineering artifacts. These
artifacts are then used for particular purposes. During the
development process, models support realizing the steps of
the envisioned engineering process toward the (partial or full)
generation of the software system. At runtime, models pro-
vide intelligent support during execution. According to [8],
‘a runtime model is defined as a casually connected self-
representation of the associated system that emphasizes the
structure, behavior, and goal of the system and which can be
manipulated at runtime for specific purposes.’
Depending on the specific engineering concerns (software,
hardware, or system as a whole) as well as the role played
by model artifacts due to degrees of automation of model
management activities (e.g., model-based being to refer
to a lighter version of model-driven), different modeling
acronyms are typically used (e.g., MBE, MBSE, MDE,
MDSE. MDD, MDA).1 The various modeling acronyms
show that the MDE community is widespread, and the same
applies to the goals and applications of MDE approaches.
Recently, so-called low-code and no-code development plat-
forms gained the attention of researchers and themarket [29].
LCDPs leverage MDE principles by utilizing automation,
analysis, and abstraction through modeling and metamod-
eling [76]. One of the goals of these platforms is to offer

1 See https://modeling-languages.com/clarifying-concepts-mbe-vs-
mde-vs-mdd-vs-mda/ for a discussion.

degrees of automation in the generation of software appli-
cations while partially or completely hiding code to their
users, typically referred to as citizen developers, i.e., users
with limited programming experience in the software devel-
opment process.

2.2 Artificial intelligence

Artificial intelligence is a flourishing science with numerous
practical applications, ranging from image/voice recognition
to recommendation systems and self-driving cars. The pri-
mary goal of AI is to tackle problems that are tough for
humans but relatively simple for computers [39]. In a non-
scientific context, the different terms around AI are quite
fuzzy, and depending on the application area, different terms
likemachine learning (ML), deep learning, data science, data
mining, and so on are used exchangeable [32]. In science,
some of the terms are today used interchangeable, while in
computer science, the terms are precisely defined. For exam-
ple, data science is defined as the umbrella term referring to
the broad field of extracting information and knowledge by
analyzing data to derive patterns, trends, etc., and report them
as human-understandable insights [78] that are beneficial for
various areas [82], such asmanufacturing [31]. Another sam-
ple is data mining [69], which is the extraction of knowledge
from datasets or systems and processes.
Although each term refers to a specific subcategory of data
science, the implementation phases are essentially similar.
Therefore, in the following, all synonyms and sub-terms will
be related to the term AI for better understanding. Conse-
quently, methodologies have been developed to structure and
support the implementation of AI projects [4, 33, 35, 87, 89].
The implementation phases of themethodologies in literature
are quite similar, although the naming is different [4]. In this
work, the focus is on the phases of the CRISP-DM method-
ology [87]. The main reason for orienting to CRISP-DM is
that it is described in the literature as a de-facto standard
in the industry and is widely used due to its generality [77,
81]. Additionally, the phases of CRISP-DM can be applied
to other sub-topics of data science projects that are not cov-
ered under the term data mining. CRISP-DM comprises six
phases [87]:

1. The business understanding phase involves gathering
knowledge on the application domain and the project
objectives.

2. The data understanding starts with initial data collection
and analysis to get familiar with the data.

3. In the data preparation phase, the input datasets are built
from the given data by applying techniques such as nor-
malization to transform the data.
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4. The modeling phase applies the AI algorithm to the pre-
pared data, and additional fine-tuning is applied, e.g.,
hyper-parameter optimization.

5. The evaluation phase is used to obtain whether the elab-
orated model performs as it should.

6. The deployment phase deals with infrastructure and the
presentation of customer-usable knowledge.

2.3 Related work

Relevant secondary studies started investigating the combi-
nation of model-driven software engineering techniques and
AI/ML.
In their studies, both Giray [38] and Martínez-Fernández et
al. [59] investigate Software Engineering (SE) practices for
AI-based systems, or SE4AI. In particular, [38] highlights
the shift from traditional software development to ML sys-
tems that learn fromdata, necessitating reevaluating software
development practices. The study systematically reviews 141
studies to analyze the current research on software engi-
neering (SE) for ML systems, revealing that none of the
SE aspects have mature tools and techniques, with testing
being the most researched area. The paper identifies the need
for experiments and case studies in industrial settings to
understand challenges and propose solutions, aiming to assist
practitioners, researchers, and educators inML systems engi-
neering. Giray highlights how the nondeterministic nature of
ML systems complicates SE, the lack of mature tools, and
the importance of practical research to advance the field.
In [59], the research highlights the field’s significant expan-
sion since 2015, with a notable focus on dependability and
safety. The authors have meticulously mapped prevalent SE
methodologies across the areas outlined in the Software
Engineering Body of Knowledge (SWEBOK[12]). Despite
the work’s substantial contribution to bridging the SE and
AI disciplines, it points out a notable gap: MDE remains
underexplored within SE for AI-based systems. Yet, MDE
is acknowledged for its potential to handle complexity and
ensure uniformity across variousmodels and artifacts, culmi-
nating in more resilient and maintainable software solutions.
With respect to [38, 59], our research delves deeper into the
role of MDE in the context of AI-based systems, referred to
as MDE4AI. Specifically, we focus on DSLs utilized within
the engineering process and their support in facilitating data
mining activities, andwe analyze their effectiveness from the
perspective of the CRISP-DM framework.
To refine the focus from the broader domain of SE4AI to the
more specialized field of MDE4AI, we found two surveys
that have contributed to this area of research.
In [68], Portugal et al. surveyed DSLs and frameworks for
designing machine learning algorithms in the context of Big
Data. The DSLs were categorized based on the classification
proposed by [23, 36, 85]. However, it is important to note

that their survey lacked a systematic approach; no explicit
surveying protocol was followed. In contrast, our approach
introduces a classification based on DSL engineering prin-
ciples and practices commonly used in MDE [13, 21]. We
emphasize the relationship between DSLs and the imple-
mentation phases of AI algorithms, which was not explored
by Portugal et al. Additionally, we acknowledge and utilize
the referenced literature from Portugal et al. in our survey for
snowballing purposes.
The second survey by Naveed et al. [64] is the most inter-
esting and delve into the intersection of MDE and machine
learning components, which they term MDE4ML. Their
study runs in parallel with our systematic review,2 and like
ours, it aims to analyze existing research on MDE4ML (a
subset of MDEAI). The authors’ review process results in
the selection of 46 primary studies, highlighting the increas-
ing adoption of ML as a component in various software
applications. This trend is driven by the desire to harness
large volumes of data for predictive capabilities and informed
decision-making. Naveed et al.’s study also explores a range
of MDE solutions applied to ML systems, including mod-
eling languages, model transformations, and tool support.
Notably, the corpus of selected studies partially overlapswith
ours [2, 6, 11, 37, 41, 52, 72], emphasizing the importance of
investigating the integration of MDE and AI/ML in software
and system engineering approaches. While both studies pro-
vide an overview of MDE techniques and practices within
the MDE4AI domain, our SLR places particular emphasis
on explicitly modeling AI/ML concerns in DSLs and the
intent behind related model transformations. Additionally,
our analysis of AI/ML support for data mining aligns with
the CRISP-DM standard. In summary, our work provides
a complementary viewpoint and results, contributing to the
broader understanding of MDE and AI/ML integration in
software engineering.
In [18] Bucaioni et al. discuss the rise of low-code develop-
ment (LCD), supporting LCDPs, and its growing interest in
the software engineering community, particularly in MDE,
presenting a multi-vocal systematic review. Their review
highlights the increasing publication trend in low-code
research, the prominence of MDE as a core technology in
LCD, and the wide range of business domains where LCD
is applied. However, the adoption of LCD for developing
AI-augmented software systems is still in the early stages.
Only one surveyed paper [53] provides insights into the archi-
tectural aspects that leverage MDE for monitoring machine
learning model performance. However, it does not delve into
specificDSLs that could be employedwithin such a platform.
The study by Bencomo et al. [8] discusses the principles and
requirements of models at runtime and the state of the art. In
this context, machine learning techniques have been reported

2 The preprint of this work has been cited by [64].
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to support reasoning on uncertainty, building context-aware
systems, systems-of-systems, and self-aware systems, and
extracting information at runtime to dynamically build the
models. However, adopting AI/ML is still limited and recog-
nized as a challenge in applied model-driven techniques.

3 Researchmethodology

This section introduces the SLRmethod applied in this work.
The SLR study protocol is based on the guidelines by [50,
51, 65], introducing the main steps of SLRs to be performed
in the Software Engineering domain.
Figure1 depicts an activity-like diagram of the performed
search and selection process protocol workflow. The work-
flow consists of the following steps:

1. Identifying the research goals and the research questions
(RG/RQ): The objective of this work and the research
questions are defined to guide the SLR (Sect. 1 shows the
result of the RG/RQ elaboration)

2. Search process: The literature search is conducted on
selected databases collecting scientific publications via
the execution of queries based on a search string suitably
designed according to the given RGs and RQs (Sect. 3.2).

3. Study selection: The authors define the inclusion and
exclusion criteria (IC/EC) and apply them to the papers
collected in the databases by reading their titles and
abstracts. Subsequently, the selected papers are evaluated
based on their content (Sect. 3.3).

4. Data extraction: Detailed information is collected from
selected studies that have passed the inclusion and exclu-
sion criteria (IC/EC). This extraction occurs during a
thorough full-text reading. The collected data are orga-
nized into evaluation tables. Additionally, backward and
forward snowballing techniques are applied to selected
studies.

5. Results analysis and discussion: Collected results are
analyzed, and a discussion occurs among the authors to
answer the stated RQs.

The execution of the protocol is documented in a spread-
sheet,3 and bibliographic entries are collected in Zotero
Library. An export can be found online3.

3.1 Research questions

The overall research goal has been previously introduced in
Table 1, aligning with the main research question. To address

3 https://github.com/sraedler/Model-Driven-Engineering4Artificial-
Intelligence

the main research question, we have defined several refined
and more fine-grained research questions as follows :

RQ1 What are the prevalent model-driven engineering
(MDE) concepts and practices [13, 21] being applied
in current studies, such as metamodeling and model
transformations?
This research question aims to evaluate the application
and evidence of MDE concepts and practices.

RQ2 Which phases of AI development aligned with the
CRISP-DM methodology are covered by the
approaches?
This RQ assesses the extent to which the development
phases of CRISP-DM are covered. As a result, impli-
cations can be made about the extent of support.

RQ3 Which application domains actively incorporate
model-driven engineering (MDE)methodologies inAI
applications?
This RQ aims to identify the specific application
domains that actively incorporate MDE methodolo-
gies in AI applications. The goal is to understand if
any predominant and leading application domain is
leading and shaping the evolution of MDE4AI.

RQ4 What are the used methods and the supporting MDE
tools the proposed approaches rely on?
This RQ allows assessing the underlying methods and
the related tool support, including further development
leveraging these underlying technologies to gain matu-
rity.

RQ5 To what extent is communication between different
stakeholders supported by MDE?
Communication and business knowledge elaboration
are two of the core pitfalls in the development of AI
solutions [67]. Therefore, this question aims to assess
the contribution to support fostering AI in the industry.

RQ6 Which challenges and research directions are still
open?
This RQ will lead to future research directions and
challenges for MDE4AI applications due to a collec-
tion of limitations in the proposed approaches based
on respective authors or our obtainment.

3.2 Search process

This section describes the search activity in Fig. 1. According
to [51], defined search queries are executed on dedicated
search engines. In this research, the queries are performed
on the following bibliographic sources:

• ACM Digital Library: http://dl.acm.org/
• dblp Computer Science Bibliography: https://dblp.org/
• IEEE Xplore Digital Library: http://ieeexplore.ieee.org
• Google Scholar: https://scholar.google.com
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Fig. 1 SLR methodology overview

• Springer: https://link.springer.com

To select suitable terms for the search, keywords from known
studies, the MDE4AI4 and Low-Code5 workshops, and the
International Journal on Software and Systems Modeling
(SoSyM)6 were selected.
The selected keywords for the search terms are the following:
S1(M DE) = {M DE; Model − Driven Engineering;
Model − Driven
Development; DSL; Domain Speci f ic Language;
Metamodeling; Domain Modeling,
Low − Code; No − Code; Models@Runtime; Runtime
Models}
S2(AI ) = {AI ; Arti f icial I ntelligence; M L; Machine
Learning; DL;
Deep Learning; Neural Network; Data Science;
I ntelligence; Data Analytics}
Each keyword ki from the sets S1 and S2 has been combined
in conjunctive logic proposition p ∈ P .

P = {p|p = si ∈ S1 ∧ s j ∈ S2}
i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

The resulting set P of 120 propositions (pi ) includes the
final search strings. According to [51], the propositions (pi )
should be combined as OR statements. However, for some
search engines, a single search term is too complicated, as
some search engines limit the length of the search term or
do not generate results correctly due to nested search terms.
Therefore, each search string is executed as a single query.
The automated search was executed in November 2022 and
in February 2024 again. In total, 1335 papers have been col-
lected. The search terms and results are archived and are
online available3. If a result file is unavailable, the search
query on the specific search engine did not retrieve any
results.

4 https://mde-intelligence.github.io/
5 https://lowcode-workshop.github.io/
6 https://www.sosym.org/

3.3 Paper selection

The inclusion and exclusion criteria (IC/EC) outlined in
Table 2 are employed for the paper selection. The IC/EC have
been evaluated for each paper collected by queries executed
on the selected databases by reading its title and abstract.
We establish two inclusion criteria for selecting papers. The
first one is intended to select papers based on anMDE stand-
point. We focus on work related to MDE4AI. Our inclusion
criteria encompass papers that explicitly present DSLs defin-
ingAI/ML extensions as first-class language concepts. These
DSLs should allow the specification elements related to
AI/ML algorithms like inputs, outputs, parameters, or hyper-
parameters.
We exclude DSLs that merely provide a link to AI/ML
artifacts, even if they fall within the field of model-driven
engineering for artificial intelligence (MDE4AI) (e.g., [3]).
The second one is intended to select papers based on an
AI/ML standpoint. We explicitly exclude any paper adopt-
ing AI/ML learning techniques to further enhance MDE
approaches (AI4MDE) likemodeling recommender based on
AI/ML algorithms (e.g., [30]). We also omit studies focused
solely on DSLs that specify algorithms, such as data sci-
ence workflows (e.g., [28]), unless these DSLs are integrated
within a broader AI-augmented software system.

Ultimately, adhering to standard exclusion criteria SLRs,
we omitted all secondary studies, non-English publications,
vision statements, nonacademic articles, proposals, and the-
ses.
Following the IC/EC criteria application, a full-paper read is
applied to select the final papers. Additionally, as suggested
by [51], snowballing is accomplished to retrieve further
results. The relevant papers from the list of forward/backward
snowballing papers were selected using the same procedure
as the query results. Table 3 lists the final list of selected
papers aligned with the publication venue. Particularly, 18
papers are added by query selection [2, 9, 11, 37, 41, 42,
45, 52, 60, 62, 63, 66, 71, 72, 80] and four are added due to
snowballing [26, 43, 55, 61].
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Table 2 Inclusion criteria (IC)
and Exclusion criteria (EC)

Type ID Type

IC 1 The paper presents a DSL with AI extensions

2 The paper leverages MDE body of knowledge, techniques, and
practices [13, 21]

3 Full text of the paper is available

EC 1 We exclude papers with focus on AI for MDE

2 We exclude MDE approaches whose DSLs do not
include any AI concept as first-class entities

3 We exclude non-primary studies

4 We exclude studies available only in the form of abstract

5 We exclude study not in English language

6 We exclude vision only, nonscientific papers, and proposals

7 We exclude any thesis

Table 3 List of selected publications

Paper type Venue Year Author Title

Conference International Conference on Intelligent Data
Science Technologies and Applications
(IDSTA)

2020 [2] Model-Driven Approach for Neural Networks

Congress IEEE Congress on Evolutionary Computation
(CEC)

2023 [9] EVOAL: A domain-specific language based
approach to optimisation

Conference IEEE International Conference on Big Data (Big
Data)

2019 [11] STRATUM: A BigData-as-a-Service for
Lifecycle Management of IoT Analytics
Applications

Journal Journal of Computer Languages 2020 [26] Lavoisier: A DSL for increasing the level of
abstraction of data selection and formatting in
data mining

Conference International Conference on Model-Driven
Engineering Languages and Systems
(MODELS)

2022 [37] A domain-specific language for describing
machine learning dataset

Journal Software and Systems Modeling (SoSym) 2019 [41] The next Evolution of MDE: A Seamless
Integration of Machine Learning into Domain
Modeling

Conference International Conference on Model-Driven
Engineering Languages and Systems
(MODELS)

2019 [42] Meta-Modelling Meta-Learning

Workshop Workshop on Design Automation for CPS and
IoT (DESTION)

2019 [43] Model-based design for CPS with
learning-enabled components

Journal IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems

2023 [45] AIoTML: A Unified Modeling Language for
AIoT-Based Cyber-Physical Systems

Conference International Conference on Model-Driven
Engineering and Software Development
(MODELSWARD)

2019 [52] Realization of a Machine Learning
Domain-Specific Modeling Language: A
Baseball Analytics Case Study

Conference International Conference on Automated Software
Engineering Workshop (ASEW)

2019 [55] On the Engineering of AI-Powered Systems

Journal IEEE Access 2021 [60] AdaptiveSystems: An Integrated Framework for
Adaptive Systems Design and Development
Using MPS JetBrains Domain-Specific
Modeling Environment

Conference International Conference on Advanced
Information Systems Engineering (CAISE)

2022 [61] A Model-Driven Approach for Systematic
Reproducibility and Replicability of Data
Science Projects

Journal Software and Systems Modeling (SoSym) 2021 [62] A Model-Driven Engineering Approach to
Machine Learning and Software Modeling
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Table 3 continued

Paper type Venue Year Author Title

Journal International Conference on Product-Focused
Software Process Improvement (PROFES)

2022 [63] Towards a DSL for AI Engineering Process
Modeling

Journal IEEE Access 2023 [66] RADENN: A Domain-Specific Language for the
Rapid Development of Neural Networks

Conference Conference Modellierung 2023 [71] Code Generation for Machine Learning using
Model-Driven Engineering and SysML

Conference International Conference on Model-Driven
Engineering and Software Development
(MODELSWARD)

2021 [72] An MDE Method for Improving Deep Learning
Dataset Requirements Engineering using Alloy
and UML

3.4 Data extraction

Each selected paper presented in Table 3 underwent a data
extraction process following the data extraction template
in Table 4. Additionally, the publication type is assessed
as Exploratory (without evaluation, e.g., a pure concept or
vision) or Technical (with evaluation).
The extracted data mainly address two concerns of inter-
est, i.e., MDE and AI. Modeling concerns refer to the
evidence of sound knowledge and application of model
foundations [21] (e.g., abstract syntax/grammar/metamodel,
textual/graphical concrete syntax, constraints, model trans-
formations) and supporting tools (e.g., modeling language
frameworks). AI concerns [1] indicate to which extent the
publications support ML modeling aligned with the dimen-
sions of theCRISP-DMmethodology [87]. It should be noted
that the assessment dimensions do not correspond exactly
to the phases of CRISP-DM to allow for a more detailed
categorization of concerns; e.g., in CRISP-DM, Data Inges-
tion is part of the Data Understanding phase but separated
in the given assessment. An aspect of a concern of interest
is assessed as available (�) if the aspect is presented in the
approachor asunderlying principle if it is typically offeredby
the underlying environment (e.g., constraint modeling might
not be presented but is typically offered by the underlying
MDE tooling). Finally, it is worth noting that there is no
evaluation of the deployment phase of CRISP-DM as it is
beyond the scope of this paper.

4 Literature assessment

The result obtained from thedata extractionprocess described
in the previous section is presented in Tables 5, 7 and 8.
In [2], Al-Azzoni proposes a model-driven approach to
describe ML problems addressed by artificial neural net-
works. The approach enables the description of datasets as
well as the consuming multilayer perception (MLP) neural
networks (NN). With templates and code generators, exe-

cutable Java programs can be generated. The approach is
validated using the Pima Indians Diabetes dataset. Future
work of the approach consists of supporting a wider variety
of NNs and support for code generation.
In [9], Berger et al. present three DSLs allowing to structure
requirements for optimization projects relying on evolu-
tionary algorithms. The approach separates and references
formalized knowledge of various experts to enable functional
and nonfunctional requirements definition in a textual set of
DSLs. However, the integration of hyper-parameter tuning is
not given but planned in future.
In [11], Bhattacharjee et al. introduce STRATUM, a model-
driven tool that enables dealing with the lifecycle of intel-
ligent component development. The platform addresses
design-related concerns such as modeling the ML algorithm
pipeline, accessing data streams, allocating and properly siz-
ing cloud-based execution platforms, and monitoring the
overall system’s quality of service. The primary goal of this
work is to support deploying and maintaining various cloud-
based execution platforms. The MDE part of this work is
minor and less detailed.
In [26], De La Vega et al. introduce a DSL that describes
datasets to select sufficient data on a high level. The approach
uses a SQL-like textual language to select, combine and fil-
ter various data on an attribute level. The approach aims
to increase a dataset’s abstraction level to reduce complex-
ity and make using data mining technologies easier. The
outline of future work indicates that the authors want to per-
form some empirical experiments to assess the approaches
usability, learning curve, and effectiveness. Additionally, the
extension of the approaches to be applicable in a wider area
of application is intended.

In [37], the DescribeML DSL is proposed to define ML
datasets. From a DescribeML model, a template with basic
information is automatically generated, based on a given
dataset. The provided DSL allows the definition of metadata,
data attributes with statistical features and provenance, and
social concerns. This approach aims to improve the under-
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Table 4 Data extraction template

RQ Concern Assessment description

RQ1 MDE Language Workbench (LW) A language workbench provides tools to support the definition,
reuse, and composition of domain-specific languages (DSLs).

Metamodel(s)/Grammar(s) (MM/G) The metamodel of the approach is either depicted as a diagram
in a referenced repository or mentioned and textually described.

Concrete Syntax(es) (CS) The concrete syntax is given if figures, listings, or tables to
illustrate an implementation/use case excerpt or it is indicated
whether textual or graphical modeling is applied for a specific
aspect.

Validation (V) The approach takes into account validation concerns

Model Transformation(s) (MTrafo) The approach uses or introduces model transformation to generate
engineering artifacts of any kind

Development and Runtime Model (D/R) The approach can use models at development and/or runtime

RQ2,RQ5 AI Business Understanding (BU) The model contributes to the understanding of the underlying
business. Particularly, the creation of the data and aspects from
other disciplines are introduced, such as requirements modeling
for AI.

Data Understanding (DU) The model supports at least two of the following aspects: data
description, data attribute interrelation, data background, data
quality, and data composition.

Data Ingestion (DI) The model clearly depicts the origin of data and how to load it

Feature Preparation (FP) The model allows an understanding of how data need to be
transformed, connected, or preprocessed

Model Training (MTrain) The model depicts the used algorithm with input and output values
and potential hyper-parameters

Metrics/Evaluation (ME) The model depicts metrics for the AI approach or introduces
evaluation criteria

RQ3 Others Problem Domain The domain of the case study or the mentioned area of application

RQ4 Frameworks The method and tools used in the approach, e.g., WebGME, Xtext,
Xtend, etc.

standing of datasets and thus support the replicability of
AI projects. Currently, this work is limited to the dataset
description. Future work aims to describe AI models and
other elements of an AI pipeline and integrate with common
web browsers.
In [41], Hartmann et al. present an approach based on so-
calledmicrolearning units at a language definition level. This
work proposes to weave the learning units into domain mod-
eling, due to the high entanglement of learning units and
domain knowledge. For this purpose, the approach allows the
definition of DSLs with learned attributes (i.e., what should
be learned), how (i.e., algorithm and parameters), and from
what (i.e., other attributes and relations).
Hartmann et al. leverage the previous study formeta-learning
in [42]. This study proposes two generic metamodels for
modeling i) ML algorithms and ii) meta-ML algorithms (i.e.,
algorithms to learn ML ones). Future work of the authors is
to support a wider range of algorithms and parameters.
In [43], a comprehensivemodeling environment for learning-
enabled components in CPS development is introduced. The
approach supports training, data collection, evaluation, and

verification. It integrates goal structuring notation (GSN)
to support assurance and safety cases. The publication is,
among others, part of a research project7 facilitating MDE.
Currently, the approach is only simulation-based. Therefore,
future work consists of integrating hardware-in-the-loop to
enable verification.
In [45], Ming et al. propose a novel modeling language,
AIoTML, to facilitate the development of cyber-physical
systems (CPS) that leverage the power of artificial intelli-
gence of things (IoT). The proposed AIoTML DSL extends
ThingML, preserving compatibility and introducing new lan-
guage constructs to define new datatypes and AI strategies
based on deep learning and reinforcement learning mod-
els and mechanisms for physical modeling and simulation,
enabling the construction of digital twins and optimization
of control strategies for CPSs.
In [52], a DSL is introduced with the goal of proving the
plausibility of usingMDE approaches to createML software.
The DSL, conceptually sketched by another research group

7 https://modelbasedassurance.org/
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Table 6 Model transformation
intent category and concrete
intent

Paper Intent category Concrete intent Tool

[2] Refinement Synthesis (model to code) Epsilon EGL

[11] Refinement Synthesis (model to code) JS Implementation

[26] Language Translation Translation Xtend

Abstraction Restrictive Query

[37] Language Translation Translation Typescript (Visual Studio Code)

[41] Refinement Synthesis (model to code) KMF/GreyCat

Semantic Definition Translational Semantics

[42] Refinement Refinement n.a.

Refinement Synthesis (model to code)

[43] Refinement Synthesis (model to code) n.a.

Semantic Definition Translational Semantics

Analysis Safety Analysis

[45] Refinement Synthesis (model to code) compilers written in Java

[52] Refinement Synthesis (model to code) Epsilon EGX/EGL/EOL

[55] Refinement Synthesis (model to code) EmbeddeMontiArc/EMADL2CPP

[60] Refinement Synthesis (model to code) JetBrains MPS

Model Composition Model Merging

[62] Refinement Synthesis (model to code) Xtend

[66] Language Translation Translation Python

[71] Refinement Synthesis (model to code) Python

[72] Semantic Definition Translational Semantics Xtend

in [14], is realized and applied to a case study in the sports
domain. The approach integrates model transformation to
generate executable code. Future work consists of extending
the approach to other use cases and conduct empirical studies.
In [55], an approach describing deep learning using MDE
is presented. The approach combines two DSLs, namely,
MontiAnna and EmbeddedMontiArc. The former is a tex-
tual modeling framework for designing and training artificial
neural networks (ANNs). It also embeds another DSL,
MontiAnnaTrain, for describing the training procedure. The
latter, EmbeddedMontiArc, is an architectural description
language. It supports the definition of components and con-
nectors, with a particular focus on embedded, automotive,
and cyber-physical systems. The frameworks are intended
to define deep artificial neural networks, e.g., convolutional
neural networks, for processing traffic images to learn how
to drive a car in a simulator. At this point, it should be noted
that only the journal publication by Kusmenko et al. was
taken into account, although there are several comparable or
extension approaches in the literature list of the author and
the associated research group.8 The reason for this is that the
MDE dimension is overall the same and only small changes
in theAI assessment, such as support for different algorithms,
are shown.

8 https://scholar.google.de/citations?hl=de&user=bUjXPaUAAAAJ

In [60], Meacham et al. propose a set of DSLs and toolset
implemented on top of theMPS9 languageworkbench for the
design and development of adaptive systems offeringMAPE-
K and AI in context capabilities. The approach describes
an extension and composition of DLSs that are extended
with application-specific concepts. Future work consists of
extending the range of domains the approach is applicable.
In [61], Melchor et al. propose an MDE approach to formal-
izing ML projects and the associated infrastructure in which
the resulting tool will be deployed. The approach aims to
increase the reproducibility and replicability of data science
projects. Hence, a key feature of the approach is to describe
processes and datasets in detail. With respect to this, future
work aims to add verification on a model level to support this
core competence.
In [62], Moin et al. present an MDE approach based on
ThingML10 to support the development of IoT devices with
the extension of data analytics andML. The ThingML frame-
work supports defining software parts and components using
UML. The communication between the components (things)
is defined using ports, messages, and state machines. The
approach supports the transformation of the model into exe-
cutable code. Future work aims to extend the approach to
moremethods, to other technologies such as semi-supervised

9 Meta Programming System.
10 https://github.com/TelluIoT/ThingML
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Table 8 Availability and type of
artifacts aligned with the type of
application

Selected study In the study Online (Git, Server) No artifacts Type of application

[2] � Datasets

[9] � Datasets

[11] � IoT

[26] � Datasets

[37] � Datasets

[41] � IoT

[42] � Unknown

[43] � IoT (CPS)

[45] � IoT

[52] � Datasets

[55] � IoT (Image)

[60] � Adaptive Systems

[61] � Datasets

[62] � IoT

[66] � Datasets

[63] � Unknown

[71] � IoT (Datasets)

[72] � Datasets

learning, and to enable the generation of various other target
languages.
In [63],Morales et al. provide aDSL tomodelAI-related pro-
cesses using Eclipse-based technologies. The approach aims
to describeAI processes within an organization and thus con-
tribute to the structured designing, enacting, and automating
of AI engineering processes. Future work consists of extend-
ing the approach to be connectable, e.g., with the domain
needs.
In [66], Pineda et al. present an imperative DSL calls
RADENN, allowing to model deep learning using a textual
syntax. The approach defines a grammar constituted by 27
ruleswith various built-in functions such asgeneral functions
like ‘print’ or ‘save,’ dataset functions enabling to load and
store datasets and network functions related to neural net-
work functions like train, predict, or evaluate. The approach
aims to enable deep learning modeling with a focus on sim-
plified syntax and increased efficiency while maintaining the
same results. In addition, the approach offers the possibility
of practicing online learning, a technique in which training
can be paused and continued with another dataset. Future
work consists of extending the approach with other NNs.
In [71], Raedler et al. present a SysML-based approach
allowing to graphically model machine learning algorithms.
The approach is based on hierarchical organized stereo-
types that are used to detail either functions or artifacts. Due
to the integration in SysML, the approach is well aligned
with CRISP-DM. Based on the stereotypes and the mapping
of stereotypes to implementation templates, the approach
leverages on model transformation to streamline the imple-

mentation of machine learning algorithms [71]. Future work
includes the systematic backflow of information and the
extension of the approach to be more readily applicable.
AnMDE approach for defining dataset requirements is intro-
duced in [72]. It focuses on the structural definition of
requirements using semiformal modeling techniques. Future
work of the approach aims in rigorous validation of the
models and adaption by model-to-model transformation
improvement.

4.1 Model-driven engineering concerns

In this section, we report the contributions of the selected
studies with respect to MDE techniques and practices [13,
21].
In this section, we analyze the adoption of MDE techniques
and practices by the selected studies on several key aspects:

• Language Workbench (LW) Adoption: We explore
whether LWs have been utilized for metamodel (MM)
or grammar (G) specifications. Specifically, we investi-
gate whether textual (txt) and/or graphical (g) concrete
syntax (CS) is available within these workbenches.

• Validation (V): We assess whether the studies consider
validation routines via model constraint definitions or
model transformations to other engineering artifacts.

• Model Transformations (MTrafo): We investigate
whether the proposed MDE approaches include model
transformations
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• Applicability at Development (d) and/or Runtime (r):We
examine whether the proposed approach is applicable
during development (design and implementation) and/or
runtime (execution).

The analysis results are presented in Table 5.

Language workbenches, metamodels, and grammars

With the term language workbench, we refer to a tool
or set of tools designed for software development within
the language-oriented programming paradigm. It typically
includes tools to support the definition, reuse, and compo-
sition of DSLs through a dedicated integrated development
environment [47].
All the selected studies present metamodels, grammars, or
UML profiles to define the concepts of the proposed DSLs.

In particular, the proposed DSLs have been developed using
the following LWs.
EMF based. In this set, we consider approaches directly rely-
ing on the EMF LW. Therefore, in addition to approaches
proposing DSLs based on Ecore-based metamodels, it
includes EMF-based approaches like Xtext-based grammars
and UML profiles. In 10 studies, the metamodel is based
on EMF [2, 9, 26, 45, 52, 61–63, 71, 72]. Several EMF
metamodels focus on the description of datasets [2, 26, 72].
Other studies additionally describe algorithms [2, 52, 61] or
even further steps of the implementation [45, 63]. [9], three
Xtext-based DSLs for data description, input and output data
definitions for machine learning processes, and to configure
optimization algorithms. In [52], the conceptual metamodel
presented as an entity-relationship diagram in [14] is real-
ized as a UML profile, i.e., a lightweight extension of the
EMF-based UML metamodel in Papyrus. In [71], the meta-
model is described using SysML stereotypes, an extension
of Papyrus UML and, therefore, leverages lightweight exten-
sion of UML metamodel. Both [45, 62] extend an existing
Xtext-based DSL, ThingML [40], with language constructs
for AI/ML concerns.
KMF/Greycat-based. Two studies [41, 42] of the same
research group are based on the Kevoree modeling frame-
work (KMF) and its successor GreyCat, which results from
a research project to create an alternative to the EMF based
on Ecore. In [41], the capabilities of the Greycat metalan-
guage are presented. In particular, it allows the definition of
microlearning units by explicitly declaring learned attributes
as part of the domain-specific metamodels. In [42], Hart-
mann et al. introduce an exploratory approach proposing two
metamodels for ML and meta-learning without specifically
selecting a target LW. This work lacks an implementation.
However, the authors explicitly suggest that both the Grey-

cat and EMF LWs are viable candidates for implementing
their approach.
WebGME-based. Two studies [11, 43] define metamod-
els using the WebGME language workbench. While UML
and profiles cannot provide the language engineering sup-
port typically offered by language workbenches, WebGME
allows specifying DSLs, creating a class diagram-based
metamodel from which the DSL infrastructure is automat-
ically generated. In [11], the so-called STRATUM approach
for BigData-as-a-Service provides a DSML consisting of
several metamodels built on top ofWebGME (metamodel for
ML algorithms, metamodel for data ingestion frameworks,
metamodel for data analytics applications, metamodels for
heterogeneous resources). In [43], themetamodel is based on
existing metamodel libraries: SEAM, DeepForge, and ROS-
MOD.
Langium-based. In [37], the DescribeML DSL is the only
work leveraging the recent Langium open-source language
workbench enabling domain-specific languages in VS Code,
Eclipse Theia, and web applications, leveraging the Lan-
guage Server Protocol (LSP).11 In [37], three metamodels
are described i) metadata model, ii) composition model, and
iii) provenance and social concernsmodel. Suchmetamodels
are then implemented as grammars.12

MontiCore-based. In [55], all DSLs, i.e., MontiAnna, Mon-
tiAnnaTrain, and EmbeddedMontiArc, are all defined using
the MontiCore language workbench [75]. One of the main
benefit is the reuse of existing C++ code generators for neural
network frameworks (MxNet, Caffe2, and Tensorflow).
MPS-based. In [60], five different DSLs are created with
JetBrains MPS, an open-source projectional language work-
bench that allows direct changes to the abstract syntax tree
through an editor, without the need for a grammar or parser.
[60] leverages MPS’ language extension and composition
capabilities to deal with domain-independent (e.g., using the
AdaptiveSystems DSL to structure the system according to
MAPE-K loop by IBM) and domain-specific concerns (e.g.,
AdaptiveVLE to model concerns of virtual learning environ-
ments).
EBNF-based. In [66], the grammar of RADENN, a domain-
specific language for neural networks, is defined using the
extended Backus–Naur form (EBNF). The suite of tools
for RADENN, developed in Python, facilitates the lan-
guage’s application. However, the methodology behind the
toolset’s creation—whether handcrafted or auto-generated
via a Python-centric language workbench—remains unspec-
ified (e.g., [27]).

11 https://microsoft.github.io/language-server-protocol/
specifications/lsp/3.17/specification/
12 Based on Chevrotain, https://chevrotain.io/docs/.
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Concrete syntax

This section assesses the proposed approaches’ notations or
concrete syntax.
Ten studies [9, 26, 37, 41, 42, 45, 55, 60, 62, 66] provide a
textual (or tabular) notation; six studies [11, 43, 52, 55, 63,
71, 72] adopt a graphical notation.
No concrete syntax available. Two studies [2, 61] do not
provide a DSL-specific concrete notation. In particular, Al-
Azzoni [2] left the definition of a complete DSL as future
work while [61] is conceived to reuse the notations offered
by tools defining data science pipelines. However, by lever-
agingEMF, a tree-based notation is possible by automatically
generated editors, and, potentially, compatible technologies
can provide textual or graphical concrete syntax options (e.g.,
via Xtext and Sirius, respectively). In Table 5, we reported
the serialization format XMI as default notation since it can
be used by users to inspect the model artifacts.
Textual notation. In [9, 26, 45, 62], all DSLs are defined
in Xtext. [45, 62] extends the ThingML grammar, thus the
generated artifacts are declared to be still compatible with
the original Xtext-based textual editors. In [37], the textual
concrete syntax is defined by a recent language workbench,
Langium. In [41] and [42], an Emfatic-inspired textual mod-
eling language is observed. In [60], five different interwoven
DSLs are proposed, mixing textual and tabular projections,
created with JetBrainsMPS. In [66], Python-inspired textual
notation is applied to model neural network concerns.
Graphical notation. In [11] and [43], the graphical con-
crete syntax is defined through capabilities offered by the
WebGME language framework. [52] implements the meta-
model as a UML profile in Papyrus. The UML class diagram
is chosen as graphical notation since all the stereotypes
inherit from the Class metaclass. No DSL-specific cus-
tomization of the UML graphical notation is offered. [63]
provides a web-based graphical editor realized using Sirius
Web.13 In [72], the DSL provides a graphical concrete syn-
tax and editor realized in Sirius.14 However, the paper does
not discuss or show its graphical elements. In [71], graphical
modeling using SysML and Papyrus is presented.
Multiple notations. In [55], Kushmenko et al. are the only
ones proposing a mix of textual and graphical concrete nota-
tions to represent AI concerns. However, it is worth noting
that the SVG-based hierarchical representation of compo-
nents and connectors is made for visualization purposes and
is not editable.15

13 https://www.eclipse.org/sirius/sirius-web.html
14 https://www.eclipse.org/sirius
15 https://github.com/EmbeddedMontiArc/Documentation

Validation

Validation plays a pivotal role in MDE approaches. Mod-
eling constraints assist modelers in creating valid models,
which are essential for successfully executing automated
engineering processes. While language constraints are typi-
cally enforced by metamodels and grammars, modelers can
also define additional arbitrary constraints to perform more
complex validation tasks on model artifacts. More sophis-
ticated validation techniques, such as formal checks, may
involve different artifacts, which are often woven together
by model transformations.
In our research, we identified four studies that mention these
constraints [2, 9, 61, 72].
Leveraging LW can yield a clear advantage in modeling and
validation. LW can provide standards for constraint defini-
tions languages like OCL and leverage ad hoc extensions of
engineering platforms.
For example, the approach presented by Al-Azzoni [2] lever-
aged the Epsilon Validation Language (EVL) by the Epsilon
to ensure the validity of learning problem and neural network
models.
In [9], Berger et al. provide two separate Xtext-based
data definition and constraint definition DSLs for textual
specification of single and combined constraints on data,
respectively.
In [61], constraints are required for satisfying reproducibil-
ity and replicability requirements of data science projects’
pipelines. OCL constraints are mentioned even though not
shown. Their approach leveraged EMF that provides OCL
support for EMF-based metamodels (e.g., OCLinEcore 16).
Finally, in [72], the unified modeling language (UML) is
employed for semiformal modeling. To validate formal con-
straints, the resultingmodelsmust be translated intoAlloy for
formal analysis. The Alloy language facilitates the validation
of structural requirements for datasets in deep learning-based
systems.

Model transformation

Fifteen selected studies explicitly mention or report model
transformations as part of the proposed approaches. These
model transformations are classified based on their intents,
as described in [57], and the technology they use, as described
in [48]. Table 6 summarizes the intents of the model trans-
formation for each paper, as well as the main model-driven
technologies used. It is important to note that none of the
papers explicitly list or classify their model transforma-
tions. The identification of existing transformations and their
intents is an attempt by the authors of this paper to provide a
basis for comparison.

16 https://wiki.eclipse.org/OCL/OCLinEcore
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Eleven studies leverage model-to-code transformations [2,
11, 41–43, 45, 52, 60, 62, 71] to perform refinements on
involved artifacts to generate executable code. Three stud-
ies [41, 43, 72] aim at executable models by defining
translational semantics for theirDSLs. Seven approaches [26,
41–43, 45, 66] provide more than one transformation with
different intents. Two approaches [26, 37] translate artifacts
across different modeling languages.
The rightmost column in Table 6 mentions the main model-
driven technology leveraged by the studies to implement
model transformations. The most commonly used platform
among the studies is Eclipse, with Epsilon17 and Xtend18

being the most popular tools.
For example, in [2], the Epsilon Generation Language (EGL)
is used in conjunction with templates to define model trans-
formations that generate Java code. Similarly, [52] uses
EGL to generate C# code for making predictions on test
data. In [11], WebGME’s code generation capabilities are
extended with templates for each sub-task. In [26], two
intents of model transformations are reflected: language
translation and abstraction using a restrictive query. Based on
Xtend, the model transformation transforms dataset descrip-
tions into tabular datasets using low-level data transformation
operations,which can then be used in datamining algorithms.
In [41], the GreyCat framework, built on the KMF, pro-
vides code generation toolsets for building object-oriented
applications. In [42], the concept of using code generators to
generate ML code is mentioned. In [43], the ALC toolchain
enables code generation for data collection or training exer-
cises of learning-enabled components, aswell as translational
semantics for configuring an embedded Jupyter Notebook
that executes the learning model. The approach also allows
for the construction of safety cases. In [45], model-to-code
transformations are implemented in Java within compilers
that bind platform-independent AIoTML models to specific
IoTplatforms. In [55], theMontiAnna2Xcodegenerator gen-
erates MxNet, Caffe2, or Tensorflow code. In [60], JetBrains
MPS language is used to generate Java code. In [62], Java and
Xtend are used to generate Python code. In [72], model-to-
code transformation is used to complete formal specifications
using the Alloy analyzer. In [66], an interpreted language is
presented. The approach first transforms the code into tokens
and trees, further evaluating the syntax and interpreting the
defined model tree. In [71], means of model transformation
is used to generate executable code based on templates that
are mapped with properties of the SysML model enriched
with unambiguous stereotypes.

17 https://www.eclipse.org/epsilon
18 https://www.eclipse.org/xtend

Development and runtimemodel

With term runtime model, [8] Bencomo et al. refer to a
concept that involves the use of models during the runtime
of a system to provide intelligent support and enable self-
adaptation.
All the selected studies in this SLR propose model-driven
approaches designed for use during various development
stages.
Among the selected studies, Hartmann et al. [41] are the only
that explicitly leverage runtime models. In their paper, they
propose a designmodel that is instantiated at runtime, treated
as an evolving object graph, and retains historical data. They
introduce the concept ofmicrolearning units, which are spec-
ified at development time within domain classes that lack a
predefined behavioral model. These microlearning units are
designed to learn and adapt at runtime based on the data asso-
ciated with the object graph, effectively enabling the runtime
model to acquire known unknowns, i.e., behaviors that were
not predictable at design time but can be learned through live
data.

4.2 Artificial intelligence concerns

Same as for the MDE concerns, the findings regarding AI
development characteristics are presented in the following.

Business understanding

Industry often faces the problem of missing business under-
standing and shortcomings in elaborating business val-
ues [15, 16, 70, 83]. Therefore, modeling business under-
standing is essential for mature and comprehensive
approaches, e.g., by defining requirements. The assessment
revealed that five of the 18 approaches foster business
understanding by integrating system-relevant modeling or
processes.
In [43], the business understanding is fostered due to require-
ments and components modeling using SysML. Particularly,
a goal structuring notation (GSN) approach is used to define
and structure requirements.
In [63], business-relevant information is modeled through
integrating Roles, leading to increased business understand-
ing. Additionally, the metamodel reflects means to model
requirements. However, details are currently missing on how
the modeling is carried out.
In [45], the business understanding is defined by so-called
things, which are constructs that are standard in the underly-
ing concept of themodeling languageThingML. Particularly,
devices, controllers, and simulators are defined as things.
In [72], a method to describe ML datasets from a require-
ments engineering perspective is presented. Notably, func-
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tional and nonfunctional requirements are integrated to
describe dataset structural requirements.
In [71], business understanding is explicitly given by means
of systems modeling, enabling to describe the origin of the
data collected and utilized by themachine learning approach.

Data understanding

The data understanding fosters the downstream processes of
CRISP-DM. Additionally, it allows assessing dataset quality
and streamlining to form hypotheses for hidden informa-
tion [87]. In the selected literature, 11 approaches support
modeling some aspects of the data understanding.
[26] contextualizes dataset properties and improves data
understanding by implicitly applying rules on how to select
data. In [37], a detailed description of a dataset and data
composition is given that fosters the overall data understand-
ing. In [52], data understanding is enhanced due to the input
data’s graphical representation and the variables’ composi-
tion. In [61], data understanding is promoted by describing
data attributes such as the data type. Furthermore, the type of
ML algorithm is described, allowing the reproduction of an
MLproject. In [63], data understanding is promoted by defin-
ing data attributes aligned with attribute types using UML
class diagram.
In [41, 42], the enrichment of properties on ametamodel level
is enabled, contributing to further description of the proper-
ties and, therefore, increasing data understanding. Moreover,
the interconnection of the data properties is highlighted by
the underlying principle. Still, the description of the attributes
is not very detailed, leading to no support in understanding a
single property and its origin. In [72], the advanced require-
ments modeling allows a better understanding of datasets
with specific properties and structured data elements.
In [66], the data understanding can be modeled due to the
build-in functions and the automatic type inference, which
implicitly cast variables based on the use.
In [9], data understanding is the primary goal of the approach
with separation of concerns of the various information sup-
pliers.
In [71], data understanding is given as each property of the
provided data is formalized and data types are specified using
stereotypes.

Data ingestion

Eleven of the given 18 approaches describe the loading
and ingestion of data, i.e., loading or referencing the input
datasets.
In [60], the implementation of data ingestion using a DSL is
described. Ten other approaches support the specification of
a file path, URI, URL, etc., to reference data [2, 26, 43, 61,
63, 66, 71]. In [26], the loading of the dataset is described

by specifying the name and path of the file or SQL server
in combination with SQL selection scripts. Therefore, this
approach supports bothfile and database-related data. In [63],
data loading from various sources, such as SQL servers, is
supported.
In contrast, to fix data sources, the loading from edge devices
or sensors is supported by three approaches [11, 55, 62].
In [11], data loading from various edge devices is presented
using technologies such as RabittMQ or Kafka. In [55], data
loading is provided with tagging schemas for EMADL ports.
In [62], two approaches are given, first a black-box approach,
where the ML model is imported from a pickle, and second,
the paths or URLs of the dataset(s) are passed to the training,
validation, and testing of the algorithm.

Feature preparation

The preparation of features for certainML algorithms is sup-
ported by eight of the 18 approaches.
In [11], the feature preparation is defined in the metamodel.
Unfortunately, details on the specific methods, parameters,
or the order of execution are missing. In [2], normalization of
dataset features is supported. However, other preprocessing
methods are not supported in the metamodel. In [61], data
operations contain one or more input or output ports. Each
data operation is an atomic operation on the input data to
produce certain output data. In [62], each state allows execut-
ing functions. The keyword DA_Preprocess is used to apply
data preparation methods on a specific dataset. In [45], fea-
ture preparation is given by the possibility to add additional
layers and strategies of the image processing layers of the
neural network.
In [63], features can be prepared with specific feature extrac-
tion techniques, and data can be transformed with data
engineering techniques, e.g.,Regression substitution. In [66],
feature preparation is given due to the extendability of the
build-in functions and due to the fact that datasets can be
modified with the build-in functions. In [71], feature prepa-
ration is givenwith the application of stereotypes specifically
applied to transform and arrange data attributes.

Model training

The specification of an algorithm and the related training of
the model is depicted in 14 of the 18 approaches. The types
of algorithms can be separated in Inference [52], Machine
Learning [42, 60, 61, 63, 71] and Deep Learning [2, 11, 43,
45, 55, 62, 66] using neural networks.
Inference. [52] extended the approach of [14] with the
required implementation using SysML and Papyrus mod-
eling framework. Within the original approach [14], model
training is given by an assignment for each variable, whether
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it is an observed variable, a random variable, or a standard
variable. Details on hyper-parameter tuning are not given.
Machine Learning. In [41, 42], various algorithmmodels can
be used with specific input (learning) and output attributes.
In [60], the algorithm (referred to as approach) is specified
aligned with various hyper-parameters, e.g., random forest
cross-validation folds. In [61], the algorithm type (e.g., ran-
dom forest) with a specific task type (e.g., classification)
can be described. Hyper-parameters are not presented in the
metamodel. In [63], hyper-parameters and performance cri-
teria can be specified for each AI model. In [71], algorithm
type, parameters, and train/test splitting can be applied using
stereotypes.
Deep Learning. In [2], the training is defined using an
MLPDescription block with certain learning rules like back-
propagation. Further details on other hyper-parameters or the
output’s facilitation are not given. In [11], an algorithm for
the training is defined in the metamodel. Moreover, hyper-
parameters are defined and applied to a specific algorithm in
the editor. In [43], an experimental model defines the model
training. The details of the implementation can be found in
the Jupyter Notebooks. In [55], the training of NN is given
with possibilities to specify the network layers and connec-
tions. In [62], state diagrams are used to define various steps
of the algorithm. With the state keyword DA_Train, various
training-related settings are made, and with DA_Predict, the
trained model can be applied to data. In [45], the modeling
of various layers is given by the extension of the metamodel
and the possibility to define and deploy executable code on
a simulation model.
In [66], the training is defined by creating input, hidden and
output layer and executed with various parameter such as
Epoch definition.

Metrics/evaluation

To assess the validity of an algorithm, six of the 18
approaches integrate the modeling of metrics.
In [43], the metrics are applied directly in the Jupyter
Notebooks, which is not actually a modeling approach. Nev-
ertheless, the Jupyter Notebook is integrated into the model.
So it can be considered as part of the model.
In [11], metrics are integrated into the metamodel and can be
applied to the training output. In [55], the evaluation metrics
are selected using the name of themetrics, e.g., mean squared
error (MSE).
In [62], basic metrics such as mean absolute error (MAE)
or MSE can be applied to the algorithms, such as regression
algorithms.
In [66], there are two approaches to apply metrics. For clas-
sification cases, average accuracy, macro-average sensitivity
and macro averaging specificity are evaluated. For regres-

sion cases, the mean-square-error, mean-absolute-error, and
coefficient of determination are evaluated.
In [71], various metrics such as mean-square-error or mean-
absolute-error can be applied based on the stereotypes
defined.

4.3 Frameworks (methods & tools)

In Table 7, we present a non-exhaustive list of building
blocks (rows) corresponding to the approaches discussed in
the selected studies (columns). Our categorization focuses
on elements related to MDE and AI/ML. Specifically, we
distinguish between language workbenches (LW), related
languages (in addition to those proposed by the approaches
themselves), and various tools.
Notably, several elements are reused across different
approaches. In the MDE domain, language workbenches,
such as EMF, Xtext, WebGME, and Greycat, play a signif-
icant role. Meanwhile, in the AI/ML domain, the Python
programming language stands out as the most prevalent ele-
ment.

4.4 Availability of artifacts and application domains

Artifacts serve as a means to facilitate the replication of
research results. Table 8 indicates whether artifacts are ref-
erenced in the publication as online resources or are absent
altogether. Additionally, the table depicts the type of appli-
cation mentioned in the publication or inherently provided
through the evaluation sample. If no specific domain is
explicitlymentionedor derivable,we annotate it asUnknown.
As a result, eight approaches work with datasets that can
originate from any domain. The processing of internet of
things (IoT) data is presented in five approaches, while one
approach is more specific to image data.

5 Discussion

MDE has long been a cornerstone of software engineer-
ing research. Meanwhile, AI has witnessed remarkable
advancements, with applications spanning various domains.
Recently, the convergence of MDE and AI has emerged as
a promising research direction. Figure2 illustrates the pub-
lication trend of selected studies over time, emphasizing the
certain interest in MDE4AI. We observe that the MODELS
conference19 (with three publications) and the MODEL-
SWARD conference20 (with two publications) stand out as
the most representative venues. However, it is essential to

19 https://conf.researchr.org/series/models
20 https://modelsward.scitevents.org/
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Fig. 2 Number of publication over year

acknowledge that the overall volume of collected publica-
tions remains limited.
This limitation may result from our selective exclusion crite-
ria; our focus on MDE4AI led us to disregard AI4MDE, the
complementary perspective.
From a research community perspective, the MDE research
community remains keen on exploring this intersection fur-
ther and establishing a focused community. Notably, the
annual MDE Intelligence workshop at MODELS stimulates
cross-pollination between MDE and AI.
The rest of the discussion is organized according to the
research questions in Sect. 3.1.

5.1 RQ1—What language aspects of MDE are
addressed in the approaches, e.g., abstract
syntax, concrete syntax, metamodel, etc.?

• Abstract Syntax: Most MDE approaches explicitly
address abstract syntax. It is a fundamental aspect
because it forms the foundation for creating models. The
abstract syntax is defined usingmetamodels and/or gram-
mars, typically through a dedicated tool support of DSL
development, a.k.a. language workbenches [47].

• Concrete Syntax: The results highlight that MDE
approaches from select studies prefer textual modeling
rather than graphical modeling. This preference may be
influenced by tooling support, ease of manipulation, and
expressiveness. It is essential to highlight a recent trend in
MDE: the emergence of blended modeling capabilities.
Blended modeling empowers engineers to freely select
and switch between various notations for the same DSL.
The choice of notation(s) can be influenced by diverse
factors, including the complexity of graphical tools and
the expertise of modelers.

• Secondary aspects: Validation and Runtime Support:
Model validation ensures that models adhere to defined
constraints and rules. Although this aspect is not a promi-
nent focus in the selected studies, it is worth noting that
languageworkbenches (LWs) providemature support for
model validation. Leveraging this supportmay lead to the
development of more mature domain-specific languages
(DSLs) and approaches. Runtime support is offered only
by Hartmann et al. [41] at a metalanguage level through
the GreyCat LW. However, this LW is not as common as
other existing LWs. Therefore, we can argue that there is
still room for improvement and support in this direction.

5.2 RQ2—Which phases of AI development aligned
with the CRISP-DMmethodology are covered by
the approaches?

The CRISP-DM development cycle’s supported phases are
less balanced than the MDE perspectives. Less than half of
the approaches support the early phases, such as business
understanding. Feature preparation is often not mentioned
or integrated with only simple features; e.g., normalization
of variables is given but not the subsequent processing of
preprocessing tasks. The main focus of the approaches lies
in the formalization of model training. However, most of
the approaches only support a small range of algorithms.
Therefore, the applicability might be very case-specific and
less flexible.
In summary, it can be seen that multiple approaches depict
a specific aspect of the CRISP-DM development cycle, but
only a few support more than half of the phases.

5.3 RQ3—Which industrial domains are supported
byMDE4AI approaches?

Most approaches support processing datasets in specific file
formats or using data from SQL servers. Since these datasets
can originate from any domain, no focus on a domain can be
determined in these approaches.
However, some approaches are rather based on IoT/CPS or
sensor data, supporting the integration of production systems
or data from the use of e.g., CPS products. Nevertheless, no
domain can be clearly defined here since collecting sensor
data is possible in any domain.

5.4 RQ4—What are the usedmethods andMDE
tools the proposed approaches rely on?

The present works are based on a wide variety of tools and
methods. Therefore, the advantages and disadvantages of
the individual methods and tools are considered application-
dependent, and no statement can bemade about the quality of
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the underlying methods. Furthermore, there is a trend toward
Eclipse and its products (Papyrus, Sirius, Epsilon, etc.).
The adoption of language workbenches (LWs) appears to
be crucial. LWs facilitate the creation of textual and graphi-
cal concrete syntaxes, essential for model representation and
manipulation. Using LWs, such as EMF, Xtext, WebGME,
and Greycat, underscores the importance of standardized
tools in model-driven engineering (MDE).
EMF and Xtext can also be identified as state of the art for
defining metamodels and grammars or as a basic modeling
construct. Adopting other LWs seems more innovative, but
it is still limited to a smaller community of researchers.
However, it is worth noting that Greycat seems to be a niche
solution, with both uses originating from the same research
group. We notice a shift of Greycat features toward being
offered as a commercial tool, raising questions about its
future adoption within the research community.
MontiCore, a well-known platform in the MDE commu-
nity [75], is expected to play an increasing role in the
intersection between MDE and the AI/ML domain.
Langium, a recent LW based on TypeScript, is particularly
suitable for integrating web-based tools and applications,
and, therefore, to foster collaborative activities and promote
the use of web-based tools with lower installation costs.
Unlike Xtext, Langium does not rely on the Eclipse Mod-
eling Framework (EMF).

5.5 RQ5—Towhat extent is communication between
different stakeholders supported byMDE

Unifying the language of communication can foster com-
munication in an AI project, potentially leading to a better
understanding and reduced unknownknowledge among team
members. With less unknown knowledge, unrealistic expec-
tations might be reduced, being one of the categories of why
AI projects fail [86]. The intersection with other domains
is mainly in the initial phases of an AI project, mainly
business and data understanding. Still, the documentation
of other phases of the CRISP-DM cycle supports commu-
nication among other AI experts. Only five approaches to
interdisciplinary communication support the documentation
and integration of business understanding, leading to further
research needs. Data understanding and the downstream pro-
cesses of theCRISP-DMaremore often supported. However,
still, further integration of MDE techniques is required due
to the early development of some of the approaches.

5.6 RQ6—Which challenges and research directions
are still open?

The researchers’ observations guide the direction of future
research and highlight open challenges. The first observation

emphasizes the need for better support in business under-
standing.
In the literature, experts report that the lack of business values
for AI is a challenge. This deficiency may stem from AI
experts’ limited understanding of specific business contexts.
Consequently, AI experts might not recommend realistic and
relevant AI approaches.
Aligned with business understanding, project requirements
should be formalized. This formalization enables the deriva-
tion of project metrics and facilitates assessing the impact of
computational support [73].
Furthermore, considering that the second-largest group of
supported applications in existing works is IoT. There-
fore, systems engineering requires to be considered more
in MDE4AI approaches.
Another futurework that supports thematurity ofMDE4AI is
consolidating the advantages of the existing approaches and
extending these approaches to fit various use cases. Com-
bining various approaches to a comprehensive methodology
regarding MDE4AI could streamline the research topic and
foster the development of MDE4AI toolboxes.
It is worth noting that this study did not identify any valuable
contributions, despite the recent trends in low-code and no-
code development platforms targeting intelligent systems.
One possible reason could be the complexity of the engi-
neering process for AI software systems, which remains too
high for platforms aiming at the highest process automation.
Consequently, we anticipate more valuable contributions in
AI4MDE specifically tailored for low-code/no-code plat-
forms. Such contributions would cater to the needs of citizen
developers who can leverage intelligent chatbots (e.g., [24])
to accomplish platform tasks.
Apart from combining the research workforces, future
research needs to focus on engineering collaboration using
methods designed for collaborative modeling. In this regard,
the WebGME and Langium LWs are valuable MDE assets.
Concerning more extensive or interdisciplinary projects, the
live or collaborative work on a single model could increase
the development performance and the benefit and acceptance
of MDE4AI.
Next, the output of MDE4AI is often derived from Python
code. Python is an easy-to-understand, well-known, daily-
used language used by AI experts that might lead to changes
in the Python code rather than the model. Consequently, full
code generation is not applied, leading to no single source of
information because partial truth of information is stored in
the model and partial in the Python code [13]. In this context,
it is necessary to elaborate a closed-loop process that feeds
the results of the executed algorithm back into the model
or adjusts the model in case of changes in the code, e.g., in
Python. With this closed-loop approach, the model is always
up-to-date, and further, collaboration with others potentially
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improves because of the abstract representation of the actual
changes.
Finally, only a few approaches mention user studies to assess
the impact and benefits ofMDE4AI.User studies are required
to identify unused potentials and further streamline the devel-
opment toward a user-centered MDE4AI methodology.
Although the conclusion of this research question suggests
many improvements, it is questionable whether all the chal-
lenges of MDE4AI can be resolved under a single model,
method, or framework. Therefore, future work needs to
investigate whether a separation of concerns, e.g., based on
purpose,AI technology such asmachine learning, deep learn-
ing, etc., might be more valuable and push the development
of MDE in the domain of AI further. Additionally, this can
shape the details on the benefits that MDE can bring to AI.

6 Threats to validity

The study’s validity describes the extent to which the results
are trustworthy and how biases arising from the subjective
views of the researcher are avoided during the analysis.Valid-
ity must be considered at all stages of a study, and several
approaches have been proposed in the literature. Follow-
ing [50], the following threats to validity are considered:

• Construct Validity:Construct validity describes the valid-
ity of the concept or theory behind the study design such
that the results are generalizable [88]. In this SLR, con-
struct validity refers to the potentially subjective analysis
of the studies and the different ways in which data extrac-
tion is conducted. Following the guidelines [50], each
study analysis is conducted independently by at least two
researchers. If the researchers cannot agree on a con-
clusion, a third researcher evaluates and discusses the
literature until there is no disagreement. In addition, each
selected literature was evaluated using the quality criteria
suggested by [56]. A protocol based on [50] was defined
for performing the extraction protocol, which was dis-
cussed by the performing researchers after each step.

• Internal Validity: Internal validity describes the causal
relationships of the researcher’s investigation of whether
a factor influences an aspect under study. The particular
danger is that a third factor has an unknown effect or side
effect. To avoid this danger, the same behavior as for
construct validity applies, that more than one researcher
assesses the causal relationships. In addition, the tactic
suggested by [50] was followed.

• External Validity: External validity exists when a find-
ing in the selected literature is of interest to others outside
the case under study. In this regard, the SLR uses a qual-
ity assessment based on [56], so included papers are
published in peer-reviewed. Therefore, third-party inves-

tigators pre-assessed the selected studies, and the validity
of the initial publication is the responsibility of the exter-
nal authors.

• Conclusion Validity: The validity of the conclusion
relates to concerns about the reproducibility of the study.
The concerns in this paper relate to the possible omission
of studies. In this regard, the concerns are mitigated by
the carefully applied search strategy using multiple digi-
tal libraries in conjunctionwith the snowballing systemas
per [50]. In addition, the researchers followed the detailed
search protocol as defined in Sect. 3 and applied the qual-
ity ratings. However, some concerns might exist due to
the interdisciplinary nature of the fields involved and the
various definitions of modeling and AI, and the overall
complexity of the field. The authors tried to mitigate this
problem by discussing the keywords with experts in the
field, checking various publication venues in different
research areas and clearly defining the naming conven-
tions in the background section.

7 Conclusion

AI is emerging in several disciplines today and has recently
attracted the interest of the MDE community, with several
workshops being held on the subject. The development of AI
requires several development phases, which potentially can
be supported using MDE approaches. Currently, the support
of AI byMDE is still at an early stage of development. There-
fore, it is necessary to understand the existing approaches to
support AI to streamline future research and build on existing
knowledge.
We conducted an SLR to investigate the existing body of
knowledge in MDE approaches to formalize and define AI
applications. To this end, we followed a rigorous, SLR pro-
tocol, selected 18 approaches, and evaluated them for several
dimensions of interest, from MDE and AI.
The result showed that the language engineering perspective
ofMDE for AI is alreadymature, and some approaches seem
applicable in industrial case studies. The MDE approaches
focus on the training phase of the AI approaches, while
time-consuming tasks such as data preprocessing are not
considered often. Additionally, the focus is not on improv-
ing communication, collaboration, or understanding of the
business processes to be supported, which is reported in the
literature as a core problem in AI development projects.
Finally, the review showed that the approaches are case-
specific and lack general applicability.
Future work in this research area consists of, among
other things, consolidating approaches to combine benefits,
expanding approaches to be less case-specific, and adopting
a closed-loop process that allows for model-based develop-
ment that potentially leads to an authoritative source of truth.

123



S. Rädler et al.

Funding Open access funding provided by TU Wien (TUW).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Akkiraju, R., Sinha, V., Xu, A., Mahmud, J., Gundecha, P., Liu,
Z., Liu, X., Schumacher, J.: Characterizing Machine Learning
Processes: A Maturity Framework. In: Fahland, D., Ghidini, C.,
Becker, J., Dumas, M. (eds.) Business Process Management, pp.
17–31. Springer, Cham (2020)

2. Al-Azzoni, I.: Model Driven Approach for Neural Networks. In:
2020 International Conference on Intelligent Data Science Tech-
nologies and Applications (IDSTA), pp. 87–94, (2020)

3. Atouani, A., Kirchhof, J.C., Kusmenko, E., Rumpe, B.: Artifact
and reference models for generative machine learning frameworks
and build systems. In: Proceedings of the 20th ACM SIGPLAN
International Conference on Generative Programming: Concepts
and Experiences, GPCE 2021, pp. 55–68, New York, NY, USA,
(2021). Association for Computing Machinery

4. Azevedo, A., Santos, M.F.: KDD, SEMMA and CRISP-DM: a
parallel overview. In: IADIS European Conference Data Mining,
pp. 182–185, (2008)

5. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal question met-
ric approach. pp. 1–10, (1994)

6. Baumann, N., Kusmenko, E., Ritz, J., Rumpe, B., Weber, M.B.:
Dynamic data management for continuous retraining. In: Pro-
ceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings,
MODELS ’22, pp. 359–366, New York, NY, USA, (2022). Asso-
ciation for Computing Machinery

7. Beihoff, B., Oster, C., Friedenthal, S., Paredis, C., Kemp, D.,
Stoewer, H., Nichols, D., Wade, J.: A World in motion—systems
engineering vision 2025. In: Technical report, INCOSE, SanDiego,
California, (2014)

8. Bencomo, N., Götz, S., Song, H.: Models@ run. time: a guided
tour of the state of the art and research challenges. Softw. Syst.
Model. 18, 3049–3082 (2019)

9. Berger, B.J., Plump, C., Drechsler, R.: EVOAL: a domain-specific
language-based approach to optimisation. In: 2023 IEEE Congress
on Evolutionary Computation (CEC), pp. 1–10, Chicago, IL, USA,
(July 2023). IEEE

10. Bertolini, M., Mezzogori, D., Neroni, M., Zammori, F.: Machine
Learning for industrial applications: a comprehensive literature
review. Expert Syst. Appl. 175, 114820 (2021)

11. Bhattacharjee, A., Barve, Y., Khare, S., Bao, S., Kang, Z., Gokhale,
A., Damiano, T.: STRATUM: a BigData-as-a-service for lifecycle
management of IoT analytics applications. In: 2019 IEEE Interna-
tional Conference on Big Data (Big Data), pp. 1607–1612, (2019)

12. Bourque, P., Dupuis, R.: Software engineering body of knowledge
(swebok). IEEE Computer Society, EUA (2004)

13. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software
Engineering in Practice. Synthesis Lectures on Software Engineer-

ing, vol. 1, 2nd edn., pp. 1–207. Morgan & Claypool Publishers,
Williston (2017)

14. Breuker, D.: Towards model-driven engineering for big data
analytics—an exploratory analysis of domain-specific languages
for machine learning. In: 47th Hawaii International Conference on
System Sciences, HICSS 2014, Waikoloa, HI, USA, January 6-9,
2014, pp. 758–767, (2014)

15. Brunnbauer, M., Piller, G., Rothlauf, F.: Idea-AI: developing a
method for the systematic identification of AI use cases (2021)

16. Brunnbauer, M., Piller, G., Rothlauf, F.: Top-down or explorative?
A case study on the identification of AI use cases. (2022)

17. Brunton, S.L., Kutz, J.N., Manohar, K., Aravkin, A.Y., Morgansen,
K., Klemisch, J., Goebel, N., Buttrick, J., Poskin, J., Blom-
Schieber, A.W., Hogan, T., McDonald, D.: Data-driven aerospace
engineering: reframing the industry with machine learning. AIAA
J. 59(8), 2820–2847 (2021)

18. Bucaioni, A., Cicchetti, A., Ciccozzi, F.: Modelling in low-code
development: a multi-vocal systematic review. Softw. Syst. Model.
21(5), 1959–1981 (2022)

19. Burgueño, L., Cabot, J., Wimmer, M., Zschaler, S.: Guest editorial
to the theme section on AI-enhanced model-driven engineering.
Softw. Syst. Model. 21(3), 963–965 (2022)

20. Burgueño, L., Burdusel, A., Gérard, S., Wimmer, M.: MDE
Intelligence 2019: 1st Workshop on Artificial Intelligence and
Model-Driven Engineering. In: Proceedings of the 22nd Interna-
tional Conference on Model Driven Engineering Languages and
Systems, MODELS ’19, pp. 168–169. IEEE Press, (2021)

21. Burgueño, L., Ciccozzi, F., Famelis, M., Kappel, G., Lambers,
L., Mosser, S., Paige, R.F., Pierantonio, A., Rensink, A., Salay,
R., Taentzer, G., Vallecillo, A., Wimmer, M.: Contents for a
model-based software engineering bodyof knowledge. Softw. Syst.
Model. 18(6), 3193–3205 (2019)

22. Burgueño, L., Kessentini, M., Wimmer, M., Zschaler, S.: MDE
Intelligence 2021: 3rd Workshop on Artificial Intelligence and
Model-Driven Engineering. In: 2021 ACM/IEEE International
Conference onModel Driven Engineering Languages and Systems
Companion (MODELS-C), pp. 148–149, (2021)

23. Czarnecki, K.: Overview of generative software development. In:
Unconventional Programming Paradigms: InternationalWorkshop
UPP 2004, LeMont SaintMichel, France, September 15–17, 2004,
Revised Selected and Invited Papers, pp. 326–341. Springer, (2005)

24. Daniel, G., Cabot, J., Deruelle, L., Derras,M.: Xatkit: amultimodal
low-code chatbot development framework. IEEEAccess 8, 15332–
15346 (2020)

25. Davey, C., Friedenthal, S., Matthews, S., Nichols, D., Nielsen, P.,
Oster, C., Riethle, T., Roedler, G., Schreinemakers, P., Sparks, E.,
Stoewer, H.: Systems engineering vision 2035—engineering solu-
tions for a better world. In: Technical report, INCOSE, San Diego,
California (2022)

26. de la Vega, A., García-Saiz, D., Zorrilla,M., Sánchez, P.: Lavoisier:
a DSL for increasing the level of abstraction of data selection and
formatting in data mining. J. Comput. Lang. 60, 100987 (2020)
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