
Information Systems 67 (2017) 36–57

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Patterns for emerging application integration scenarios: A survey

Daniel Ritter a , b , ∗, Norman May

a , Stefanie Rinderle-Ma

b

a SAP SE, Germany
b University of Vienna, Faculty of Computer Science, Austria

a r t i c l e i n f o

Article history:

Received 11 February 2017

Revised 13 March 2017

Accepted 15 March 2017

Available online 18 March 2017

Keywords:

Cloud integration

Device integration

Enterprise application integration

Enterprise integration patterns

Hybrid integration

a b s t r a c t

The discipline of enterprise application integration (EAI) enables the decoupled communication between

(business) applications, and thus became a cornerstone of today’s IT architectures. In 2004, the book by

Hohpe and Woolf on Enterprise Integration Patterns (EIP) provided a fundamental collection of messag-

ing patterns, denoting the building blocks of many EAI system implementations. Since then, multiple new

trends and a broad range of new application scenarios have emerged, e. g., cloud and mobile computing,

multimedia streams. These developments ultimately lead to conceptual changes and challenges such as

larger data volumes (i. e., message sizes), a growing number of messages (i. e., velocity) and commu-

nication partners, and even more diverse message formats (i. e., variety). However, the research since

2004 focused on isolated EAI solutions, and thus a broader and integrated analysis of solutions and new

patterns is missing. In this survey, we summarize new trends and application scenarios which serve as

a frame to structure our survey of academic research on EIP, existing systems for EAI and also to clas-

sify integration patterns from these sources. We evaluate recently developed integration solutions and

patterns in the context of real-world integration scenarios. Finally, we derive and summarize remaining

challenges and open research questions.

© 2017 Elsevier Ltd. All rights reserved.

q

r

1

s

a

C

r

l

a

f

c

T

S

t

r

1. Introduction

Enterprise Application Integration (EAI) addresses the re-

quirement to integrate independent applications which need to

communicate with each other [1,2] . Hence, some middleware

is employed to abstract from the details of communication and

orchestration of applications. For the purposes of integration, a set

of core Enterprise Integration Patterns (EIP) were documented in

[3] , which describe recurring scenarios and solutions to realize EAI

using messaging.

Originally, EAI focused on the integration of applications within

a single organization. However, as hosting (parts of) applications

in the cloud becomes increasingly popular, EAI also needs to ad-

dress scenarios where applications that are hosted in the cloud or

on-premise (i. e., within company networks) need to be integrated.

We refer to such scenarios as hybrid applications , following For-

rester [4] . Especially hybrid applications require a stronger decou-

pling to integrate on-premise with cloud applications, and conse-

quently, hybrid applications prefer to use (asynchronous) message-

based communication patterns, while RPC-style integration is still
∗ Corresponding author.

E-mail addresses: daniel.ritter@sap.com (D. Ritter), norman.may@sap.com (N.

May), stefanie.rinderle-ma@univie.ac.at (S. Rinderle-Ma).

b

t

a

F

http://dx.doi.org/10.1016/j.is.2017.03.003

0306-4379/© 2017 Elsevier Ltd. All rights reserved.
uite common for EAI in on-premise setups. Most of the current

esearch focuses on RPC-style Service-oriented Architecture (SOA).

.1. New challenges for enterprise application integration

In this paper we identify further new IT trends and application

cenarios which emerged after the seminal book on EIP by Hophe

nd Woolf [3] . Some of these changes, e. g., Cloud and Mobile

omputing, IoT, Microservices, and API Management, were even

ecently acknowledged by the EIP authors [5] .

One major source for identifying new trends is the yearly pub-

ished “Emerging Technologies Hype Cycle” report between 2005

nd 2017 by Gartner [6] . We focused on the most relevant trends

or application integration today, i. e., we excluded trends like ma-

hine learning and analytics in the analysis presented in this paper.

he results are depicted in Fig. 1 . Both our literature review in

ection 2 and our system review in Section 3 are consistent with

he trends identified by the Gartner reports because both academic

esearch as well as concrete systems address these trends.

Broadly speaking, the early years (20 05–20 07) are dominated

y Service-oriented Architecture (SOA) and Event-driven Architec-

ure (EDA) styles. But also related technologies like Microservices

re mentioned by Gartner in 2017 [6] , and API Management by

orrester for 2016–2018 [7] .

http://dx.doi.org/10.1016/j.is.2017.03.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2017.03.003&domain=pdf
mailto:daniel.ritter@sap.com
mailto:norman.may@sap.com
mailto:stefanie.rinderle-ma@univie.ac.at
http://dx.doi.org/10.1016/j.is.2017.03.003

D. Ritter et al. / Information Systems 67 (2017) 36–57 37

Fig. 1. IT trends since 2005 in the context of application integration.

s

a

f

i

2

s

m

p

a

(

g

i

e

d

a

s

t

t

s

d

o

b

t

r

p

g

r

n

b

b

W

c

t

r

r

c

1

r

a

o

r

a

o

a

i

h

s

r

w

2

a

I

t

p

t

p

a

f
The Cloud Computing trend became prominent in 2007 and

ubsequently led to trends like Hybrid Computing, i. e., multi-cloud

nd on-premise applications, from 2013 to 2015 and the move

rom B2B to cloud-based business networks. Early developments

n the Internet of Things (IoT) became influential even before

0 06–20 08 even though devices were not yet affordable and wide

pread. However, with the advent of Mobile Computing in 2010,

obile and IoT devices and applications (since 2012) started to

lay a role for application integration. As countless devices and

pplications generated an increasing amount of data, Big Data

from 2011) became influential and a challenge not only for inte-

ration systems. Finally, humans increasingly organized themselves

n social media with its momentum from 2008 to 2012, which

volves to personal computing, supported by wearable and mobile

evices and applications.

In Fig. 2 we associate the trends mentioned in Fig. 1 with

spects of application integration. While some of the nodes repre-

ent the trends (i. e., without application and integration system),

he edges denote required interaction and (transitive) communica-

ion, which also gives hints on existing as well as new integration

cenarios for the different combinations. Node spanning trends are

enoted by “dashed-line” nodes.

It is noteworthy that for hybrid application integration for both

n-premise to cloud as well as cloud to cloud communication

ecomes relevant, e. g., for migration of on-premise applications

o the cloud. This raises technical issues like security but also

obustness in the face of errors or unavailable communication

artners. Furthermore, cloud, on-premise and mobile applications

enerate communication traffic of an ever increasing scale with

espect to the amount of data but also the number of commu-

ication partners. In this cloud setup organizations replace the

ilateral RPC-style communication by asynchronous, message-

ased interactions which are mediated by integration systems.
 a
hen the applications in an EAI scenario are partly hosted by

loud providers, monitoring becomes more challenging because

he interfaces available for monitoring may be limited. We also

eview these and other non-functional aspects in our literature

eview in Section 2 , our system review in Section 3 and in the

ontext of real-world integration scenarios in Section 6 .

.2. Research method

This survey relies on the design science methodology [8] as a

igid method to collect and evaluate the new trends mentioned

bove, to summarize research which adds new patterns to the

riginal EIP, and to evaluate these new patterns in the context of

eal world application scenarios. Fig. 3 depicts the research method

pplied in this paper, and we use it to structure this paper.

Our fundamental theory and motivation for this paper is: The

riginal EIP from 2004 do not completely cover new trends in 2016

nd beyond . From this we derive hypothesis (H1) , i. e., the exist-

ng EIP do not suffice for all application scenarios after 2004 . This

ypothesis is tested based on two observation artifacts, i. e., a

ystematic literature review in Section 2 and a systematic system

eview in Section 3 . Based on the literature review we analyze

hether new trends and application scenarios can be seen after

004 and which solutions are provided. The system review aims at

nalyzing available systems regarding their support for integration.

nterpreting the literature and system reviews then leads us to the

entative hypothesis (H2) that current system implementations sup-

ort patterns beyond EIP which results in a strong demand for sys-

ematic description . In order to address the detected gaps we pro-

ose new pattern categories and patterns. In hypothesis (H3) we

rgue that some trends are handled in an (yet) immature and ad-hoc

ashion , and thus require a structuring in form of patterns. These

rtifacts are then evaluated based on a quantitative analysis of sev-

38 D. Ritter et al. / Information Systems 67 (2017) 36–57

Fig. 2. IT trends since 2005 an their relationship to application integration.

Fig. 3. Design science methodology used in this paper.

eral real-world integration scenarios following the hypothesis (H4)

solutions not in EIP can be found in real-world integration scenarios

for the trends . Finally, resulting research directions are described.

1.3. Contributions and paper outline

In this paper we make the following contributions:

• A systematic literature review of the trends, e. g., cloud and

hybrid application integration approaches (�→ H1), and an
analysis of the most influential system implementations of this

domain (�→ H2).
• An extended pattern template plus an example based on

descriptions of cross-concern technical qualities (e. g., (stateful)

conversation, streaming, security) for a comprehensive coverage

of new requirements (�→ H3).
• The evaluation of the found patterns as part of integration sce-

narios in a well-established cloud integration system in form

of a quantitative analysis based on new monitoring patterns

(�→ H4).

D. Ritter et al. / Information Systems 67 (2017) 36–57 39

r

t

i

t

r

l

w

t

T

r

S

w

2

a

o

i

i

n

a

i

g

s

a

c

f

s

t

l

p

l

T

l

t

w

w

p

r

a

2

a

t

g

y

i

A

t

i

o

[

D

w

p

S

c

o

t

t

a

f

o

l

o

t

p

s

2

l

f

w

m

c

t

w

a

i

2

w

t

d

i

S

t

d

d

t

s

c

p

a

s

o

o

t

S

r

t

c

A

P

a

a

A

i

F

f

v
The paper is structured as follows. In Section 2 the literature

eview of approaches that are closely related to application in-

egration and integration patterns is conducted by setting them

nto context to the new trends since 2004. Section 3 describes

he system review with focus on non-functional aspects (NFA) –

elated to the trends – identified during the literature review, thus

eading to a list of potentially missing functionality. In Section 4 ,

e discuss how to capture the functionality as patterns, similar to

he original EIP, and discuss two patterns in more detail Section 5 .

hen we analyze and discuss real-world integration scenarios

elated to the trends and their usage of the new patterns in

ection 6 . Section 7 concludes the paper and states open issues

hich are not addressed in existing work.

. Literature review

In this section we conduct a literature review in order to

nswer the hypothesis H1: existing integration foundations in form

f patterns do not suffice for all application scenarios as set out

n Fig. 3 . The hypothesis raises two questions to be investigated

n the literature review, i. e., a) are there any topics after 2004

ot yet covered by the original EIP? and if yes b) do existing

pproaches provide solutions to these topics?.

The literature review is based on the guidelines described

n [9] . The primary selection of references was conducted using

oogle scholar (scholar.google.com) on 2016-10-4. The search

tring was

allintitle: integration patterns excluding patents

nd citations. As a general baseline, only papers after 2004 are

onsidered as the main theory behind this study is that the EIP

rom 2004 do not cover trends in 2016 . Hence the time range was

et to 2005 – 2016. Overall this resulted in 525 hits. On these hits,

he following selection criteria were applied:

• relation to computer science, enterprise application integration,

service integration, data integration, system integration

• availability of the document
• published in English

• published (excluding Master theses)

Altogether, 52 papers were selected as relevant (the primary

iterature list can be found here: http://cs.univie.ac.at/wst/research/

rojects/project/infproj/1085/). These 52 papers were further ana-

yzed whether they contribute as observations to the hypotheses.

his resulted in removing 23 papers from the primary literature

ist (for example, papers were excluded that focus on data integra-

ion). Then a vertical search was conducted in forward and back-

ard direction, resulting in 43 papers, including one paper that

as added based on expert knowledge. After analyzing these pa-

ers, 34 were included in the secondary literature list. Overall, this

esults in 63 papers for the secondary literature list (to be found

t http://cs.univie.ac.at/wst/research/projects/project/infproj/1085/).

.1. Processing of selected literature – topics and trends

At first, all papers from the secondary literature list were an-

lyzed with respect to the topics they are mentioning. Comparing

he harvested topics with the trends identified in the introduction

ives an answer to question a) are there any topics after 2004 not

et covered by the EIP?. In this first step it is sufficient that a topic

s mentioned. It was not necessary that a solution was provided.

s the collected topics are very fine granular and spread widely,

hey were first grouped according to the trends mentioned the

ntroduction.

Fig. 4 depicts the distribution of topic mentions along the trend

ver time. It can be seen that SOA (i. e., RPC-style integration
3]) plays a dominant role, particularly in the years 2005–2013.

uring this period, some topics such as mashups, cloud, and EDA

ere occasionally mentioned. In the last years, i.e., 2014–2016 the

icture seems to change, turning away from the strong focus on

OA towards topics such as cloud, hybrid, and IoT.

From Fig. 4 it can be concluded that some of the trends oc-

urred in the literature after 2004 with a dominant occurrence

f SOA. Apparently, since 2014 SOA loses significance, and other

rends such as IoT and cloud seem to gain more attention. From

he dominance of SOA we also conclude that a more fine-grained

nalysis of the mentioned topics is meaningful. Hence, in the

ollowing, summaries for the analyzed approaches are provided,

rdered by the topics and areas they work on. Subsequently, the

ist of trends will be complemented with N on F unctional A spects

r requirements (NFA) mentioned by literature that constitute fur-

her important topics for EAI since 2005. Moreover, if approaches

rovide solutions with respect to the different topics, the type of

olution will be collected.

.2. Literature summaries

This section summarizes the approaches identified in the

iterature search. We organize the summaries chronologically by

ollowing the timeline from Fig. 1 . In the context of EAI, no work

as found on the internet of things, social/personal computing,

icroservices, and API management, which can be seen as suc-

essor of the Service-oriented Architecture trend. In addition to

he trends, for each approach we try to derive additional NFA as

ell as the proposed solutions. The harvested NFA and solutions

re summarized at the end of the section in Table 1 and yield the

nput for the further analysis.

.2.1. Service-oriented and event-driven architectures

According to the timeline, the first EAI solutions after 2005

ere provided by Service-oriented and Event-driven Architec-

ures representing mostly RPC-style solutions (i. e., a post shared

atabase and file sharing integration style, compared to “messag-

ng” like EIP, according to [3]).

ervice-oriented Architecture. Hentrich and Zdun present patterns

hat address data integration issues such as incompatible data

efinitions, inconsistent data across the enterprise, data redun-

ancy, and update anomalies [10] . It is described how to integrate

he application-specific business object models of various external

ystems into a consistent process-driven and service-oriented ar-

hitecture. In summary, the proposed solution combines SOA with

atterns, e. g., refactoring patterns. In [11] , the authors propose

 pattern language for design issues of business process-driven

ervice orchestrations. The patterns illustrate how these types

f service invocation need to be reflected in process models in

rder to integrate processes with services. Implications regarding

he functional architecture are also captured by the patterns.

pecifically, the patterns reflect solutions for general business

equirements that can be found in SOA engagements. Overall,

he paper proposes a solution, more precisely, a pattern language

overing, for example, Synchronous Service Activity, Fire Event

ctivity, and Asynchronous Sub-process Service.

In subsequent work [12] the authors present solutions to

rocess-driven SOA patterns in the sense of a process integration

rchitecture featuring patterns at Macro Flow (business process)

nd Micro Flow level (transaction or human), as well as Integration

dapter, Configurable Dispatcher, and Integration Adapter Repos-

tory. These patterns correspond to the ones proposed in [10] .

urthermore long-running business processes are distinguished

rom short-running technical processes. Zdun et al. present a sur-

ey of technology-independent patterns that are relevant for SOA

http://scholar.google.com
http://cs.univie.ac.at/wst/research/projects/project/infproj/1085/
http://cs.univie.ac.at/wst/research/projects/project/infproj/1085/

40 D. Ritter et al. / Information Systems 67 (2017) 36–57

Fig. 4. Distribution of topics mentioned in literature over time.

Table 1

Solutions for trends and non-functional aspects (parentheses mean partial solution).

Trends Patterns [3] Formalization [5,66] Modeling [46,47,66]

Service-oriented Architecture [10–16,18,32,37,38] , security [30,31] [16] , adapters [21,22,35,36,67] , control flow [33] ,

interact. [34]

[17]

Internet of Things

Event-driven Architecture [42,59]

Cloud computing [44,45] , (migration [43])

B2B/ Business Network (by example [46,47])

Social/ Personal Computing

Mobile Computing SOA device patterns [25]

Big Data

Hybrid Computing (migration [43,48])

API Management (for SOA [15])

Mashups [26,27] , SOA migration [29]

NFA with evidence

Asynch [3] EIP [3] , strategies [56] [57,58]

Security [15,31,45,50,68,69] (for SOA [30,31])

Media [6]

Synch / Streaming [5]

Conversations [5] , [6] [55] , (for SOA [37]) (for SOA [19,34])

Error Handling [5,45] (EIP [3,70])

Monitoring [45,61,62] ([3])

a

t

C

g

P

q

t

w

t

t
and argue towards formalized pattern-based reference architecture

model to describe SOA concepts [13] . Finally, Zdun describes a fed-

eration model to control remote objects and proposes a solution

based on patterns, e. g., broker and software patterns [14] .

Autili et al. discuss challenges posed by the heterogeneity of

Future Internet services [15] . Modern service-oriented applications

automatically compose and dynamically coordinate software ser-

vices through service choreographies described based on BPMN 2.0

Choreography Diagrams. The authors state that currently composi-

tion and adaptation is often a manual task, Hence, they advocate

towards the automatic synthesis of choreography-based systems
nd describes preliminary steps towards exploiting Enterprise In-

egration Patterns to deal with a form of choreography adaptation.

oncretely, an adapter generator and prototype using spring inte-

ration is presented. Example patterns comprise Message Routing

atterns, namely Message Filter, Aggregator, Splitter, and Rese-

uencer. Overall, this work bridges SOA to EAI using EIP and pro-

ocol adapters for services. Moreover, it is planned to integrate EIP

ith security patterns and message transformation as future work.

In Gacitua-Decar and Pahl an ontology-based approach to cap-

ure architecture and process patterns is presented [16] . Ontology

echniques for pattern definition, extension and composition are

D. Ritter et al. / Information Systems 67 (2017) 36–57 41

d

p

a

b

a

S

a

t

i

t

a

m

i

d

s

d

a

t

u

a

s

v

t

p

u

a

o

p

f

a

U

G

d

o

t

a

d

f

e

S

o

a

e

b

a

s

t

w

g

S

l

A

I

S

i

A

A

S

i

a

M

n

P

l

a

r

a

b

B

t

d

e

i

t

s

t

i

c

s

t

h

t

S

O

m

a

s

a

y

c

t

p

c

s

e

a

S

t

P

i

a

o

f

B

a

p

e

m

e

a

t

n

a

d

s

t

l

p

a

p

i

H

b

a

p

S

e
eveloped and their applicability in business process-driven ap-

lication integration is demonstrated. The proposed solution is an

rchitecture framework for SOA-based EAI as well as an ontology-

ased notion of patterns to link business processes and service

rchitectures. This could be seen as a formalization approach. A

OA service integration framework with a pattern-based modeling

pproach is presented by Heller and Allgaier [17] . It features con-

rolled extensibility of enterprise systems for unforeseen service

ntegration and can be estimated as similar to related B2B Integra-

ion and Enterprise Application Integration. The framework lever-

ges structural or behavioral interface mediation techniques. The

odeling approach with adaptation patterns and runtime support

s demonstrated with a UI integration prototype in the automotive

omain. Overall, this work suggests pattern-based modeling as

olution. Kaneshima and Braga analyse whether EAI can be con-

ucted by web services and SOA or DB sharing [18] . Both solutions

re being adopted by organizations, although they present advan-

ages and disadvantages that should be analysed. This work doc-

ments these problems and solutions in the form of patterns like

ccess via Shared Database, direct RPC-style integration via web

ervices, Intermediate Duplication with access via DB or web ser-

ices. Hence, the proposed solution is based on SOA and patterns.

Umapathy and Purao transform EIP to web service implemen-

ations using a transformation model called ceipXML [19] . The

roposed solution comprises conversation models that may be

sed to implement interactions among Web services as well as

 methodology that generates the design elements in the form

f conversation policies for Web services. Current integration ap-

roaches do not support the end user development requirements

or infrequent, situational or ad-hoc integration and collaboration

s stated by Zheng et al. [20] . The work differentiates between

I, component, business logic, resource and data integration.

ierds et al. define an approach for behavioral adapters based on

omain-specific transformation rules that reflect the elementary

perations that adapters can perform; synthesize complex adapters

hat adhere to these rules [21] . The proposed solution comprises

 formalization, specification of the elementary activities to model

omain knowledge, separating data from control, and a reduction

rom adapter synthesis to controller synthesis. An adapter is gen-

rated to reconcile mismatches (e. g., incompatible protocols) in

equel et al. [22] . The proposed solution is constituted by a survey

f protocol adapter generation (e.g., semi-automated protocol

dapter generation). Gudivada and Nandigam deal with EAI using

xtensible Web services [23] . A solution is not directly proposed,

ut rather a practical implementation. Deng et al. combines SOA

nd Web service technology to simplify EAI by studying the

ervice-oriented software analyzing and development characteris-

ics [24] . The approach distinguishes between vertical integration

ithin an enterprise while B2B emphasize on the horizontal inte-

ration. Again the paper presents a more practical implementation.

OA and Mobile Computing. Mauro et al. [25] target design prob-

ems of SOA for mobile devices with Service Oriented Device

rchitecture (SODA). For this SOA design patterns like Enterprise

nventory are analyzed with respect to their applicability to

ODA, and new pattern candidates like Service Virtualization are

dentified. From these candidates new (device) patterns including

uto-Publishing, Dynamical Adapter, Server Adapter, Integrated

dapter, External Adapter are proposed as solution.

OA and Mashups. Liu et al. combine several common architecture

ntegration patterns, namely Pipes and Filters, Data Federation,

nd Model-View-Controller to compose enterprise mashups [26] .

oreover, these patterns are customized for specific mashup

eeds. In [27] enterprise architecture integration patterns (e. g.,

ipes and Filter, Data Federation, Model-View-Controller) are
everaged in order to compose reusable mashup components. The

uthors also present a service oriented architecture that addresses

eusability and integration needs for building enterprise mashup

pplications. The proposed solutions focus on SOA and mashups,

ut no solution to EIP and new trends is provided. The work by

raga et al. addresses issues of complexity of service composi-

ions with adequate abstraction to give end users easy-to-use

evelopment environments [28] . Abstract formalisms must be

quipped with suitable runtime environments capable of deriv-

ng executable service invocation strategies. The solution tends

owards mashups and modeling as users declaratively compose

ervices in a drag-and-drop fashion while low-level implementa-

ion details are hidden. However, the solution could not be clearly

dentified and is hence not included in Table 1 . Finally, Cetin et al.

hart a road map for migration of legacy software to pervasive

ervice-oriented computing [29] . Integration takes place even at

he presentation layer. No solution is provided for EIP and trends,

owever, mashups are used as migration strategy to SOA based for

he Web 2.0 integration challenge.

OA Security. Qu et al. present six bilateral patterns (Binding,

n-demand, Tailor, Composite, Contract and Migration) and four

ultilateral patterns (Separated, Shared, Mediated and Enhanced)

s a solution for integrating new services with Grid security

ervices [30] . For each pattern, the authors discuss its intent,

pplicability, participants and consequences. Shah and Patel anal-

se the security requirements for global SOA [31] . For security

oncerns, dynamic configuration of handlers, sequence, and iden-

ification of handlers is proposed as solution. Fisher et al. provide

ractical implementations in Java and .NET for interoperable, syn-

hronous, and asynchronous integration [32] . Hence, the proposed

olution consists of implementation details for SOA, WS security

xamples, and best practices such as a secure object handler

dding custom interceptor logic for, e. g., adding digital signatures.

OA and Business Processes. Ouyang et al. formalize process con-

rol flows into BPEL processes by an intermediate translation to

etri nets [33] . From the same group, Wang et al. construct and

nterface adaptation machine that sits between pairs of services

nd manipulates the exchanged messages according to a repository

f mapping rules. For both approaches, the proposed solution is a

ormalization. Lohmann et al. analyze the interaction between WS-

PEL processes using Petri nets [34] . Again the proposed solution is

 formalization. With a similar goal, Kumar and Shan aim at sim-

lifying the pattern compatibility based on a matrix and rules that

nable the simplification of checking compatibility between two or

ore processes because these prerequisite rules can be applied to

ach pattern separately [35] . The proposed solution is an algorithm

nd can hence be subsumed as formalization. Mismatch patterns

hat capture the possible differences between two service (busi-

ess) protocols to adapt and automatically generate BPEL adapters

re presented by Jiang et al. [36] . They introduce several depen-

encies such as transformation dependency (incl. message split),

ynchronization dependency, choice dependency (choice among

wo or more messages), and priority dependency. The proposed so-

ution is the formalization of mismatches. Barros et al. propose SOA

rocess interaction patterns including Send, Receive, Send/Receive,

nd Racing Incoming Messages [37] . Patterns for synchronization

roblems in the area of process-driven architectures, e. g., Wait-

ng Activity or Timeout Handler, are introduced by Köllmann and

entrich [38] . Vernadat looks at architectures and methods to

uild interoperable enterprise systems, advocating a mixed service

nd process orientation and the classification of integration levels,

hysical system, application, business integration, and enumerates

OA concepts [39] . No specific solution is proposed. Grossmann

t al. derive integration configurations from underlying business

42 D. Ritter et al. / Information Systems 67 (2017) 36–57

H

t

M

s

i

t

o

s

s

p

p

2

c

a

I

p

a

t

o

d

a

o

t

d

B

p

a

l

w

t

a

p

a

2

f

w

E

P

c

b

p

i

T

i

s

E

b

s

s

a

f

a

F

c

a

T

c
processes, e. g., activities [40] . Future work names exception han-

dling as challenge, however no solutions are provided.

Event-driven Architecture (EDA) and SOA. Taylor et al. address the

SOA - EDA connection as service network and provide a reference

EDA manual [41] . As no solution is provided, the approach is not

included in Table 1 . A theoretical framework for modeling events

and semantics of event processing is provided by Patri et al. [42] .

The formal approach enables to model real-world entities and their

interrelationships and specifies the process of moving from data

streams to event detection to event-based goal planning. More-

over, the model links event detection to states, actions, and roles

enabling event notification, filtering, context awareness, and esca-

lation. The proposed solution consists of events and formalization.

2.2.2. Cloud computing, business networks, and hybrid applications

The successor of grid and cluster computing is cloud computing

that extends B2B to business networks, and the coexistence of

applications on-premise and in several kinds of cloud platforms as

hybrid applications.

Cloud Computing. Asmus et al. focus on the migration of enter-

prise applications to the cloud [43] . Integration is considered a key

factor influencing cloud deployment. Several migration patterns

are described as a basis for enabling enterprise cloud solutions.

The following challenges are named in the paper: data volume,

network latency, identity and data security management, interop-

erability (i. e., supporting the trends big data, security, and variety

as in multimedia). Asmus et al. state that “integration pattern can

be a starting point in deciding integration options” [43] . The key

areas addressed in the approach include on premise, off-premise

private cloud, cloud integration, cloud service provider, and ex-

ternal users. The integration patterns refer to process to process

and data integration. Overall, the proposed solutions are “patterns

and processes-based” methods for an initial evaluation of the risk

and effort required to move new and existing applications to a

cloud service. In Ritter and Rinderle-Ma, a collection of integration

patterns derived from requirements of hybrid and cloud appli-

cations is presented [44] , thus propose a solution for cloud and

patterns. The main challenge described by Merkel et al. is a secure

integration [45] . The approach proceeds in a top-down manner by

deriving integration patterns from scenarios and in a bottom-up

fashion by deriving patterns from case study requirements. It

identifies the need for security (access control, integrity, confiden-

tiality) as well as security constraints (e. g., EU Data Protection

Directive) and presents an evaluation based on an architecture

with major focus on hybrid and multi-cloud setups. The described

patterns are cross-cloud ESB, usage of ESBs, as well as security

patterns as architecture components such as LDAP. The approach

only works in private clouds. Merkel et al. propose future work on

public cloud that involves content encryption, key management,

data splitting, computing with encryption functions, anonymiza-

tion, data masking, and encrypted virtual machines. They mention

Cross-Cloud Balancer, Cross-Cloud Data Distributor, and replication

patterns as further future work. Other challenges mentioned are

cross-cloud monitoring and cloud management. In summary, the

proposed solution are new patterns for SaaS integration and

centralized as well as decentralized multi-cloud integration.

Business Network. Ritter provides mappings of EIP integration

semantics and patterns to BPMN-based models as well as an

implementation of a business network scenario example [46,47] .

Both works do not directly propose a solution to the trends

depicted in Fig. 4 , but introduce modeling as a possible solution in

the context of EIP, thus added as category to Table 1 .
ybrid Applications. A major challenge in hybrid applications is

he decision where to host parts of the application. In this regard,

ansor recommends to bear in mind the patterns in the envi-

ioned process [48] . The work addresses technical challenges when

mplementing a hybrid architecture. The proposed solution refers

o architectural patterns. A holistic approach for the development

f a service-oriented enterprise architecture with custom and

tandard software packages is presented by Buckow et al. [49] . The

ystem architecture to be developed is often based on integration

atterns for the physical integration of systems. No solution is

rovided in the context of this work.

.2.3. Internet of things and big data

With affordable and widespread mobile sensors and devices

omes the Internet of Things and together with the immense

mount of data from cloud and mobile computing comes Big data.

nternet of Things (IoT). Heiss et al. collect challenges in cyber-

hysical systems such as communication quality, interoperability,

nd massive amounts of data [50] . As interesting requirements

hey state “placement” (of integration scenarios), e. g., cloud or

n-device, the demand for global optimization, more intelligent

evices, networking and cloud and security including data security

nd privacy etc., decoupling of layers vs. direct data access for

n-top applications. Rather than proposing a solution, the indus-

rial and business perspectives on such envisioned platforms are

escribed.

ig data. Ritter and Bross suggest moving-up relational logic

rogramming for implementing the integration semantics within

 standard integration system [51] . For this EIP semantics is trans-

ated to relational logic. For declarative and more efficient middle-

are pipeline processing (e. g., parallel execution, set-operations),

he patterns are combined with Datalog. The expressiveness of the

pproach is discussed, and a practical realization by example is

rovided. Although no direct solution to the trends is provided the

pproach directs to “data-aware” integration patterns.

.2.4. General EAI approaches

From practical EIP implementations to ideas for new patterns,

ormalization approaches, enabling techniques and domain-specific

ork, this section rounds off the literature analysis with further

AI challenges.

ractical Aspects. Scheibler and Leymann present a framework for

onfiguration capabilities of EIP, specifically for code generation

ased on a model-driven architecture [52] . In [53] , EIP are im-

lemented in IBM WebSphere. Again no solution for the trends

s provided, but a solution to the EIP through implementation .

hullner et al. analyse EIP coverage in open source tools and

mplement a sample scenario in Apache Camel and Mule [54] . No

olution is provided.

AI Patterns. [55] presents a pattern language for conversations

etween loosely coupled services, i. e., patterns are suggested as

olution. Gonzales and Ruggia deal with response time and service

aturation issues (more requests than can be handled) using an

daptive ESB infrastructure [56] . They propose solutions in the

orm of strategies , i. e., Delayer, Defer Requests, Load Balancing,

nd Cache.

ormalization and Verification. Fahland and Gierds present a con-

eptual translation of EIP into Colored Petri nets, hence providing

 formal model based on a system specification using EIP [57,58] .

he Petri net based formalizations can be used to simulate and

onduct model checking of pattern compositions. Though the

D. Ritter et al. / Information Systems 67 (2017) 36–57 43

f

a

T

m

p

c

f

S

s

o

s

s

t

e

i

T

a

c

c

o

f

p

b

E

f

a

l

t

S

D

c

t

o

g

f

B

a

D

a

A

a

a

a

b

i

r

s

a

E

a

t

t

e

a

v

e

a

c

e

M

v

p

2

n

t

t

t

(

t

i

s

o

d

p

t

[

c

A

t

[

p

a

e

[

m

n

a

o

i

i

p

m

(

s

t

m

f

m

m

a

e

i

h

c

b

g

c

i

D

t

a

t

B

t

i

v

f

p

p

u

ormalization can be understood as solution, it does not address

ny new trends beyond EIP, thus this approach is not contained in

able 1 . A semantic representation of EIP for automatic manage-

ent of messaging resources (e. g., Channels, Filters, Routers) is

resented by Patri et al. [59] . The application is to connect mobile

ustomers to Smart Power Grid companies. Data is accessed in

orm of alerts from a complex event processing engine using

PARQL queries. The proposed solution is a formalization for re-

ource management of integration patterns. Basu and Bultan focus

n the interaction behavior in asynchronously communicating

ystems resulting in decidable verification for a class of these

ystems [60] . As the proposed solution (formalization) is not in

he context of the trends, it is not included in Table 1 . Mederly

t al. generate a sequence of processing steps needed to transform

nput message flow(s) to specified output message flow(s) [61,62] .

he work takes into account requirements such as throughput,

vailability, service monitoring, message ordering, and message

ontent and format conversions. Additionally, it uses a set of

onditions, input and output messages, and a set of configuration

ptions. Control flow ordering is formalized. The work is excluded

rom Table 1 because it provides no solution, but rather creates

arts of integration solutions from the description of what has to

e achieved, not how it should be done.

AI enabling techniques. The following approaches address dif-

erent enabling technologies. However, neither are the presented

pproaches related to the trends, nor do they propose concrete so-

utions. Hence they are not included in Table 1 . Architectural pat-

erns (e. g., Remote Process Invocation, Batch Data Synchronization,

OA, Pub/Sub, P2P, Broker, Pipes and Filters, Canonical Data model,

ynamic Router) are contributed by Kazman et al. [63] . This work

onstitutes a guideline for IT architects that combines existing pat-

erns. Land et al. integrate the existing software after restructuring

r merger, i. e., address the question of how to carry out the inte-

ration process [64] . Multiple case studies and recurring patterns

or vision process and an integration process are provided as well.

asic concepts of enterprise architectures including integration

nd interoperability are summarized by Chen et al. [65] .

omain-specific Approaches. Cranefield and Ranathunga integrate

gents with a variety of external resources and services using

pache Camel and the EIP endpoint concept [71] . e-Learning as

 growing and expanding area with huge number of disparate

pplications and services is addressed by Rajam et al. [68] . The

pproach redefines the Model-View-Controller pattern. It can

e further enriched to encapsulate certain non-functional and

ntegration activities such as security, reliability, scalability, and

outing of request. As all these approaches do not propose a

olution directly connected to EIP and the trends, and hence they

re not included in Table 1 .

AI Challenges. A survey to motivate some more challenges in the

rea of enterprise application integration and to link back to the

rends is presented by He and Xu [69] . Further this work examines

he architectures and technologies for integrating distributed

nterprise applications, illustrates their strengths and weaknesses,

nd identifies research trends and opportunities for horizontal and

ertical integration. Though no solution is proposed, the discov-

red trends are strengthened, for example, SOA, personal, mobile,

nd IoT. The survey also addresses NFA, e. g., security, which are

ollected and serve as input for Table 1 . Another survey by Panetto

t al. discusses trends and NFA in enterprise integration [66] .

oreover, modeling and formalization (formal methods such as

erification) are proposed as challenges, but no concrete solution

rovided.
.3. Synthesis and discussion of non-functional aspects

The second aspect of our analysis of trends are topics that were

amed by Gartner [6] and Zimmermann et al. [5] as relevant or

hat were identified during the literature review. However, these

opics have a more cross-cutting quality (i. e., relevant for several

rends). We call them non-functional aspects or requirements

NFA), which we appended to Table 1 together with the references

hat supported them as challenges (as evidence). They are set

nto context to important aspects, when working with integration

cenarios, namely patterns, formalization and modeling. The focus

n patterns comes from the EIP [3] and supported by many related

omains, that capture knowledge and best practices in form of

atterns (e. g., SOA, Cloud Computing). Panetto et al. [66] bring up

he formalization (supported by [5]) and modeling (supported by

46,47]) as additional relevant topics. We now set these topics into

ontext with the references from the literature analysis in Table 1 .

For the EIP, we added asynchronous message processing as

synch to cover the solutions in this space, e. g., by [3,56] . For

he NFA, solutions in the area of formalizations are proposed by

57,58] for the validation of pattern composition and business

rocesses. Another NFA is Security , which was seen as challenge

t least by Gartner [6] and in the literature by [31,50,68] (in gen-

ral), by [69] (performance concerns, real-time integration), and by

45] (e. g., safe integration, indications that content encryption, key

anagement and more is missing). Autili et al. [15] mention the

eed for security integration patterns. The solutions for patterns

re limited to SOA with patterns like Secure Service Consumption

r Security Handler Information Exchange [30,31] .

According to Gartner, multimedia format handling and process-

ng can be seen as a non-functional requirement [6] . This includes

mage, video and text image formats, which are increasingly

roduced through mobile devices and, e. g., interacted on social

edia, becoming of increasing interest for (business) applications.

In the context of the big data challenges of integration systems

from Gartner; e. g., volume, velocity, stability), (synchronous)

treaming protocols are seen as one possible solution. The au-

hors of [5] mention that patterns as well protocols are currently

issing in EAI.

With more and more communication partners that result

rom the trends in Section 1.1 , (stateful) conversational protocols

ight be required, according to [5] and also Gartner (e. g., device

eshes). First ideas have been sketched by Hohpe [55] with

n initial collection of conversation patterns, which should be

xtended [5] . For SOA web service conversation policies [19] and

nteraction patterns [37] solutions were provided. Formalizations

ave been proposed in [34] for the SOA domain with focus on the

ontrollability of a process. The proposed solutions for SOA might

e transfered to integration processes as starting point for more

eneral conversation patterns.

To handle erroneous situations during message processing, es-

alate them and make systems more fault-tolerant, error handling

s seen as a major aspect [5,45] . Hohpe et al. [3,70] do only cover

ead Letter Channel as solution and sketch some ideas about the

opic. Overall, in the literature, the topic is neither addressed from

 pattern, formalization, nor modeling perspective. While [5] men-

ions missing patterns and formalization, Merkel et al. [45] lists

alancing and Distribution, as well as [69] mentions Fault-

olerance and Message Scheduling as missing aspects. Similarly, the

nsight into the current state of affairs, called monitoring, for ser-

ices and cross-cloud are seen as important topics in [45,61,62] .

The monitoring of integration processes as well as cross plat-

orm monitoring were only mentioned, however, no solution was

rovided. The Control Bus, a Wire Tap and the Message History

atterns in Hohpe et al. [3] denote partial solutions, which can be

sed to build a monitoring solution on integration process level.

44 D. Ritter et al. / Information Systems 67 (2017) 36–57

Table 2

System review - horizontal search.

Category hits selected Selection criteria Selected Systems

Commercial 12 7 Gartner and Forrester IPaaS Quadrants Dell Boomi [72] , IBM Cast Iron [73] , Informatica [74] , Jitterbit [75] , MS

BizTalk [76] , SAP Cloud Integration [77] , Oracle [78]

Startup 20 2 cloud/data integration, B2B, API, #followers Tray.io [79] , Zapier [80]

Open Source 13 2 application integration, data ingestion Apache Flume [81] , Apache Nifi [82]

Wikipedia 34 1 enterprise application integration; non-duplicates Apache Camel [83]

Added Systems n/a 3 expert knowledge Cloudpipes [84] (startup), Tibco [85] , WebMethods [86] (commercial)

Removed Systems – –

Overall 74 15

m

t

o

w

p

3

3

s

E

M

M

a

t

t

c

p

a

f

t

a

o

i

E

c

l

i

i

d

S

b

F

b

t

a

d

I

t

T

g

A

a
3. System review

This section reports on the results of a system review to

answer hypotheses H2 the EIP of the 2004 book are all widely

used in praxis , and H3 current system implementations do support

more patterns as set out in Fig. 3 . The system review is based on

the guidelines described in [9] for a horizontal search including

“well-established” commercial application integration systems,

more experimental systems from startups, open source systems

and public knowledge in form of a Wikipedia search. The selection

of systems was conducted on 2016-10-04, and the results of the

horizontal search are summarized in Table 2 . The NFA are used to

focus the search in those systems.

First, seven commercial systems were collected by taking the

systems listed in both, the Gartner (Leaders, Visionaries, Chal-

lengers) [87] and the Forrester (Application Integration) IPaaS

list [88] – out of 12 systems, leading to the following systems:

Dell Boomi [72] , IBM Cast Iron [73] , Informatica [74] , Jitterbit

Harmony Cloud Integration [75] , Microsoft BizTalk [76] , SAP Cloud

Integration [77] , and Oracle Cloud Integration [78] . We scratched

MuleSoft due to its similarity to Apache Camel [83] , which we

selected as expert addition from Wikipedia (discussed later).

In addition, two startup systems from the top 20 overall

systems were selected due to their number of followers on

angel.co , 1 namely Tray.io [79] and Zapier [80] . While the for-

mer is striving to build an “Integration Marketplace” for enterprise

applications, Zapier is a cloud integration startup.

Out of 13 open source systems of the Github Hadoop Ecosys-

tem, 2 we selected Apache Flume [81] and Nifi [82] as data

ingestion systems according to the selection criteria (cf. Table 2).

We scratched the application integration systems Talend (also

listed as commercial system), Spring Integration and MuleESB for

their similarity to Apache Camel as well as Apache Beam, Apache

Sqoop and Spring XD for their similarity to Apache Flume.

The open source integration system Apache Camel [83] does

not appear in the open source list, however, it was the only

non-duplicate from the other lists that has to be selected, since

it implements the existing EIP from [70] and is a role model for

many systems like Spring Integration, or Red Hat’s FuseESB.

The software systems of Tibco [85] and Software AG [86] are

wide-spread and influencial integration systems for on-premise

with a cloud integration offering and are listed among the top for

wide integration and deep integration for traditional on-premise

by Forrester. 3 Hence we add them as expert selected additions.

We add Cloudpipes [84] from the startup list as cloud integration

system.

That leaves us in total with 15 systems with a good mix of

well-established commercial and startup products, as well as com-
1 Angel.co, visited 02/2017: https://angel.co/data-integration
2 Hadoop Ecosystem on Github, visited 02/2017: https://hadoopecosystemtable.

github.io/
3 The Forrester Wave: Hybrid2Integration, Q1 2014

H

a

t

R

u
unity projects. Since the main focus lies on commercial systems

hat are known to be less well accessible for a systematic analysis

f their features, we focus on the publicly available material (i. e.,

ithout registration or login) and try to get more information by

ossibly underlying open source systems, where possible.

.1. Processing of selected systems

.1.1. EIP Solutions used in system implementations

We start our system review with an analysis of all selected

ystems with respect to their implementation of EIP solutions. The

IP describe six pattern categories, namely, Messaging Channels,

essage Construction, Message Routing, Message Transformation,

essaging Endpoints and System Management. We focused the

nalysis on the two pattern categories of message routing and

ransformation, since they represent the core aspects of integra-

ion systems. Furthermore we left out composed patterns (e. g.,

omposed message processor, scatter-gather), when their single

arts were already in the selection. Table 3 (from Boomi to Oracle)

nd Table 4 (from Flume to Webmethods) depict the solutions

ound in the system implementations that could be associated to

he routing and transformation patterns.

The Apache Camel system seems to be specifically designed

round the EIP, thus supports nearly all EIP and sticks to the

riginal EIP naming for the respective solutions, which makes

t a benchmark for the others. Most notable deviations are the

nvelope Wrapper (i. e., wrap application data inside an envelope,

ompliant with the messaging infrastructure) and Message Trans-

ator patterns (i. e., translate one data format into another one; not

n transformation patterns). None of them is directly represented

n Camel, however, can be implemented using UDFs (i. e., user-

efined functions like Camel Processor) or scripting (e. g., Camel

cript), therefore marked as partially covered by parentheses.

The most common routing pattern solutions are the Content-

ased Router, the Splitter and the Aggregator. Since the Message

ilter is a special case of the content-based router and filter can

e used to construct the latter, not all systems provide implemen-

ations for both of them. The splitter is sometimes implemented

ccording to the description in the EIP, however, some vendors

ecomposed it to its iterative core functionality (e. g., For Each in

BM, Oracle, Cloudpipes). The aggregator shows many partial solu-

ions that require user-defined functions (e. g., Informatica, Oracle,

ray.io), while only few provide its EIP functionality (e. g., Aggre-

ator in BizTalk, SAP Cloud Integration, Tibco or ContentMerge in

pache Nifi).

The transformation patterns seem to play a major role in the

nalyzed systems, since most of them are broadly supported.

owever, there seems to be a tendency to provide UDF capabilities

nd leave the burden to the user to deal with the semantics.

Finally, the dynamic routing patterns (e. g., Dynamic Router),

hose patterns that contain the recipient in their content (e. g.,

ecipient List, Routing Slip), and the Message Resequencer, e. g.,

sed for the exactly-once-in-order service quality [89] , were

https://angel.co/data-integration
https://hadoopecosystemtable.github.io/

D. Ritter et al. / Information Systems 67 (2017) 36–57 45

Table 3

Original EIP used in systems; supported �, partial (�), unknown/not supported.

Pattern Boomi IBM Informatica Jitterbit BizTalk SAP Oracle

Content-based Router � � – – � � �

Message Filter – � – – � – –

Dynamic Router – – – – � – –

Recipient List – – – – – – –

Splitter � � (�) � � � �

Resequencer – – – – – – �

Routing Slip – – – – – – –

Aggregator – – (�) – � � (�)

Envelope Wrapper (�) (�) (�) (�) – – –

Content Enricher (�) – – (�) (�) � –

Content Filter (�) – – (�) (�) � –

Claim Check (�) – – (�) – (�) -

Normalizer (�) – (�) � (�) (�) –

Message Translator � – (�) � � � –

Table 4

Original EIP used in systems; supported �, partial (�), unknown/not supported.

Pattern Flume Nifi Camel Tray.io Zapier Cloudpipes Tibco Webmethods

Content-based Router (�) � � � – � � �

Message Filter � – � – � � – –

Dynamic Router (�) – � – – – – –

Recipient List – – � – – – – –

Splitter � � � – � � � –

Resequencer – – � – – – – –

Routing Slip – – � – – – – –

Aggregator (�) � � (�) – – � –

Envelope Wrapper – – (�) – – – – –

Content Enricher (�) � � � (�) (�) � �

Content Filter (�) � � (�) (�) (�) � �

Claim Check – – � – – – (�) –

Normalizer (�) – � (�) (�) (�) � �

Message Translator (�) � (�) � (�) (�) � �

s

o

S

M

o

R

a

3

f

n

c

N

f

w

f

a

a

–

t

p

Z

N

A

s

c

t

a

h

t

l

i

i

i

w

T

p

s

M

c

t

p

e

m

h

S

c

o

c

v

p

s

n

i

(

c

parsely implemented. This leaves the question on their relevance

r other components that take over their function.

ummary. While some of the EIP like Content-based Routing or

essage Filter, Splitter and Content Enricher can be found in most

f the systems, others are rarely implemented (e. g., Resequencer,

outing Slip). The analysis of these patterns and their relevance

re left for future work, and thus not analyzed further.

.1.2. New solutions not covered by system implementations

We now analyzed the collected systems with respect to their

unctionalities according to the harvested NFA from Section 2.3),

amely security, media, streaming or more abstract “processing”,

onversations, error handling, and monitoring. Comparing the

FA with the collected system functionalities, while neglecting

unctionalities covered by the EIP, gives an answer to the question

hich topics are required and used in addition. Hereby, the system

unctionalities represent an implemented solution as part of an

ctual integration system.

Fig. 5 depicts found solutions not covered by the EIP by NFA

nd system vendor. During the analysis new NFA were identified

not mentioned by Gartner, the EIP authors, or the literature –

hat seem to play a role in practical terms: stateful integration

rocesses using storage, (pattern) composition (mentioned in

immermann et al. [5]), and system operations. These three new

FA were included into the analysis of the other systems as well.

ll non-related topics are collected as miscellaneous (Misc).

Notably, all identified NFA are at least partially covered by

ystem implementations, indicating that solutions in form of

onceptual definitions are required (e. g., as patterns). According

o Mulesoft [90] , the major challenges in cloud integration systems

re security and management. The management includes error
andling and monitoring, which allow to control the behaviour of

he integration scenarios.

The classic application integration addresses the variety prob-

em for textual message formats [2] . With the availability of

ntegration systems for “everybody” (e. g., in form of a cloud

ntegration system) non-textual formats gain importance.

The trade-off between stateful and stateless message processing

s represented by storage capabilities in integration systems, for

hich nearly all vendors propose a solution and conversations.

he stateful approaches could be represented by conversational

rotocols, which allow to move the state from the integration

ystems to the communication partners (idea sketched in [55]).

ost of the service qualities (e. g., at-least-once, exactly-once pro-

essing) [3,89] require stateful integration processes. Consequently,

his would require changes in the applications. Current systems

rovide only rudimentary support, if at all.

Finally, a broad variety of miscellaneous topics was collected,

. g., sentiment analysis, natural language translators, but also

ore general functions like sort, loops, as well as explicit format

andling, i. e., marshalling and type conversion.

ummary. Notably, security and error handling (and monitoring)

apabilities are predominantly found. They address the challenges

f security and management. Furthermore, solutions for the in-

reasing variety of message formats (cf. media) as well as the

olume and velocity handling can be found in the systems are

art of new processing types. The storage of data and message

emantics like quality of service are relevant for integration sce-

arios. This leads to the trade-off between stateful vs. stateless

ntegration processes, which briefly address in Section 5 . The

stateful) conversations, which could be part of a solution, are

urrently under-represented.

46 D. Ritter et al. / Information Systems 67 (2017) 36–57

Fig. 5. Solutions for NFA not covered by the EIP by system vendor.

s

s

I

r

c

a

a

T

3

l

r

p

t

s

E

a

a

t

u

S

W

c

t

B

p

b

S

a

t

p

a

a
3.2. System summaries along NFA

3.2.1. Security

The aspect of confidentiality or message privacy is solved

on transport, message and storage levels. The transport level

channel encryption can mostly be specified in the inbound and

outbound adapters in form of the transport protocol (e. g., HTTPS,

SFTP) and guarantees that the message cannot be read during

transmission (e. g., Jitterbit’s Transmission Protection). Once, the

message is received by the inbound adapter and handed to the

subsequent operation in the integration process, message privacy

can be applied or reversed. Therefore many vendors provide

explicit message encryptors and decryptors (e. g., PGP Encrypt

and Decrypt from Dell Boomi, AES_ENCRYPT from Informatica or

Encrypt / Decrypt in Apache Nifi), or encrypting adapters (e. g.,

FileProcessorConnector in Informatica, FileChannel in Apache

Flume, WSSProvider in Tibco). The encrypted storage of messages

helps to protect the message’s privacy in the store, e. g., can be

configured in SAP’s DBStorage and Persist operations. The configu-

ration of the message privacy solutions mostly include encryption

algorithms, key lengths and certificates. Similarly, the integrity

and authenticity of a message can be ensured on the different

levels. Most of the vendors provide configurations for safe and

authenticated transport (e. g., using user and password, certificate

or token-based authentication). The transport is considered safe if

changes of the message can be recognized by the receiver and the

authenticity guarantees that the sender is the expected one. For

instance, most of social media endpoints like Twitter and Facebook

use token-based OAuth authentication. In addition, many vendors

provide explicit message signers and signature verifiers (e. g.,

Digest/Hash function in IBM, Signer and Verifier in SAP Cloud

Integration) as well as safe message storage is provided, e. g., by

Jitterbit or SAP Cloud Integration. For the storage, the authenticity

seems to be implied, since the cloud platform message or data
tore is used. The availability of integration scenarios is not only a

tability, but also a security concern. Therefore some vendors like

BM, SAP Cloud Integration provide implicit countermeasures, e. g.,

edundant message stores with high availability and disaster re-

overy, as well as Apache Flume with explicit MorphlineSolrSinks

nd Kafka Channel configurations. Finally, changes to the message

re tracked for auditing purposes. This is made explicit as Audit

rails in Jitterbit and Oracle or Service Auditing in WebMethods.

.2.2. Media

The literature review in Table 1 shows that there are no so-

utions for multimedia processing in application integration or

elated domains (e. g., SOA, EDA). The system analysis does only

rovide few, superficial solutions. For instance, textual represen-

ation of binary content is explicitly configurable in most of the

ystems (e. g., Base64 Encode / Decode in Dell Boomi and IBM,

ncoder / Decoder in SAP Cloud Integration). These encodings play

 major role when communicating with remote applications, but

lso when calling services (e. g., user-defined operations) using

extual message protocols. In addition, most of the vendors allow

ser-defined operations in form of scripting capabilities (e. g.,

cript, Processor in Apache Camel, Expressions in Informatica).

ith that, more complex operations can be performed like the

ompression of – usually bigger – multimedia messages. Despite

hat, pre-defined compression operators can be found in, e. g., Dell

oomi, Jitterbit, Apache Nifi, which allow to configure the com-

ression type (e. g., zip). The explicit support of scripting seems to

e a general trend, when representing transformation patterns (cf.

ection 3.1.1). This could either mean that the implementations

re too diverse to formulate a general solution or indicate that

he topic was not considered yet. The support of explicit image

rocessing operations seems to be limited to Nifi’s ResizeImage

nd ExtractImageMetadata functions as well as IBM’s Read MIME

ctivity. The only real multimedia operation is the image resizing,

D. Ritter et al. / Information Systems 67 (2017) 36–57 47

s

d

3

s

c

f

p

p

b

I

e

p

D

c

S

h

[

c

c

s

s

p

c

e

T

o

3

i

a

[

t

d

a

r

g

R

m

o

c

t

I

c

e

3

t

s

t

v

d

e

c

w

E

d

m

t

f

t

o

i

f

fl

f

s

i

o

3

p

a

m

i

c

l

b

s

d

c

t

a

T

i

s

m

3

t

a

“

(

e

a

d

m

s

c

U

m

t

T

r

a

m

s

3

a

B

e

i

c

h

i

3

k

h

a

c

s

r

a
ince the metadata simply provide a format specific capture of the

efined image’s meta tags.

.2.3. Processing

While the literature review does not show solutions for mes-

age processing, especially not for “data-aware” or Big Data pro-

essing, the systems implement solutions. The canonical solution

or processing larger amounts of data is to scale-out to multiple

rocessing units, constituting parallel subprocesses. The parallel

rocessing of one message in subprocesses using a broadcast can

e done, e. g., in BizTalk with Create concurrent flows, SAP Cloud

ntegration Gateways, or Apache Camel Multicast. Furthermore, the

xplicit configuration of parallel processing within an integration

rocess (i. e., not process parallelization) is supported by, e. g.,

ell Boomi using the Flow Control properties, Jitterbit Parallel Pro-

essing, Tibco Non-inline subprocesses and Critical Section, BizTalk

cope batch property. Alternatively, a more data-centric approach,

owever, impacting the latency of the process, is micro-batching

91] . Vendors like Dell Boomi and Jitterbit also support batch pro-

essing of messages using the Flow Control properties or Chunking

onfigurations. The processing of message streams allows the

ystem to handle larger amounts of data than the integration

ystem resources would allow. This more connection oriented ap-

roach was identified by Zimmermann et al. [5] as missing pattern

ategory in the context of synchronous message processing. An

xplicit streaming support is provided, e. g., by Jitterbit Streaming

ransformation and Apache Camel. However, not all integration

perations or adapters are (conceptually) capable of streaming.

.2.4. Conversations

Gartner [6] as well as Zimmermann et al. [5] mention the

mportance of conversations for messaging. These conversations

re similar, however, stand in contrast to the choreography (e. g.,

15,92]) and interaction patterns for services [37] in SOA because

hey denote more complex tasks than sending and receiving

ata or messages. They target complex (stateful) conversations

s partially covered in [55] . Some of the systems allow a timed

edelivery of messages in a non-error case (e. g., SAP Cloud Inte-

ration, Apache Camel). This feature is similar to the Contingent

equests pattern in [37] . For a conversation, an acknowledgement

echanism would be required similar to [55] . One technique

f reducing the number of requests to an endpoint is request

aching. In Tibco, request caching can be configured by specifying

ime slices and operations in the Caching Stage. The SAP Cloud

ntegration system allows to map synchronous to asynchronous

ommunications and vice versa. This becomes necessary when the

ndpoints’ message exchange mechanisms do not fit.

.2.5. Error handling

Error handling is a crucial aspect of integration scenarios [5] for

he control and fault tolerance aspects. In the literature we found

olution attempts [3,70] like the Dead Letter Channel pattern for

he collection of failing messages, while the systems implement

arious, more sophisticated solutions. The fundamental topic for

ealing with errors in integration scenarios is the handling of

xceptions. Therefore, most of the systems provide a “catch-all”

apability (e. g., Catch All in IBM), which sometimes even come

ith an exception subprocess for more advanced handling (e. g.,

xception Subprocess in SAP Cloud Integration). In addition, ven-

ors like Dell Boomi, IBM, SAP Cloud Integration and Tibco provide

ore fine-granular scoping of exception handlers, e. g., down

o the single operation. More advanced topics include escalation,

ault-tolerance and eventually prevention techniques. Most notably,

he systems support escalation mechanism like (partial) abortion

f complex processes (e. g., incl. parallel processing) and raising

ndicators for alerting, as well as message redelivery on exception
or tolerance, and message validation, load balancing (cf. [56]) and

ow control to prevent errors. More recent work [93,94] – not

ound in the literature review – covers all of the found system

olutions as patterns and shows their composition. Furthermore,

t introduces the concept of compensations (e. g., for undo

perations), which was not found within the reviewed systems.

.2.6. Monitoring

The monitoring of integration scenarios gains importance es-

ecially within integration platforms hosted by a third party and

cross those platforms in cloud and mobile computing. The major

onitoring aspects found in the systems can be distinguished

nto UI components that show important aspects of the system,

alled monitors, and a rather event-based registration on instance

evel. For example, Dell Boomi supports message change events

y Find Changes, which can be extended to Field Tracking. Oracle

upports the latter with Business Identifiers. That means, user-

efined events on technical and business level can be tracked via

onditional events. Examples for monitors can be found in most of

he systems across all parts of an integration scenario (i. e., from

dapter or channel, over component, down to message monitors).

he monitors can be fed by built-in and user-defined message

nterceptors (e. g., in Apache Flume and Camel), which allow

cenario specific monitoring. When integrating hybrid applications,

ost systems provide central, cloud monitors instead of local ones.

.2.7. Storage

An integration system requires persistent stores and queues

o be operable, e. g., for system management and monitoring. In

ddition, message delivery semantics (e. g., reliable messaging like

exactly-once-in-order”) [89] , secure messaging, and legal aspects

e. g., “Which messages were received and processed?”) must be

nsured. In the literature only simple messaging related storage

re mentioned like the Message Store [3] , for storing messages

uring processing, and the Claim Check [3] to store (parts of) the

essage during processing and re-claim them later. Consequently,

everal system vendors identified the need for additional storage

apabilities, summarized to data stores and their access (e. g., DB

pdate in Jitterbit, DBStorage in SAP Cloud Integration), as well as

emoization and caching during one instance of a scenario or be-

ween them (e. g., Add to Cache in Dell Boomi, Shared Variables in

ibco, Global Variables in Jitterbit). For secure messaging, security

elated storage like the Key Store (e. g., in Apache Flume, Camel

nd SAP Cloud Integration), for storing certificates and secure key

aterial, and the Secure Store (e. g., in SAP Cloud Integration), for

toring secure tokens, users, and passwords, can be found.

.2.8. Composition

In Zimmermann et al. [5] the composition of EIP is mentioned

s one of the missing pieces. Many system vendors, e. g., Dell

oomi, IBM, BizTalk, SAP Cloud Integration, allow subprocess mod-

ling as well as delegation from the main integration process. One

mportant solution are integration process templates, which are

onfigurable re-use processes. Many of the vendors support them,

owever, under different names, e. g., Template integration process

n IBM, Snapshot of Jitterpack in Jitterbit, Blueprint in Cloudpipes.

.2.9. Miscellaneous

The most notable, specific features are explicit or implicit loops,

eyword search and replace as well as content sort and format

andling. The implicit loop configurations include While Loop

ctivity, e. g., in IBM, Looping in BizTalk, and the Loop Collection

onnector in Tray.io. Explicit loops are possible in most of the

ystems by back-references in the process. Dedicated search and

eplace functionality is provided, e. g., in Dell Boomi, Jitterbit,

nd Apache Nifi. While most type converters are implicit in most

48 D. Ritter et al. / Information Systems 67 (2017) 36–57

Table 5

New integration patterns for NFA in the context of system implementations from security to processing without pattern solutions already covered by literature.

Category Scope Pattern name System examples

Security Confidentiality, Privacy Message Encryptor, Message Decryptor, Encrypted Message PGP Encrypt / Decrypt [72] , AES_ENCRYPT [74] , Encrypt /

Decrypt [82]

Encrypting Endpoint / Adapter FileProcessorConnector [74] , FileChannel [81] , WSSProvider

[85]

Authenticity, Identity Message Signer, Signature Verifier, Signed / Verified

Message

Digest/Hash [73] , Signer, Verifier [77]

Storage Encrypted / Encrypting Store DBStorage, Persist [77]

Safe Store Most of the vendors

Redundant Store MorphlineSolrSinks [81] , implicit [73,77]

Transmission Encrypted Channel Transmission Protection [75]

Safe, Authenticated Channel Password, certificate, token-based (Most of the vendors)

Audit Log Audit Trails [75,78] , Service Auditing [86]

Media Format Type Converter Type Converter [79,80,83]

Encoder, Decoder Base64 Encode / Decode [72,73] , Encoder / Decoder [77]

Marshaller, Unmarshaller “Data Format”[83] , “ConvertJSONToSQL” [82] ,

“JsonXMLConverter” [77]

Compress Content, Decompress Content implicit [72,75] , Compress Content [82]

Custom Script Script, Processor [83] , Expression [74]

Metadata Extractor Read MIME activity [73] , ExtractImageMetadata,

ExtractMediaMetadata [82]

Unstructured Image Resizer Image Resizer [82]

Processing Synch / Streaming – Streaming transformations [75] , partially [77] , streaming

[83]

Parallel Parallel Multicast, Sequential Multicast [76,77,86]

Join Router implicit [83] , join [77]

Other Delegate Process Call [77] , Direct-VM [83]

Loop Loop Activity [73] , Looping [76]

Find and Replace Search/Replace [72] , Control Character Replacer [75] , Scan

Content [82]

Content Sort Sort [83]

o

t

t

t

s

h

S

s

p

i

[

l

D

p

A

M

t

u

i

(

t

E

m

s

S

d

o

p

i

t

p

e

p

systems, marshalling support is made excplicit, e. g., in Jitterbit,

SAP Cloud Integration, and Apache Nifi. More “exotic” functions

are text sentiment analysis in Cloudpipes, an Archiving activity in

IBM, and a Yandex language translator in Apache Nifi.

4. Design of pattern catalog

This section summarizes the findings of the literature and sys-

tem reviews in form of a pattern catalog, capturing and describing

the found ad-hoc solutions and functionalities as new patterns.

These patterns can be seen as the starting point of a continuation

of the EIP, but also recent trends to express domain knowledge

as patterns [95] . In doing so, hypothesis H3 “Some trends are

handled in an (yet) immature and ad-hoc fashion” is targeted. The

design goals for the pattern catalog are:

1. Comprehensiveness, i. e., coverage of system implementations

that are not in the literature

2. Novelty, i. e., literature coverage of the missing or only partial

pattern definitions for NFA

The proposed pattern catalog is summarized in Tables 5 and 6

categorizing the patterns by NFA as Category . The patterns in col-

umn Pattern Name are further grouped by sub-categories as Scope .

Due to lack of space, the descriptions of all patterns contained in

the catalog are provided as supplementary material [44] and two

of them are introduced in detail in Section 5 . While in this section

we focus on patterns, the supplementary material illustrates the

modeling of the new patterns for two integration scenarios from

the quantitative analysis in Section 6 .

4.1. Goal 1 (comprehensiveness): system implementation coverage

In detail, comprehensiveness is evaluated by comparing the

coverage of patterns with the NFA that are not or only partly cov-

ered by patterns in the literature, represented by the combination
f columns Category and Scope . The coverage of system implemen-

ations reflected by column System Examples was chosen in order

o provide pattern definitions referring to examples (but not all) of

he corresponding system implementations (if at least one vendor

upported them). Subsequently, we refer only to the categories that

ave a special relevance for the comprehensiveness of our analysis.

ecurity. Take, for example, NFA Security in combination with

cope Confentiality (cf. Table 5), for which no comprehensive

attern is provided in the literature on the one side, but system

mplementations by, for example, Dell Boomi [72] , Informatica

74] , or Apache Nifi [82] exist. Addressing design goals 1) and 2)

ed to the set of suggested patterns Message Encryptor, Message

ecryptor and Encrypting Endpoint. Message Encryptor , for exam-

le, covers the system implementations PGP Encrypt / Decrypt,

ES_ENCRYPT, and Encrypt / Decrypt .

edia. Besides formatting patterns for structured message con-

ent, the media specific patterns for unstructured content are

nder-represented in current system implementations, since there

s only one pattern with direct relation to multimedia processing

e. g., Image Resizer [82]). Although there are functionalities for

he work on the structured multimedia metadata (e. g., Metadata

xtractor), further research should target the unstructured multi-

edia data and processing (e. g., in the context of synchronous,

treaming protocols).

ummary – Comprehensiveness. With the pattern catalog we ad-

ress 94.74% of the NFA scopes or subcategories (i. e., all but 1 out

f 19) derived from system implementations. A synch / streaming

attern elicitation – as also mentioned by [5] – was not conducted

n the context of this work, since the system review did not lead

o pattern changes or new patterns, but only adds an additional

rocessing style. However, we consider this an interesting topic

specially in the context of the Media and Big Data trends, and

ropose a separate study for this current gap.

D. Ritter et al. / Information Systems 67 (2017) 36–57 49

Table 6

New integration patterns for NFA in the context of system implementations from conversations to composition without pattern solutions already

covered by literature.

Category Scope Pattern Name System Examples

Conversations Endpoint Commutative Receiver –

Timed Redelivery until Acknowledge –

Fault tolerant Timeout synchronous request –

Failover Request Handler Failover Client [81]

Resources Request Collapsing –

Request Partitioning –

Monitoring Processing Message Cancellation [76,82]

Usage Statistics [77,78]

Immediate Insights Raise Indicator [72,75–77]

Detect [76,82]

Message Interceptor [81,83] , implicit [77]

Monitors Component Monitor [77,84]

Channel Monitor [77,78,80,84,85]

Message Monitor [77–79]

Resource Monitor [77,85]

Circuit Breaker [83]

Hybrid Monitor [77]

Storage Data, Variable Data Store [73,75,77]

Store Accessor DB Update [75] , DBStorage [77]

Transient Store Add to Cache [72] , Shared Variables [85] , Global Variables [75]

Security Key Store, Trust Store, Secure Store [77,81,83]

Composition Integration Subprocess [72,73,76,77]

Integration Process Template Template Integration Process [73] , Snapshot [75] , Blueprint [84]

4

t

t

s

a

a

i

i

c

f

S

S

r

r

C

s

h

t

A

t

i

t

g

(

s

t

s

c

i

S

i

n

(

r

o

m

i

S

s

4

w

s

A

[

s

T

m

t

p

m

c

q

f

t

c

r

t

t

t

w

p

r

r

a

s

t

t

t

o

.2. Goal 2 (novelty): literature coverage

Now, we set the pattern findings from the literature review for

he NFA – summarized in Table 1 – into context with the new pat-

ern proposals derived from the system analysis. We exclude the

olutions from the original EIP [3] , and Media, Synch / Streaming

nd Composition (not in NFA, however, came up during system

nalysis and mentioned in [5]), for which no solutions were found

n the literature. In addition, we excluded Error Handling, since

t is comprehensively covered from a pattern perspective and

ompared to system implementations in prior work [93,94] (not

ound in the literature review).

ecurity. Although some security patterns were proposed in the

OA domain [30,31] , they only provide partial solutions with

espect to the NFA and no solution in the context of the system

eview.

onversations, Processing. In terms of conversation patterns, the

ystem implementations only showed basic support (cf. Table 6),

owever, some more can be found in the literature, showing

hat this is an area for integration systems to add more features.

lthough, Barros et al. [37] mostly reiterate the original EIP,

here are few patterns that are new in the context of the system

mplementations. In the category of multi-lateral communication,

he One-from-many pattern [37] is a special case of our more

eneral Join Router that we found in the system implementations

e. g., Apache Camel, SAP Cloud Integration). The One-to-many

end pattern [37] is similar to the (parallel) Multicast – found in

he systems (e. g., Apache Camel, SAP Cloud Integration), however,

ome systems have variants that we captured as Sequential Multi-

ast, which routes messages of the same type to multiple receivers

n sequence to guarantee the successful delivery to all recipients.

ummary – Novelty. From the functionality required by system

mplementations, 59 distinct, new patterns are derived that were

ot found in the analyzed literature. However, for 5 out of 7 NFA

compare to Table 1), the literature indicates missing patterns as

esearch challenge (cf. Section 2.3), thus supporting the extension

f the integration pattern catalog for security [15,31,45,50,68,69] ,
ultimedia [6] , synch / streaming [5] , conversations [5,6] , mon-

toring [45,61,62] , and pattern composition (from system review

ection 3 , [5]). In addition, the system review raises a demand for

torage patterns that was not mentioned in the literature.

.3. Solutions for future challenges

We propose several new conversation patterns, of which none

as found in the system implementations. The proposed endpoint-

pecific patterns Commutative Receiver and Timed Redelivery Until

cknowledgement (similar to the Contingent requests pattern in

37,55]) – that together denote a solution for a critical trade-off for

calability inspired by [95] – are discussed in detail in Section 5 .

he other patterns are further discussed in the supplementary

aterial [44] , and target the additional conversation scopes: Fault

olerance and Resources. The multi-tenant processing, conversation

atterns (e. g., Cross Scenario and Cross Tenant) patterns that are

ostly required in hybrid and cloud computing setups, are already

overed by prior work [89] , thus not shown.

Toward a more stable system, the Timeout Synchronous Re-

uest and Failover Request Handler patterns are improving the

ault-tolerance of the messaging. Especially in the Big Data con-

ext, the resources of an integration scenario or platform become

rucial for their stability. Therefore, the Request Collapsing pattern

educes the number of requests within a conversation. In addition,

he Request Caching reduces the amount of duplicate requests to

he same endpoint, while Request Partitioning optimizes requests

o endpoints and confines errors to one request aspect. Together

ith other patterns from the literature review and the proposed

atterns in this work, we see a clear evidence for further research

equired. Since none of the patterns was found during the system

eview this indicates potential for current integration system and

pplication endpoint implementations.

The monitoring of integration scenarios reaches from real-time,

cenario-specific processing to near-real time monitors. One fur-

her challenge – also identified by [45] and partially covered by

he systems with mixed on-premise and cloud integration – is

he monitoring across different platforms (e. g., cross-cloud, across

n-premise and cloud).

50 D. Ritter et al. / Information Systems 67 (2017) 36–57

g

v

m

c

5

c

i

t

w

E

b

c

c

w

s

t

i

t

p

D

e

5

a

p

t

R

r

C

t

t

i

p

s

i

p

o

o

t

t

I

h

e

e

4 Designing Services, visited 02/2017: https://msdn.microsoft.com/en-us/library/

ee658114.aspx .
5. Example integration pattern realization

As example from the catalog, we selected patterns related to

the non-trivial trade-off between stateful and stateless integration

processes (inspired by cloud computing challenges [95]). Espe-

cially the system review shows that all vendors provide extensive

storage capabilities – beyond the EIP, leading to stateful processes.

However, the under-represented conversation patterns could of-

fer an alternative, thus allowing for stateless processes. While

stateless processes have scalability benefits, they come with some

drawbacks that have to be considered. We selected this trade-off

due to its relevance in the context of Big Data, its relevance for

Cloud Computing, and because it addresses one well-represented

(i. e., storage) and the currently under-represented, but important

area of (stateful) conversations. Subsequently, we describe the

trade-off as problem description, discuss a suitable pattern format

and conclude with two pattern descriptions and their realization.

5.1. Problem description: stateful vs. stateless integration processes

Operating an integration system requires persistent stores and

queues, e. g., monitoring, key or secure store to achive security,

or auditing for legal reasons. In addition, transactional message

processing (e. g., aggregator pattern) as well as message delivery

semantics (e. g., reliable messaging like “exactly-once-in-order”)

[89] require some persistent state. While the system operability

avoids influencing the message processing by not using shared

states between integration scenario instances, the transactional

processing and message delivery semantics of the stateful message

processors (i. e., patterns) usually require shared states. For ex-

ample, when a stateful aggregator – as part of a scenario instance

– processes a sequence of messages, a second scenario instance

could be used to distribute the load. However, in the absence of

“process stickiness” (i. e., messages of one sequence are only sent

to one instance), the stateful aggregator in the second instance

has to be able to complete a sequence the other instance started,

thus shared state. Hence, the shared states imply complex state

handling across integration processes in compute clusters or cloud

environments, and this may have a negative impact on their scala-

bility. Alternatively – following the ideas on (stateful) conversation

patterns from Hohpe [55] – some of the discussed messaging

related storage and message delivery semantics could be moved to

“smart” message endpoints (i. e., applications), which already have

a persistent state, thus making the integration processes stateless.

For example, Fig. 6 illustrates the trade-off between Exactly-

once In Order (EOIO) delivery semantics within the integration

scenario (i. e., requires a stateful Message Store, Resequencer and

Idempotent Receiver [3] , and transactional Message Redelivery

on Exception [94]) in Fig. 6 (a) and as a (stateful) conversational

approach in Fig. 6 (b). The integration processes are represented in

BPMN 2.0 similar to [46] . An EOIO delivery requires a transactional

redelivery in case of an exception, a message ordering step accord-

ing to a sequence of messages in form of a Resequencer and an

Idempotent Receiver, which is able to deduplicate the messages.

Fig. 6 (a) depicts the instance spanning state for the retry and the

resequencing. To avoid stateful integration process, both capa-

bilities can be moved to the endpoints (cf. Fig. 6 (b)). While this

will not work for legacy, packaged applications, it results into an

improved scalability within the integration process and moves the

resequencing decision to the receiver. To eventually stop sending,

the sender – redelivering the message periodically – requires a

stop event (i. e., an acknowledgement) from the receiver.

The solution’s trade-off are the several messages that are sent

by the receiver until an acknowledgement is received, while being

able to process all messages in parallel using stateless integration

process instances. In other words, the performance improvements
ained through better scalability and lower latency of the con-

ersational approach – by not waiting for the failure of a sent

essage – is contrasted by the more resources overall required in

ase of many failures.

.2. Patterns and pattern formats

To formalize the new challenges and the resulting, required

apabilities within an integration system, thus coming to less

mmature and ad-hoc solutions (cf. H3), we propose to express

hem as patterns. Similarly, expert knowledge and best practices

ere already collected for software design by Gamma et al. [96] ,

IP by Hohpe et al. [3] , and recently for cloud computing patterns

y Fehling et al. [95] . For a suitable pattern representation, we

ompare their pattern formats in Table 7 , and select common

ategories for our proposal.

From the analysis of several known pattern formats in Table 7 ,

e selected: name, icon, driving question, context, solution, re-

ults, and known uses to round-off the description. We leave out

he separate categories of forces (i. e., problem constraints) and

mplementation (i. e., pattern variants), which we include into

he selected context and known uses categories, respectively. The

attern descriptions in the supplementary material [44] , add a

ata Aspects category (not further discussed here), which gives

ven more insight into the configuration of the pattern solutions.

.3. Pattern examples and realization

From the problem description we take three capabilities that

re required to represent an EOIO, while keeping the integration

rocesses stateless. We summarize the capabilities to the following

wo patterns, for which we explain the realization: Commutative

eceiver and Timed Redelivery until Acknowledge. In addition, we

equire the Quick Acknowledgement pattern from [55] .

ommutative Receiver. The commutative receiver accounts for two

asks: message deduplication and out-of-order handling. Therefore,

he application’s state is re-used, hence no additional state in the

ntegration process is required.

How to ensure idempotent, in-order message

rocessing without intermediate state in form of persistent integration

cenarios?

(Icon: the icon uses the icon notation from [3] , combining the

n-order sequencing as well as the idempotent storage.)

Context: Out-of-order communication with end-

oints/applications.

Solution: Guarantee that endpoint/application handle arriving

ut-of-order messages will be stored within their sequence and

nly then processed, if the sequence is (partially) complete and in

he correct order.

Result: This solution handles out of order messages and applies

hem in-order within the application endpoint.

Relations to other patterns: This pattern is an extension of the

dempotent Receiver from [3] with additional Message Sequence

andling.

Known uses: not found in literature or system review, how-

ver, Microsoft advices developers to implement commutative

ndpoints in the context of micro services 4 .

https://msdn.microsoft.com/en-us/library/ee658114.aspx

D. Ritter et al. / Information Systems 67 (2017) 36–57 51

(a) Stateful EOIO (b) Stateless EOIO

Fig. 6. Conversational approach for Exactly Once in Order (EOIO).

Table 7

Common pattern formats: Enterprise Integration Patterns (EIP) [3] , Cloud Computing Patterns (CCP)

[95] , Design Patterns (DP) [96] .

Categories Description EIP CCP DP

Name pattern identifier � � �

Icon visual representation � � –

Problem / Driving Question / Motivation difficulty as question � � �

Intent statement about design issue – – �

Also known as other pattern names – – �

Context / Motivation introduces problem domain � � �

Forces, Appilcability problem constraints � – �

Solution how to solve the problem � � –

Sketch, Structure illustrate solution � – �

Participants, Collaborations participants, responsibilities – – �

Results / Consequences how to apply the solution � � �

Next / Related Patterns related patterns, differences � – �

Sidebars / Implementation / Code pattern variations � – �

Examples / Known Uses real system examples � � �

T

m

p

c

b

a

t

i

w

[

d

e

w

w

i

a

e

C

t

R

p

S

k

t

T

r

r

s

s

(

A

c

T
imed Redelivery until Acknowledge. The commutative receiver

oves the message redelivery on exception from the integration

rocess to the sender application, while conducting an asyn-

hronous communication. Hence, no exceptions are propagated

ack to the sender, however, the redeliveries are stopped by

synchronously received Acknowledgements from the receiver (via

he integration system). Until then, the messages are resent with

ncreasing delay to reduce the load of duplicate messages.

How to ensure that a message will be received

ithout intermediate storage, e. g., in form of Redelivery on Exception

94] ?

(Icon: the icon uses the icon notation from [3] , combining

elayed message send with asynchronous reception of acknowl-

dgments using a transactional store.)

Context: This pattern is used for asynchronous communication

ith message delivery guarantees

Solution: Instead of relying on intermediate storage and retry

ithin the integration system, the application sends multiple
a
nstances of the same message with configurable timings until the

ctual receiver endpoint acknowledgements (e. g., Quick Acknowl-

dgement [55]) reach the sender. Requires an Idempotent [3] or

ommutative Receiver for certain message delivery semantics [89]

Result: Send copies of the same message asynchronously until

he receiver’s acknowledgement reaches the sender.

Relations to other patterns: This pattern is an extension of the

etry pattern in [55] , and related to the Redelivery on Exception

attern in [94] .

Known uses: - (not found in literature or system review).

olution Summary. As an extension a Timed Redelivery until Ac-

nowledge pattern would be required that makes multiple attempts

o deliver a message (potentially with exponential back-off delay).

hat might result to duplicate message instances, sent to the

eceiver. Assuming a stateless integration process, an idempotent

eceiver [3] is required to detect and handle the duplicates. The

ketched conversation works fine for exactly-once processing

emantics [89] . However, for ensuring in-order message processing

e. g., create sales order, before update), it would not be sufficient.

 stateless integration process cannot reliably re-order the in-

oming messages, delegating this task to the receiver application.

he receiving application has to handle incoming messages in an

ssociative and commutative way (e. g., handle update, before cre-

52 D. Ritter et al. / Information Systems 67 (2017) 36–57

S

a

b

(

s

f

S

T

s

[

l

R

S

p

e

m

o

v

s

6

p

c

a

3

a

i

c

fi

i

I

s

6

T

o

P

c

r

n

s

C

C

f

T

N

i

l

t

a

i

y

r

(

c

t

n

5 EU – General Data Protection Regulation: http://goo.gl/Ru0slz .
ate). An implementation of this Commutative Receiver pattern can

be found in the microservice context (e. g., service applications).

When the receiver got all messages belonging to one message

sequence (i. e., without duplicates), it sends an Acknowledgement

message that is asynchronously processed by the sender, which

stops redelivering corresponding messages immediately.

6. Quantitative analysis

In this section we conduct a quantitative analysis of integration

scenarios to study the usage of original EIP and the new patterns

from the pattern catalog in Section 4 . We selected the SAP Cloud

Integration system from the review (cf. Section 3), for which we

found “real-world” examples of all scenarios from Fig. 2 . With

over 1,0 0 0 customers and several hundred integration scenarios

delivered as standard content SAP Cloud Integration represents

a cloud integration system for application and data integration.

The analysis targets the hypotheses “The original EIP of the 2004

book are all widely used in praxis” and “H4: Solutions not in EIP

can be found in real-world integration scenarios for the trends”.

Therefore, we firstly select several scenarios along the identified

trends and briefly describe them. Secondly, we evaluate found

original EIP and new solutions.

6.1. Integration scenarios

The new trends – set into context denoted by edges via

the integration system node in Fig. 2 – can be summarized to

integration the scenario domains:

• On-Premise to Cloud: Most organizations productively run on

packaged, on-premise applications. They need to connect these

applications with cloud applications for various reasons, e. g.,

extensions for legal reasons or new functionality, to connect

with business partners. This integration domain is called hybrid

integration [4] .
• Cloud to Cloud or Business Network (including social): Native

cloud applications or cloud integrated on-premise applications

interact with business partners in business networks (e. g.,

payment, financial, supplier relationships), connect to social

networks (e. g., social marketing) or consume cloud services

(e. g., machine learning).
• Device to Cloud (including mobile and personal computing):

What starts with business applications on “bring your own de-

vice” for mobility, extends to intelligence brought to machines

(e. g., sensors and actuators in smart logistics or production)

and eventually comes down to sensors and devices for personal

computing.

We left out the conventional On-Premise to On-Premise appli-

cation integration and other variations due to our focus on new

trends. For the quantitative analysis, we selected one application

integration solution for each of the new scenario domains, and we

added one for cloud to cloud and business networks due to the

slight focus on these domains. The solutions can be visited as SAP

Cloud Integration standard content [97] .

SAP Cloud for Customer (C4C). The C4C solutions for the com-

munication with on-premise Enterprise Resource Planning (ERP)

and Customer Relationship Management (CRM) applications, ab-

breviated c4c-erp and c4c-crm , can be considered typical hybrid

corporate to cloud application integration [97] . The dominant

integration styles – according to the classification in [2] – are

process invocation and data movement. The state changes (e. g.,

create, update) of business objects (e. g., business partner, oppor-

tunity, activity) as well as master data in the cloud or corporate

applications (e. g., ERP, CRM) are exchanged with each other.
AP Financial Services Network (FSN). In contrast to C4C, FSN [98] ,

bbreviated fsn , is a cloud-based, business network that connects

anks and other financial institutes with their corporate customers

e. g., for payments, bank account management). The integration

tyle is mostly process invocation [2] . Besides reliability, the major

ocus lies on secure message exchange.

AP Cloud Integration eDocument/Electronic Invoicing (eDocument).

he SAP Cloud Integration eDocument/Electronic Invoicing is a

olution for country-specific electronic document management

97] . The edocuments solution helps cooperations to interact with

egal authorities (e. g., implement the new EU Data Protection

egulation 5).

AP Predictive Maintenance and Service (PdMS). In PdMS

[97] , machine data is collected using an Internet of Things (IoT)

latform and enriched with business information coming from,

. g., SAP Business Suite. This allows real time monitoring of the

achine that triggers alerts resulting in service tickets in SAP CRM

r ERP. Based on that any unusual trends or behavior becomes

isible and appropriate action, potentially avoiding unnecessary

ervice costs, can be taken.

.2. Scenario analysis

For the analysis of the SAP delivered standard content in this

aper, we prototypically implemented data discovery and mining

apabilities into the SAP Cloud Integration system, which identified

 total of 154 distinct integration scenarios (c4c-erp: 42, c4c-crm:

7, fsn: 56, edocument: 13, pdms: 6).

The total number of patterns for all scenarios is 1501 (w/o

dapters, endpoints). For the more “classical” integration scenarios

n c4c-erp and c4c-crm nearly all integration patterns could be

overed by original EIP from [3] (apart from second level con-

guration on monitoring and exception handling). For the cloud

ntegration scenarios fsn and eDocument as well as for the pdms

oT scenario, 466 new requirements (and 597 complementing,

econd level configurations) were needed in total, out of which

6% are covered by existing EIP (i. e., 1025 capabilities in total).

his means that for these integration scenarios approximately 1
3

f the required patterns are not covered by the original EIP.

attern Solutions covered by the EIP. The distribution of patterns

overed by original EIP is depicted in Fig. 7 . Not all EIP were

equired in the scenarios of the integration solutions, however,

early all of them facilitate the tasks of (i) Message Construction:

olutions Document Message and Request-Reply ; (ii) Messaging

hannels: solution P2P Channel ; (iii) Message Routing: solutions

ontent-based Router, Splitter , and Aggregator ; (iv) Message Trans-

ormation: solutions Content Enricher, Content Filter , and Message

ranslator .

ew Pattern Solutions. Additional pattern solutions are covered by

ntegration capabilities, depicted in Fig. 8 . We grouped the new so-

utions according to the pattern catalog from Section 4 and added

he corresponding pattern proposals for each of them. While

pproximately half of the new patterns from the catalog are used

n the real-world scenarios, the new conversation patterns, are not

et used in any of the scenarios. For example, the confidentiality

equirements covered message confidentiality or privacy patterns

Message Encryptor, Message Decryptor, Encrypted Message, En-

rypting Endpoint, Encrypting Adapter) are called Msg. Privacy , and

he authenticity and integrity requirements (Message Signer, Sig-

ature Verifier, Signed / Verified Message) are summarized to Msg.

http://goo.gl/Ru0slz

D. Ritter et al. / Information Systems 67 (2017) 36–57 53

Fig. 7. Scenarios using original EIP.

A

f

m

t

h

a

t

h

e

p

(

e

F

c

w

a

a

U

c

v

s

i

d

I

M

g

P

F

t

s

w

u

t

e

o

u

a

s

s

g

(

e

f

o

m

t

p

e

p

uth. . Thereby the message confidentiality is exclusively required

or the communication within the FSN business network, while

essage authenticity is also used for exchanging eDocuments with

he legal authorities and for PdMS.

In the category multimedia, currently no real media format

andlers (Type Converter, Encoder, Decoder) are used (e. g., im-

ge, video). However, we grouped the used functionality into

hree patterns. The Encoder and Decoder patterns represent the

andling of binary message content, exclusively used in FSN and

Document scenarios. This is due to the various communication

artners, using different encodings, as well as third party services

e. g., financial document mapping engines), which requires special

ncodings. The Custom Script allows to add versatile User-defined

unctions, which are mostly used as auxiliary in FSN scenarios. The

ompression algorithms (Compress Content, Decompress Content),

hich would be immensely relevant in real multimedia scenarios,

re used in FSN scenarios due to larger messages sizes (e. g.,

ggregated FSN payment details). Finally, marshalling (Marshaller,

nmarshaller) support is required in FSN scenarios, since some

ommunication partners require JSON to XML conversion and vice

ersa.

The processing of messages is mostly done by moving mes-

ages through the pipeline. However, especially the FSN and CRM

ntegration require streaming and parallel processing. This is again

ue to scenarios with larger messages to be processed (e. g.,

Doc segments in CRM) and stream-based splitting in PdMS. The

ulticast pattern is used as Sequential Multicast in FSN to allow
uaranteed rollback for all branches in case of an error and as

arallel Multicast in PdMS for parallel processing purpose.

This behaviour is complemented by a Stop All setting in the

SN, PdMS and partially CRM scenarios, consequently stopping

he message processing in all parallel instances of the integration

cenario. Another error handling functionality is the Rethrow,

hich allows to (re-) throw exceptions. The Rethrow is mainly

sed in eDocument, FSN, PdMS and CRM scenarios to indicate

hat a situation is still unresolved. Especially in FSN, PdMS and

Document scenarios, it is important to inform a business expert

r administrator about erroneous situations. The Raise Indicator is

sed for this purpose. To prevent from uncontrollable behaviour

nd to customize the information returned in case of an error in

ynchronous scenarios, a Catch-all exception process (with several

teps) is used in FSN and eDocument scenarios.

To remember parts of a message or additional information

enerated by adapters or message processors, a Transient Store

cf. [56]) is used in FSN. The Store Accessor, used by FSN and

Document, is mostly used for stateful pattern compositions and

or legal reasons (Data Store, Audit Log). Especially in FSN, most

f the message stores are encrypting (Encrypting Store), which

eans that the messages are stored confidentially.

The composition in terms of the Integration Subprocess pat-

ern (excluding the exception sub-processes) indicates complex

rocessing logic, which can mostly be found in FSN, PdMS and

Document scenarios. Sometimes composition is used for re-usable

rocess parts.

54 D. Ritter et al. / Information Systems 67 (2017) 36–57

Fig. 8. New capability categorization.

t

c

c

t

t

p

f

t

a

a

i

c

a

7

e

a

7

(

t

n

m

t

a

d

i

i

f

m
In summary, the analysis shows the need for new patterns and

solutions as seen in the system review. While the hybrid integra-

tion scenarios simply extend the on-premise integration into the

cloud relying on transport level security, all other new integration

scenario domains require more on security and control over the

message processing in form of error handling. This becomes more

obvious, the more exclusively the integration scenarios are running

in the cloud. For example, the small amount of device integration

scenarios still relies on integration logic on the devices, thus show

only few security, error handling and processing capabilities. The

scenarios are less complex – compared to the cloud to cloud cases,

hence require limited composition options. Furthermore, with

increasing cloud focus, the trade-off between more complex, but

expressive, stateful and simpler, better scalable, stateless message

processing seems to lean towards the interaction with storage cur-

rently. The conversation patterns – including stateful conversations

– are still mostly unexplored. The same is true for the increasingly

important topic of multimedia processing, which will give a new

edge to the variety and interoperability problems in EAI [2] .

7. Challenges, limitations, impact

The literature (cf. [5]) and the quantitative analysis of real-

world integration scenarios (cf. Fig. 7) show that some of the

enterprise integration patterns (EIP) described by Hohpe and

Woolf [3] in 2004 are still widely used, thus denote best-practices

in the area of application integration. This supports the assumption

of the EIP authors that the patterns are still practically relevant

[5] . Literature and system reviews also reveal that since 2005

several new trends and non-functional aspects (NFA) for enterprise

application integration have appeared that are not covered by the

EIP from 2004. Literature as well as systems partly offer solutions
o these new trends and NFA where the systems provide a more

omprehensive support. Solutions mentioned in the literature

omprise patterns, formalization, and modeling, covering the spec-

rum from a more abstract description as patterns (cf. Section 5)

o the implementation and execution as well as towards the user’s

oint of view. For this reason, patterns are regarded as the “glue”

or which a comprehensive description is required first. Hence,

his work (together with the supplementary material [44]) aimed

t filling the gaps in existing patterns for new integration trends

nd NFA (cf. Section 5): security, (ideas on) conversation, mon-

toring, storage. Nonetheless, the different reviews and analyses

onducted in this work indicate open research challenges. These

re subsequently summarized and discussed.

.1. Research challenges

The literature review shows that for the trends and NFA differ-

nt solutions have been proposed, mainly patterns, formalization,

nd modeling.

.1.1. Patterns

Patterns are the predominant solution proposed in literature

cf. Table 1). Moreover, this work has closed gaps by providing pat-

erns for NFA not present so far. Still pattern descriptions would be

ecessary in the context of the following trends and NFA. At first,

ultimedia functions are under-represented. Due to the access to

he end user, multimedia becomes more and more interesting for

ll kinds of applications (e. g., sentiment analysis, monitoring in

ifferent domains like medicine or agriculture). For application

ntegration, this targets the volume, variety and interoperabil-

ty problems. The resulting increase of heterogeneity of media

ormats and communication partners (e. g., cloud applications,

obile devices, camera phones) demands for revisiting the EIP in

D. Ritter et al. / Information Systems 67 (2017) 36–57 55

t

C

o

fi

a

[

a

E

w

c

t

c

a

m

m

t

f

e

(

n

w

7

s

i

i

n

p

t

e

i

E

P

v

n

d

t

l

o

n

p

o

m

n

a

7

s

i

c

t

e

o

e

p

v

fl

B

t

p

t

t

t

e

n

I

t

d

i

t

e

7

r

w

i

f

b

s

c

c

v

q

b

a

c

7

a

r

S

n

a

s

s

i

t

m

W

n

a

t

R

he context of multimedia operations and their semantic aspects.

onsequently, the increasing message sizes require the evaluation

f optimization techniques (e. g., message indexing), and more ef-

cient processing styles like streaming , which the EIP authors also

cknowledge [5] , or data-aware integration pattern solutions (e. g.,

91]). In general, to address the Big Data challenges of volume

nd velocity requires corresponding benchmarks for pattern (e. g.,

IPBench [99]) as well as for end-to-end system implementations,

hich are currently missing. As additional NFA, only few of the

onversation patterns are supported. For instance, Section 5 showed

hat conversation patterns can provide alternatives to improve the

urrent processing and might become useful in more complex

pplication or device interactions (e. g., device mesh [6]). The

onitoring of integration scenarios across multiple platforms (e. g.,

obile, on-premise, cloud) – including aspects like raising indica-

ors in case of an event – remains a challenge. This also hints on

urther work required for Mobile Computing and Internet of Things ,

. g., standardized protocols, conversation or interaction patterns

incl. data collection, device reconfiguration), energy efficiency. Fi-

ally, as new trends and NFA might constantly arise, their analysis

ith respect to pattern support becomes a continuous task.

.1.2. Formalization

Starting from the pattern view, formalization is an important

tep to precisely specify the semantics of the pattern realizations,

. e., formalization constitutes an important step towards the

mplementation and execution of the patterns in integration sce-

arios. As shown in Table 1 formalization approaches have been

redominantly proposed in the context of service oriented archi-

ectures (SOA) for validating and optimizing compositions by, for

xample, mapping them to Petri nets. Notably, a more formal def-

nition of integration pattern composition (also suggested by the

IP authors [5]) is required not only for structural validations using

etri nets – as in the literature review, but also semantic, runtime

alidations and optimizations on static scenario as well as dy-

amic, workload data is missing. First work on the latter was con-

ucted by [100] , however, has to be revisited in the context of the

rends and NFA as well as new technical capabilities (e. g., machine

earning of / for workload patterns, routing conditions, condition

rderings). Furthermore, cloud, mobile and device computing raise

ew questions about optimal runtime placements of integration

rocesses. In general, there is still an enormous potential for elab-

rating formalizations for both, trends and NFA, specifically, as a

ore or less comprehensive set of patterns has been proposed by

ow. A follow-up research question is how to implement patterns

nd pattern compositions in solutions using formal models.

.1.3. Modeling

Except few works in the SOA domain providing modeling

upport for compositions, no attention has been paid to model

ntegration-specific aspects so far. For compositions, business pro-

ess modeling notations such as business process model and nota-

ion (BPMN) can be used, however, the integration-specific aspects

xceed the modeling capabilities. However, conveying information

n the integration scenarios to users is of utmost importance for,

. g., maintenance and adaptations of these scenarios. Also here

atterns might help to form the basis for different modeling and

isualization proposals. It could be envisioned to base integration

ows on existing business process modeling languages (e. g.,

PMN) in order to keep the mental map of users, but to enhance

hem with integration-specific icons. In [44] , a first idea of equip-

ing BPMN with integration icons is depicted for the SAP Cloud In-

egration eDocument use case (due to lack of space we refer to the

echnical report). In general, NFA like security and multimedia have

o be further analyzed. Therefore, new visual configuration editors,
. g., allowing to “query by sketch” conditions, for integration sce-

arios would provide a more adequate, non-textual configuration.

n addition, editors and visual data science (incl. machine learning)

ools for scenario-based, runtime monitoring, which are capable of

ealing with large amounts of data, could lead to smarter (cross-)

ntegration platform administration of integration scenarios. In

his context, the development of visual modeling notations, new

ditors together with extensive user studies become necessary.

.2. Limitations

Limitations of the work concern the literature and the system

eview. For both the searches were led by the selection of key-

ords and criteria due to the vast amount of existing work and

n order to not loose focus of this study. Nonetheless, conducting

urther vertical searches and expert additions that were not found

ased on the keywords could be included in the analysis. The

election of representative systems is supposed to reflect the

urrent system offering. Different types of systems (open source,

ommercial, and startup) were considered. In summary, both re-

iews were envisioned to be comprehensive, but not complete. The

uantitative analysis aims at covering a broad range of applications

ased on five use cases. One might argue that the use cases are

ll provided by the same organization. However, this provides the

hance to analyze real-world scenarios instead of toy examples.

.3. Impact

The impact of a continuous analysis of integration trends

nd NFA on research and practice is enormous. The impact on

esearch is reflected in the open research challenges stated in

ection 7.1 . In order to address these challenges, a plethora of

ew approaches is necessary. The importance of the topic from

 practical perspective is already paramount as the system and

cenario analyses of this paper show. Facing new trends that often

tem from practice will perpetuate the importance of this work

n the future. Putting the focus on the human aspect in addition

o a more technical treatment of the topic will also lead to a

ultitude of new research questions and practical implications.

hile the original EIP from 2004 are still relevant for many of the

ew trends in 2016 and beyond, new capabilities are required to

ddress requirements (e. g., non-functional aspects) resulting from

hese trends (cf. hypothesis H1).

eferences

[1] S. Conrad , W. Hasselbring , A. Koschel , R. Tritsch , Enterprise application inte-
gration, Spektrum Akademischer Verlag, 2005 .

[2] D.S. Linthicum , Enterprise application integration, Addison-Wesley Longman
Ltd., 20 0 0 .

[3] G. Hohpe , B. Woolf , Enterprise integration patterns: designing, building, and

deploying messaging solutions, Addison-Wesley Professional, 2004 .
[4] Forrester ResearchInc., The Forrester Wave: Hybrid Integration For En-

terprises, Q4 2016, 2016 . (https://www.forrester.com/report/The+Forrester+
Wave+Hybrid+Integration+For+Enterprises+Q4+2016/- /E- RES131101) .

[5] O. Zimmermann , C. Pautasso , G. Hohpe , B. Woolf , A decade of enterprise in-
tegration patterns: a conversation with the authors, IEEE Softw. 33 (1) (2016)

13–19 .

[6] GartnerInc., Gartner Newsroom Emerging Technologies from 2005 to 2017,
2017 . (http://www.gartner.com/newsroom/id/492152 , http://www.gartner.

com/newsroom/id/495475 , http://www.slideshare.net/dinhledat/dinh-ledat-
top- 10- technology- trends- 20072014- gartner , http://www.gartner.com/

newsroom/id/530109 , http://www.gartner.com/newsroom/id/777212 ,
http://www.gartner.com/newsroom/id/1210613 , http://www.gartner.com/

newsroom/id/1454221 , http://www.gartner.com/newsroom/id/1826214 ,
http://www.gartner.com/newsroom/id/2209615 , http://www.gartner.com/

newsroom/id/2603623 , http://www.gartner.com/newsroom/id/2867917 ,

http://www.gartner.com/newsroom/id/3143521 , http://www.gartner.com/
newsroom/id/3482617) .

[7] Forrester ResearchInc., The Top 10 Technology Trends To Watch: 2016 To 2018,
2016 . (https://www.forrester.com/report/The+Top+10+Technology+Trends+To+

Watch+2016+To+2018/- /E- RES120075) .

http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0001
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0001
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0001
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0001
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0001
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0002
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0002
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0003
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0003
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0003
https://www.forrester.com/report/The+Forrester+Wave+Hybrid+Integration+For+Enterprises+Q4+2016/-/E-RES131101
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0005
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0005
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0005
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0005
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0005
http://www.gartner.com/newsroom/id/492152
http://www.gartner.com/newsroom/id/495475
http://www.slideshare.net/dinhledat/dinh-ledat-top-10-technology-trends-20072014-gartner
http://www.gartner.com/newsroom/id/530109
http://www.gartner.com/newsroom/id/777212
http://www.gartner.com/newsroom/id/1210613
http://www.gartner.com/newsroom/id/1454221
http://www.gartner.com/newsroom/id/1826214
http://www.gartner.com/newsroom/id/2209615
http://www.gartner.com/newsroom/id/2603623
http://www.gartner.com/newsroom/id/2867917
http://www.gartner.com/newsroom/id/3143521
http://www.gartner.com/newsroom/id/3482617
https://www.forrester.com/report/The+Top+10+Technology+Trends+To+Watch+2016+To+2018/-/E-RES120075

56 D. Ritter et al. / Information Systems 67 (2017) 36–57

[8] R. Wieringa , Design science methodology for information systems and soft-
ware engineering, Springer, 2014 .

[9] B. Kitchenham , Procedures for performing systematic reviews, Technical Re-
port TR/SE-0401, Keele University, Keele, UK, 2004 .

[10] C. Hentrich , U. Zdun , Patterns for business object model integration in pro-
cess-driven and service-oriented architectures, in: Proceedings of the 2006

conference on Pattern languages of programs, 2006, p. 23 .
[11] C. Hentrich , U. Zdun , Service integration patterns for invoking services from

business processes., in: EuroPLoP, 2007, pp. 235–278 .

[12] C. Hentrich , U. Zdun , A pattern language for process execution and integra-
tion design in service-oriented architectures, in: Transactions on Pattern Lan-

guages of Programming I, Springer, 2009, pp. 136–191 .
[13] U. Zdun , C. Hentrich , W.M. Van Der Aalst , A survey of patterns for service-ori-

ented architectures, Int. J. Internet Protoc. Technol. 1 (3) (2006) 132–143 .
[14] U. Zdun , Pattern-based design of a service-oriented middleware for remote

object federations, ACM Trans. Internet Technol. (TOIT) 8 (3) (2008) 15 .

[15] M. Autili, A. Di Salle, A. Perucci, M. Tivoli, On the automated synthesis of
enterprise integration patterns to adapt choreography-based distributed sys-

tems, ArXiv e-prints (2015).
[16] V. Gacitua-Decar , C. Pahl , Ontology-based patterns for the integration of busi-

ness processes and enterprise application architectures, Semantic Enterprise
Application Integration for Business Processes: Service-Oriented Frameworks,

IGI Publishers, Hershey, PA (2009) 36–60 .

[17] M. Heller , M. Allgaier , Model-based service integration for extensible enter-
prise systems with adaptation patterns, in: e-Business (ICE-B), Proceedings of

the 2010 International Conference on, 2010, pp. 1–6 .
[18] E. Kaneshima , R.T.V. Braga , Patterns for enterprise application integration, in:

Proceedings of the 9th Latin-American Conference on Pattern Languages of
Programming, 2012, p. 2 .

[19] K. Umapathy , S. Purao , Designing enterprise solutions with web services and

integration patterns, in: IEEE International Conference on Services Computing
(SCC’06), 2006, pp. 111–118 .

[20] Y. Zheng , H. Cai , L. Jiang , Application integration patterns based on open re-
source-based integrated process platform, in: International Conference on In-

formation Computing and Applications, 2011, pp. 577–584 .
[21] C. Gierds , A.J. Mooij , K. Wolf , Reducing adapter synthesis to controller syn-

thesis, IEEE Trans. Serv. Comput. 5 (1) (2012) 72–85 .

[22] R. Seguel , R. Eshuis , P. Grefen , An Overview on Protocol Adaptors for Service
Component Integration, Technical Report, Technische Universiteit Eindhoven,

2008 .
[23] V.N. Gudivada , J. Nandigam , Enterprise application integration using ex-

tensible web services, in: IEEE International Conference on Web Services
(ICWS’05), 2005, pp. 41–48 .

[24] W. Deng , X. Yang , H. Zhao , D. Lei , H. Li , Study on EAI based on web services

and SOA, in: International Symposium on Electronic Commerce and Security,
2008, pp. 95–98 .

[25] C. Mauro , J.M. Leimeister , H. Krcmar , Service oriented device integration-an
analysis of SOA design patterns, in: 43rd Hawaii International Conference on

System Sciences (HICSS), 2010, pp. 1–10 .
[26] Y. Liu , X. Liang , L. Xu , M. Staples , L. Zhu , Using architecture integration pat-

terns to compose enterprise mashups, in: Software Architecture & European
Conference on Software Architecture, 2009, pp. 111–120 .

[27] Y. Liu , X. Liang , L. Xu , M. Staples , L. Zhu , Composing enterprise mashup com-

ponents and services using architecture integration patterns, J. Syst. Softw. 84
(9) (2011) 1436–1446 .

[28] D. Braga , S. Ceri , F. Daniel , D. Martinenghi , Mashing up search services, IEEE
Internet Comput. 12 (5) (2008) 16–23 .

[29] S. Cetin , N.I. Altintas , H. Oguztüzün , A.H. Dogru , O. Tufekci , S. Suloglu , A
mashup-based strategy for migration to service-oriented computing., in: In-

ternational Conference on Pervasive Service, 2007, pp. 169–172 .

[30] X. Qu , X. Yang , J. Zhong , X. Lv , Integration patterns of grid security service,
in: Sixth International Conference on Parallel and Distributed Computing Ap-

plications and Technologies (PDCAT’05), 2005, pp. 524–528 .
[31] D. Shah , D. Patel , Dynamic and ubiquitous security architecture for global

SOA, in: The Second International Conference on Mobile Ubiquitous Comput-
ing, Systems, Services and Technologies, UBICOMM’08., 2008, pp. 4 82–4 87 .

[32] M. Fisher , S. Sharma , R. Lai , L. Moroney , Java EE and. net interoperability:

integration strategies, patterns, and best practices, Prentice Hall Professional,
2006 .

[33] C. Ouyang , E. Verbeek , W.M. Van Der Aalst , S. Breutel , M. Dumas , A.H. Ter
Hofstede , Formal semantics and analysis of control flow in WS-BPEL, Sci.

Comput. Program 67 (2) (2007) 162–198 .
[34] N. Lohmann , P. Massuthe , C. Stahl , D. Weinberg , Analyzing interacting

WS-BPEL processes using flexible model generation, Data Knowl. Eng. 64 (1)

(2008) 38–54 .
[35] A. Kumar , Z. Shan , Algorithms based on pattern analysis for verification and

adapter creation for business process composition, in: OTM Confederated In-
ternational Conferences, 2008, pp. 120–138 .

[36] J.-m. Jiang , S. Zhang , P. Gong , Z. Hong , Message dependency-based adapta-
tion of services, in: IEEE Asia-Pacific Services Computing Conference (APSCC),

2011, pp. 4 42–4 49 .

[37] A. Barros , M. Dumas , A.H. Ter Hofstede , Service interaction patterns, in: Inter-
national Conference on Business Process Management, 2005, pp. 302–318 .

[38] T. Köllmann , C. Hentrich , Synchronization patterns for process-driven and ser-
vice-oriented architectures., in: EuroPLoP, 2006, pp. 199–228 .
[39] F.B. Vernadat , Interoperable enterprise systems: principles, concepts, and
methods, Annu. Rev. Control 31 (1) (2007) 137–145 .

[40] G. Grossmann , M. Schrefl, M. Stumptner , Exploiting semantics of inter-process
dependencies to instantiate predefined integration patterns, in: Proc. of the

26th international conference on Conceptual modeling, 2007, pp. 155–160 .
[41] H. Taylor , A. Yochem , L. Phillips , F. Martinez , Event-driven architecture: how

SOA enables the real-time enterprise, Pearson Education, 2009 .
[42] O.P. Patri , V.S. Sorathia , A.V. Panangadan , V.K. Prasanna , The process-oriented

event model (PoEM): a conceptual model for industrial events, in: Interna-

tional Conference on Distributed Event-Based Systems, 2014, pp. 154–165 .
[43] S. Asmus , A. Fattah , C. Pavlovski , Enterprise cloud deployment: integration

patterns and assessment model, IEEE Cloud Comput. 3 (1) (2016) 32–41 .
[44] D. Ritter, S. Rinderle-Ma, Toward a collection of cloud integration patterns,

arXiv preprint arXiv:1511.09250 (2015).
[45] D. Merkel , F. Santas , A. Heberle , T. Ploom , Cloud integration patterns,

in: European Conference on Service-Oriented and Cloud Computing, 2015,

pp. 199–213 .
[46] D. Ritter , Experiences with business process model and notation for modeling

integration patterns, in: European Conference on Modelling Foundations and
Applications, 2014, pp. 254–266 .

[47] D. Ritter , Towards more data-aware application integration (extended ver-
sion), CoRR abs/1504.05707 (2015) .

[48] D. Mansor , Moving to the cloud: patterns, integration challenges and oppor-

tunities, in: Proceedings of the 7th International Conference on Advances in
Mobile Computing and Multimedia, 2009 . 9–9.

[49] H. Buckow , H.-J. Groß, G. Piller , K. Prott , J. Willkomm , A. Zimmermann , In-
tegration strategies and patterns for SOA and standard platforms, in: GI

Jahrestagung (1), 2010, pp. 398–403 .
[50] M. Heiss , A. Oertl , M. Sturm , P. Palensky , S. Vielguth , F. Nadler , Platforms for

industrial cyber-physical systems integration: contradicting requirements as

drivers for innovation, in: Modeling and Simulation of Cyber-Physical Energy
Systems, 2015, pp. 1–8 .

[51] D. Ritter , J. Bross , Datalogblocks: relational logic integration patterns, in: In-
ternational Conference on Database and Expert Systems Applications, 2014,

pp. 318–325 .
[52] T. Scheibler , F. Leymann , A framework for executable enterprise applica-

tion integration patterns, in: Enterprise Interoperability III, Springer, 2008,

pp. 4 85–4 97 .
[53] T. Scheibler , F. Leymann , Realizing enterprise integration patterns in Web-

Sphere, Technical Report, University of Stuttgart, 2005 .
[54] R. Thullner , A. Schatten , J. Schiefer , Implementing enterprise integration pat-

terns using open source frameworks, Softw. Eng. Tech. Prog. (2008) 111–124 .
[55] G. Hohpe , Conversation patterns, in: The Role of Business Processes in Service

Oriented Architectures, in: number 06291 in Dagstuhl Seminar Proceedings,

2006, p. 7 .
[56] L. González , R. Ruggia , Addressing QoS issues in service based systems

through an adaptive ESB infrastructure, in: Proceedings of the 6th Workshop
on Middleware for Service Oriented Computing, 2011, p. 4 .

[57] D. Fahland , C. Gierds , Using Petri nets for modeling enterprise integration pat-
terns, Technical Report, bpmcenter.org, 2012 .

[58] D. Fahland , C. Gierds , Analyzing and completing middleware designs for en-
terprise integration using coloured petri nets, in: International Conference on

Advanced Information Systems Engineering, 2013, pp. 400–416 .

[59] O.P. Patri , A.V. Panangadan , V.S. Sorathia , V.K. Prasanna , Semantic manage-
ment of enterprise integration patterns: a use case in smart grids, in: Data

Engineering Workshops (ICDEW), 2014, pp. 50–55 .
[60] S. Basu , T. Bultan , Automatic verification of interactions in asynchronous sys-

tems with unbounded buffers, in: International conference on Automated
software engineering, 2014, pp. 743–754 .

[61] P. Mederly , M. Lekav ̀y , M. Závodsk ̀y , P. Návrat , Construction of messag-

ing-based enterprise integration solutions using AI planning, in: IFIP Cen-
tral and East European Conference on Software Engineering Techniques, 2009,

pp. 16–29 .
[62] P. Mederly , P. Návrat , Construction of messaging-based integration solutions

using constraint programming, in: East European Conference on Advances in
Databases and Information Systems, 2010, pp. 579–582 .

[63] R. Kazman , K. Schmid , C.B. Nielsen , J. Klein , Understanding patterns for

system of systems integration, in: System of Systems Engineering, 2013,
pp. 141–146 .

[64] R. Land , I. Crnkovic , S. Larsson , Process patterns for software systems in-house
integration and merge-experiences from industry, in: Conference on Software

Engineering and Advanced Applications, 2005, pp. 180–187 .
[65] D. Chen , G. Doumeingts , F. Vernadat , Architectures for enterprise integration

and interoperability: past, present and future, Comput. Ind. 59 (7) (2008)

647–659 .
[66] H. Panetto , R. Jardim-Goncalves , A. Molina , Enterprise integration and net-

working: theory and practice, Annu. Rev., Control 36 (2) (2012) 284–290 .
[67] K. Wang , M. Dumas , C. Ouyang , J. Vayssière , The service adaptation machine,

in: European Conference on Web Services, 2008, pp. 145–154 .
[68] S. Rajam , R. Cortez , A. Vazhenin , S. Bhalla , Design patterns in enterprise ap-

plication integration for e-learning arena, in: International Conference on Hu-

mans and Computers, 2010, pp. 81–88 .
[69] W. He , L. Da Xu , Integration of distributed enterprise applications: a survey,

IEEE Trans. Ind. Inf. 10 (1) (2014) 35–42 .
[70] G. Hohpe , Your coffee shop doesn’t use two-phase commit, IEEE Softw. 22 (2)

(2005) 64–66 .

http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0008
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0008
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0009
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0009
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0010
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0010
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0010
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0011
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0011
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0011
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0012
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0012
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0012
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0013
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0013
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0013
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0013
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0014
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0014
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0015
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0015
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0015
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0016
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0016
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0016
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0017
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0017
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0017
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0018
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0018
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0018
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0019
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0019
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0019
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0019
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0020
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0020
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0020
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0020
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0021
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0021
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0021
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0021
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0022
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0022
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0022
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0023
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0023
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0023
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0023
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0023
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0023
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0024
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0024
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0024
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0024
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0025
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0025
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0025
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0025
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0025
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0025
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0026
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0026
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0026
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0026
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0026
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0026
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0027
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0027
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0027
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0027
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0027
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0028
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0028
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0028
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0028
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0028
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0028
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0028
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0029
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0029
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0029
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0029
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0029
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0030
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0030
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0030
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0031
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0031
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0031
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0031
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0031
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0032
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0032
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0032
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0032
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0032
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0032
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0032
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0033
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0033
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0033
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0033
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0033
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0034
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0034
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0034
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0035
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0035
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0035
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0035
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0035
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0036
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0036
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0036
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0036
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0037
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0037
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0037
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0038
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0038
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0039
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0039
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0039
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0039
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0040
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0040
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0040
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0040
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0040
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0041
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0041
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0041
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0041
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0041
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0042
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0042
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0042
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0042
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0043
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0043
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0043
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0043
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0043
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0044
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0044
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0045
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0045
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0046
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0046
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0046
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0047
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0047
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0047
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0047
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0047
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0047
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0047
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0048
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0048
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0048
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0048
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0048
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0048
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0048
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0049
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0049
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0049
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0050
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0050
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0050
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0051
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0051
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0051
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0052
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0052
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0052
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0052
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0053
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0053
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0054
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0054
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0054
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0055
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0055
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0055
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0056
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0056
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0056
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0057
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0057
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0057
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0057
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0057
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0058
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0058
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0058
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0059
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0059
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0059
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0059
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0059
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0060
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0060
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0060
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0061
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0061
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0061
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0061
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0061
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0062
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0062
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0062
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0062
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0063
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0063
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0063
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0063
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0064
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0064
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0064
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0064
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0065
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0065
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0065
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0065
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0065
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0066
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0066
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0066
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0066
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0066
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0067
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0067
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0067
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0068
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0068

D. Ritter et al. / Information Systems 67 (2017) 36–57 57

[
[71] S. Cranefield , S. Ranathunga , Embedding agents in business processes using
enterprise integration patterns, in: International Workshop on Engineering

Multi-Agent Systems, 2013, pp. 97–116 .
[72] DELL Boomi, AtomSphere User Guide, 2017 . (http://help.boomi.com/

atomsphere/GUID- A98714FA- 9EAB- 4B69- BCC8- 7D8984F0B0EC.html) .
[73] IBM, WebSphere Cast Iron Cloud integration, 2017 . (https://www.ibm.com/

support/knowledgecenter/SSGR73) .
[74] Informatica, Cloud-Integration, 2017 . (https://www.informatica.com/de/

products/cloud-integration.html).

[75] Jitterbit, Harmony Cloud Integration, 2017 . (https://www.jitterbit.com/
harmony/) .

[76] Microsoft, BizTalk Server, 2017 . (https://msdn.microsoft.com/en-us/library/
dd547397(v=bts.10).aspx) .

[77] SAP SE, SAP HANA Cloud Integration, 2017 . (http://www.sap.com/product/
technology- platform/hana- cloud- integration.html) .

[78] Oracle, BEA WebLogic Integration, 2017 . (https://docs.oracle.com/cd/E13214 _

01/wli/docs81/index.html).
[79] Tray.io, Tray.io Docs, 2017 . (http://docs.tray.io/) .

[80] Zapier, Zapier v2 Documentation, 2017 . (https://zapier.com/developer/
documentation/v2/reference/) .

[81] Apache Foundation, Apache Flume, 2017 . (https://flume.apache.org/) .
[82] Apache Foundation, Apache Nifi, 2017 . (https://nifi.apache.org/) .

[83] C. Ibsen , J. Anstey , Camel in action, 1st, Manning Publications Co., 2010 .

[84] Cloudpipes, Cloudpipes Documentation, 2017 . (https://docs.cloudpipes.com/).
[85] Tibco, Tibco Cloud Integration Documentation, 2017 . (https://integration.

cloud.tibco.com/docs/index.html).
[86] Software AG, Webmethods Integration Cloud, 2017 . (http://www.softwareag.

com/corporate/products/cloud/integration/default.asp).
[87] GartnerInc., Magic Quadrant for Enterprise Integration Platform as a Service,

Worldwide, 2016 . (https://www.gartner.com/doc/3263719/magic-quadrant-

enterprise-integration-platform).
[88] Forrester ResearchInc., The Forrester Wave: iPaaS For Dynamic Integra-
tion, Q3 2016, 2016 . (https://www.forrester.com/report/The+Forrester+Wave+

iPaaS+For+Dynamic+Integration+Q3+2016/- /E- RES115619).
[89] D. Ritter , M. Holzleitner , Integration adapter modeling, in: Conference on Ad-

vanced Information Systems Engineering, 2015, pp. 46 8–4 82 .
[90] MuleSoft , Integration: The Cloud’s Big Challenge, 2017 . Accessed: 01/2017.

[91] D. Ritter , Towards more data-aware application integration, in: British Inter-
national Conference on Databases, 2015, pp. 16–28 .

[92] C. Peltz , Web services orchestration and choreography, IEEE Comput. 36 (10)

(2003) 46–52 .
[93] D. Ritter , J. Sosulski , Modeling exception flows in integration systems, in: En-

terprise Distributed Object Computing Conference, 2014, pp. 12–21 .
[94] D. Ritter , J. Sosulski , Exception handling in message-based integration sys-

tems and modeling using BPMN, Int. J. Cooperative Inf. Syst. 25 (2) (2016)
1–38 .

[95] C. Fehling , F. Leymann , R. Retter , W. Schupeck , P. Arbitter , Cloud comput-

ing patterns - Fundamentals to design, build, and manage cloud applications,
Springer, 2014 .

[96] E. Gamma , R. Helm , R. Johnson , J. Vlissides , Design patterns: elements of
reusable object-oriented software, Addison-Wesley Longman Publishing Co.,

Inc., 1995 .
[97] SAP SE, SAP HANA Cloud Integration - Prepackaged Content, 2017 . (https://

cloudintegration.hana.ondemand.com/)

[98] SAP SE, SAP Financial Services Network, 2017 . (http://www.sap.com/product/
financial- mgmt/financial- services- network.html)

[99] D. Ritter , N. May , K. Sachs , S. Rinderle-Ma , Benchmarking integration pat-
tern implementations, in: International Conference on Distributed and Even-

t-Based Systems, 2016, pp. 125–136 .
100] M. Böhm , D. Habich , S. Preissler , W. Lehner , U. Wloka , Cost-based vectoriza-

tion of instance-based integration processes, Inf. Syst. 36 (1) (2011) 3–29 .

http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0069
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0069
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0069
http://help.boomi.com/atomsphere/GUID-A98714FA-9EAB-4B69-BCC8-7D8984F0B0EC.html
https://www.ibm.com/support/knowledgecenter/SSGR73
https://www.informatica.com/de/products/cloud-integration.html
https://www.jitterbit.com/harmony/
https://msdn.microsoft.com/en-us/library/dd547397(v=bts.10).aspx
http://www.sap.com/product/technology-platform/hana-cloud-integration.html
https://docs.oracle.com/cd/E13214_01/wli/docs81/index.html
http://docs.tray.io/
https://zapier.com/developer/documentation/v2/reference/
https://flume.apache.org/
https://nifi.apache.org/
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0081
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0081
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0081
https://docs.cloudpipes.com/
https://integration.cloud.tibco.com/docs/index.html
http://www.softwareag.com/corporate/products/cloud/integration/default.asp
https://www.gartner.com/doc/3263719/magic-quadrant-enterprise-integration-platform
https://www.forrester.com/report/The+Forrester+Wave+iPaaS+For+Dynamic+Integration+Q3+2016/-/E-RES115619
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0087
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0087
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0087
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0088
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0088
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0088
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0089
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0089
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0090
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0090
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0091
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0091
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0091
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0092
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0092
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0092
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0093
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0093
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0093
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0093
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0093
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0093
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0094
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0094
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0094
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0094
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0094
https://cloudintegration.hana.ondemand.com/
http://www.sap.com/product/financial-mgmt/financial-services-network.html
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0097
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0097
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0097
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0097
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0097
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0098
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0098
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0098
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0098
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0098
http://refhub.elsevier.com/S0306-4379(17)30108-4/sbref0098

	Patterns for emerging application integration scenarios: A survey
	1 Introduction
	1.1 New challenges for enterprise application integration
	1.2 Research method
	1.3 Contributions and paper outline

	2 Literature review
	2.1 Processing of selected literature - topics and trends
	2.2 Literature summaries
	2.2.1 Service-oriented and event-driven architectures
	2.2.2 Cloud computing, business networks, and hybrid applications
	2.2.3 Internet of things and big data
	2.2.4 General EAI approaches

	2.3 Synthesis and discussion of non-functional aspects

	3 System review
	3.1 Processing of selected systems
	3.1.1 EIP Solutions used in system implementations
	3.1.2 New solutions not covered by system implementations

	3.2 System summaries along NFA
	3.2.1 Security
	3.2.2 Media
	3.2.3 Processing
	3.2.4 Conversations
	3.2.5 Error handling
	3.2.6 Monitoring
	3.2.7 Storage
	3.2.8 Composition
	3.2.9 Miscellaneous

	4 Design of pattern catalog
	4.1 Goal 1 (comprehensiveness): system implementation coverage
	4.2 Goal 2 (novelty): literature coverage
	4.3 Solutions for future challenges

	5 Example integration pattern realization
	5.1 Problem description: stateful vs. stateless integration processes
	5.2 Patterns and pattern formats
	5.3 Pattern examples and realization

	6 Quantitative analysis
	6.1 Integration scenarios
	6.2 Scenario analysis

	7 Challenges, limitations, impact
	7.1 Research challenges
	7.1.1 Patterns
	7.1.2 Formalization
	7.1.3 Modeling

	7.2 Limitations
	7.3 Impact

	 References

