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Abstract. Methods from Operations Research (OR) are employed to
address a diverse set of Business Process Management (BPM) problems
such as determining optimum resource allocation for process tasks. How-
ever, it has not been comprehensively investigated how BPM methods
can be used for solving OR problems, although process mining, for ex-
ample, provides powerful analytical instruments. Hence, in this work, we
show how process discovery, a subclass of process mining, can generate
problem knowledge to optimize the solutions of metaheuristics to solve
a novel OR problem, i.e., the combined cobot assignment and job shop
scheduling problem. This problem is relevant as cobots can cooperate
with humans without the need for a safe zone and currently significantly
impact transitions in production environments. In detail, we propose two
process discovery based neighborhood operators, namely process discov-
ery change and process discovery dictionary change, and implement and
evaluate them in comparison with random and greedy operations based
on a real-world data set. The approach is also applied to another OR
problem for generalizability reasons. The combined OR and process dis-
covery approach shows promising results, especially for larger problem
instances.

Keywords: Process Discovery · Operations Research · Metaheuristics ·
Memetic algorithm · Industry 4.0

1 Introduction

The application of techniques from Operations Research (OR) has been identi-
fied as promising “avenue to obtain better processes”, although “OR techniques
have not been systematically applied to solve process improvement problems
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yet” [2]. One example of the application of OR techniques to BPM is the allo-
cation of resources to process tasks, e.g., [10]. Another example is the use of a
memetic algorithm (MA) to mine change propagation behavior in process collab-
orations under confidential information, i.e., details on private processes [9]. Less
attention has been paid to the reverse direction, i.e., how BPM methods such
as process discovery (PD) can contribute to solve OR problems, even though
PD provides powerful analytical instruments. [23] uses conformance checking to
improve a scheduling problem in a hospital setting. In [13], we propose to use PD
for visualization and exploration of solutions for a combined cobot assignment
and job shop scheduling problem. In this case, the solutions that are generated
by an MA are represented as process event logs. The discovered process models
are then enriched by attributes such as cost and time for visual inspection and
comparison of the solutions. In this work, we study how to exploit PD techniques
for generating knowledge to optimize metaheuristics solutions based on two se-
lected OR problems from the production domain, i.e., the cobot assignment and
job shop scheduling problem [12] and flexible job shop scheduling problem [6]
with an extended cobot assignment. As both problems are NP-hard optimization
problems [29], metaheuristics offer promising solutions that are highly relevant in
industry. MAs are one kind of metaheuristics that have proven useful for solving
the cobot assignment and job shop scheduling problem [12]: a genetic algorithm
explores the search space, and for promising solutions, a variable neighbourhood
search (VNS) is performed. To investigate the potential of PD to metaheuristics,
in this paper, we investigate i) how PD can be used in order to generate problem
knowledge to optimize the solutions of the MA and ii) how much the solution
quality can be increased. For this, we propose two PD-based neighbourhood
operators, namely process discovery change and process discovery dictionary
change. Both operators are implemented and evaluated alongside two standard
neighbourhood operations, i.e., basic change and greedy change, based on three
data sets for the two problems described above. The results underpin the po-
tential of PD-based neighbourhood operations, especially for large data sets and
many cobots.
Figure 1 depicts an overview of the overall idea and algorithm. On the left side in
the operations research part of Fig. 1, it can be seen that an optimization prob-
lem is loaded and initial solutions for the problem are generated. After loading
the problem, the main loop of the MA (detailed description in Sections 3 and 4)
starts, and all individuals are evaluated. Whenever a new best solution is found,
this solution is stored and a log file of this solution is created. In the BPM part of
the Fig. 1, a local process model (LPM) is mined out of this log file and an LPM
dictionary (described in Sections 4.3 and 4.4) is created. Knowledge generated
with these models can now be used to boost the performance of the MA. The
paper has the following outline. Section 2 discusses related work. Section 3 ex-
plains fundamental concepts for the work, such as memetic algorithm and local
process models. In Section 4, the solution for the selected OR problems, includ-
ing the PD-based neighbourhood operators, is described. Section 5 presents the
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Fig. 1. MA with process discovery knowledge

computational experiments to show the performance of the algorithm. Section 6
concludes the paper.

2 Related Work

Scheduling problems in production are one of the hardest and most studied NP-
hard optimization problems [29]. In [7], it is described that in the last decades,
a lot of research has been done on developing efficient heuristic optimization
algorithms for the (flexible) job shop scheduling problem due to its relevance for
the industry. Especially local search methods like tabu search [25] have proven
successful in this area. By combining the exploitation capabilities of local search
with the explorative power of genetic algorithms [4], so-called MAs represent a
hybrid between these two search paradigms. One of the most recent effective
applications of such an algorithm to job shop scheduling is described in [30].
For process (re-)design, different OR methods have been used, e.g., mathemat-
ical programming [15]. [17] provides an overview of questions and approaches
for automated planning in process design. OR methods are also used to deter-
mine the optimal data flow in process choreographies [14]. [5] put process model
optimization to runtime based on formulating and solving a declarative process
model plus temporal constraint as constraint satisfaction problem. Stochastic
Petri nets [21,16] can be employed to model, simulate, and analyze dynamic
process settings. PD has been mainly used to visualize and explore the results
of the OR method to a given problem, so far. [8] uses process mining to analyze
logs before scheduling in a hospital environment. In [13], we suggest using pro-
cess mining to visually explore the results of cobot assignments by translating
the schedules into logs. In [9], process mining is used to visualize and compare
the solutions of an MA to predict change propagation behaviour in distributed
process settings with and without confidentiality requirements. In [23] processes
from a real-world clinic are improved: existing logs are analyzed, and a schedule
is created with OR methods which is used to analyze the cause of deviations and
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to improve the process. However, the aforementioned approaches do not exploit
process mining techniques to optimize OR methods.

3 Fundamentals

This section presents background information on memetic algorithms and local
process model mining as the two fundamental concepts combined in the solution
method presented in this work.

3.1 Memetic Algorithms (MA)

In order to understand how MAs work, we introduce the fundamentals of ge-
netic algorithms (GA) and local search (LS) methods. GAs are an abstraction
of biological evolution. A set of solutions (population) is the basis. Selection,
crossover, and mutation operations transform this initial set of solutions to the
next generation. A selection operator selects two parents for the next genera-
tion. The idea is that fitter individuals are selected more often. The crossover
operator now combines these two individuals and therefore mimics biological re-
production. The mutation operator can slightly change the produced offspring,
similar to a natural mutation. By representing a problem as an individual of
the population and creating a fitness function, that can assign fitness to new
individuals, this basic genetic algorithm can solve a broad range of optimization
problems [18]
LS methods start with a single solution. A set of local changes are applied to the
starting solution, which will improve the starting solution until a local optimum
has been found. Basic local search methods will stop once a local optimum has
been found. However, there are algorithms that can escape local optima and
continue the search. One of these algorithms is a VNS. This algorithm explores
increasing neighbourhoods (a kth neighbouring solution can be reached with k
changes to the base solution), e.g. neighbourhoods with 1, 2, or 3 changes to
the base solution. If an improvement to the best solution has been found, the
algorithm is restarted from the newfound solution. [19]
A GA has a population and explores large parts of the search space. These GAs
can be combined with LS so that the LS is applied to promising solutions that
the GA finds. This MA combines global and local search methods and was able
to provide good results for many practical problems. [20]

3.2 Local process model mining

Process models allow to specify, describe, understand, and document processes
more effectively than they can do using text. Process models can be used to
understand processes and make decisions [11]. Due to high concurrency and
complex dependencies, simple sequence mining techniques do not work well on
modern processes. However, process discovery (PD) algorithms have proven to
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capture processes adequately based on event logs [3]. Local process model (LPM)
mining is a PD technique introduced in [24] that aims at extracting the best
LPM from an event log. LPMs are generated based on an initial set of process
trees containing only one node, i.e., one workstation. These trees are assigned
a fitness value based on five quality criteria, such as the number of traces that
can be considered an instance of the LPM (support) and the harmonic mean of
all explainable event occurrences divided by not explainable event occurrences
(confidence) [24]. All or a subset of the process trees are selected for the next
generation based on their fitness. The process trees are then expanded with
different operators and nodes. This is necessary, as one node might be no good
presentation for a large process. In the expansion step, a leaf is replaced by an
operator. The original leaf is the first child of the new operator, and a second
random node is the second child of the operator. This expansion step is done
multiple times, until a stopping criterium is reached, and the best process tree is
stored. These generated process trees can be converted into LPMs at any time.

4 Solution Method

This section describes the OR problems and the MA that has been used to solve
them (see [12]). Moreover, this section defines the novel PD-based neighbourhood
operators.

4.1 Operations Research Problems

We present the necessary details of the two OR problems based on which we
investigate the potential of employing PD in metaheuristics. [12] describes or-
ders and tasks. However, for clarity, orders and tasks will be called jobs and
operations. [6] describes machines. However, for clarity, machines will be called
workstations, as human workers can interact with machines and cobots on these
workstations.

OR Problem 1 (Cobot assignment and job shop scheduling problem [12])
In this problem, a list of jobs is given. Each job contains multiple operations that
are subject to precedence constraints. These operations should be executed on a
given set of workstations.
All workstations that can do similar operations are grouped, e.g. all drilling work-
stations. Each workstation has a speed and cost factor. An example would be a
new drilling workstation. This new workstation might have more expensive drills,
but it is also faster than an old one. Furthermore, a predefined number of cobots
can be deployed to workstations in order to speed up production as introduced in
[28]. For each operation, a base cost and duration are available. Additionally, a
workstation group (e.g. a drilling operation can be done on any drilling worksta-
tion) as well as precedence relations are given.
The objective function of this problem is a combination of normalized production
cost and normalized makespan. An extension to the classical job-shop-scheduling
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problem is that operations can be split and assigned to different workstations
for quicker processing. Additionally, operation fragments can be executed in an
arbitrary order.

OR Problem 2 (Flexible job shop scheduling [6]) In this problem, a list
of jobs is given. Each job contains multiple operations that are subject to prece-
dence relations. Each operation can be processed on one out of a set of eligible
workstations, and the processing time depends on the selected workstation.
This base problem is extended by a cobot-to-workstation assignment.
The objective function of this problem is to minimize the makespan to finish all
jobs. Therefore, operations must be assigned to the workstations, and a produc-
tion order must be defined. The main difference to the first defined problem is
the flexibility of operations (producible on many workstations instead of small
workstation groups and the objective function).

Problems 1 + 2 are NP-hard problems extended by an additional decision aspect,
i.e., a cobot-to-workstation-assignment. In [12], an MA has already been used to
solve the cobot assignment and job shop scheduling problem. In this paper, we
extend the MA with PD neighbourhood operators, i.e., if the genetic algorithm
finds a promising solution, the VNS is started from this solution.

4.2 Encoding and evaluation

In Fig. 2, the encoding for Problems 1 + 2 is shown. The first part of the encoding
is the operation to workstation assignment. If an operation can be produced on
multiple workstations, the upper bound equals the number of these workstations.
The value represents which of the possible workstations is used for production.
E.g. if workstations 0 to 4 are possible for production, the upper bound is 4, and
a value of two would mean that the second workstation is used.
In the second part of the encoding in Fig. 2, each operation’s priority is encoded.
If multiple operations can be produced simultaneously at the same workstation,
the operation with the highest priority gets produced first. Each number be-
tween zero and the largest possible integer is possible. E.g. two tasks, task 1
with priority 5 and task 2 with priority 10, should be produced on the same
workstation. The task with the highest priority, namely task 2, is produced first.
The final part of the encoding is the cobot-to-workstations-assignment that can
be seen on the right side of Fig. 2. The upper bound of this value is the number
of workstations that have no cobot assigned. The value represents which of these
workstations a cobot should be assigned. E.g. if workstations 0 to 10 have no
cobot assigned, the upper bound of the value is 10 and a value of 5 would mean
that a cobot is assigned to workstation 5.
In [28], it is described that a cobot speeds up production by 30%. This value is
used for the evaluation.

Details regarding the evaluation of the extended cobot assignment and job
shop scheduling problem can be found in [12]. During the evaluation of one
solution, two objective values (production cost and makespan) are generated.
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The objective function F that is used as fitness is a combination of normalized
cost and normalized makespan, i.e., F = ncost + nmakespan.

Instances of the extended cobot assignment and flexible job shop scheduling
problem do not define production costs. Therefore, the makespan should be
minimized in these instances.

Fig. 2. Integer-based encoding

4.3 Local process model mining

In this work, an LPM represents highly used workstations and relations between
these workstations in the currently best solution of the algorithm. More pre-
cisely, the best-rated LPM is mined whenever the MA finds a new best solution.
Section 4.4 will explain how one or multiple LPMs are used inside the MA to
improve the algorithm’s performance. However, the conceptual idea is that solu-
tions that are close to the best-found solution might improve if more operations
are assigned to those highly used workstations of the best solution.
Compared to [24], the computational effort is crucial in the context of this pa-
per. Hence, the LPM mining algorithm is adjusted to be executable in the MA.
For this, the number of operators to build the LPMs is limited to sequence and
xor operators. Regarding the described problems, this deviation from the origi-
nally proposed mining algorithm does not have disadvantages, as the problems
are defined without loops and concurrency. Additionally, generating all possible
solutions in the selection step is not feasible. Therefore, a random subset is gen-
erated before the expansion step. Figure 3 shows the process of generating an

Fig. 3. Generation and usage of local process models

LPM during the run of the MA. Green parts have been developed or adjusted
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for this paper. The basis for the LPM is the event log representing the current
best solution found by the MA.

During the evaluation of one solution, information regarding jobs, order of
operations, workstations, and cobot placement is available. The generation of
an event log in the xes format [1] is triggered every time a new best solution
is found. The xes file contains a trace for each job. The traces, in turn, contain
events for each operation. Each event defines a start and end timestamp (start
and end of the operation), a job ID, an operation ID, which workstation has been
used and the information if a cobot is currently assigned to this workstation.
Using the adjusted LPM mining algorithm, the best LPM for this given log file
is created. An example would be the sequential execution on workstations A and
B in a problem with four workstations A-D. Section 4.4 will explain how LPMs
are used in the VNS.

4.4 Memetic algorithm

To generate neighbourhood solutions in a MA as described in Section 3, a neigh-
bourhood operator applies k changes to an initial solution.
Independent of the neighbourhood operator, each part of the encoding, de-
scribed in Fig. 2, has an equal chance of being selected for change (operation-to-
workstation assignment, operation priority, cobot assignment). The first neigh-
bourhood operator is the Basic change (B). In this change, one value of the se-
lected part is randomized within its bounds. The second operator is the Greedy
change (G). Regarding operator priority and cobot assignment, this change
equals the basic change. In the operation-to-workstation assignment, all work-
stations that have a cobot assigned are calculated. Workstations with cobots have
a threefold probability of being selected during the operation-to-workstation as-
signment. The third operator is the Process discovery change (PD). Regard-
ing operator priority and cobot assignment, this change equals the basic change.
In the operation-to-workstation assignment, the latest LPM is used. This can
be seen in Fig. 3. Workstations that are part of the latest LPM have a threefold
probability of being selected compared to other workstations. The final opera-
tor is the Process discovery dictionary change (PDD). Regarding operator
priority, this change is equal to the basic change. In the operation-to-workstation
assignment and the cobot-to-workstation assignment, the weight of each work-
station is the weight of the entry in the process mining dictionary. This can be
seen in Fig. 3. This means that workstations that greatly impact the process
over multiple generations of LPMs have a higher chance of being selected.

In Algorithm 1, the evaluation of the MA (cf. [12]) with PD-based VNS is
described. In line 0, a solution and one neighbourhood operator are passed to
the evaluation method. A fitness value for this solution, called solutionFitness,
is generated. This can be seen in Algorithm 1 in line 1. In line 2, it is checked
if the VNS should be applied. It is applied to solutions within a given range of
the best solution that has been found so far. Lines 3, 4, 5, 14, and 15 indicate
the minimum number of individuals generated whenever the VNS is started. An
example would be kmax=5, where at least 50 solutions with k ∈ {1, 3, 5} changes
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Algorithm 1. Pseudo code - MA with process discovery

Parameters/Methods Description
BestSolution Best solution found so far
BestSolutionLog Log file describing the best solution found so far
BestFitness Best fitness found so far
VnsThreshhold Threshold to check if the VNS should be applied
LPM Local process model of the best solution found so far
LPMDictionary Dictionary that is updated based on mined LPMs
UpdateDictionary() Method that updated the current LPMDictionary
EvaluateSolution() Method to get the quality of a passed individual
SolutionLog() Method to get the log file of a solution
MineLocalProcessModel() Method to mine a LPM out of a process log
NeighbouringSolution() Method that generates a solution with k changes

0 Evaluate(solution, neighbourhood, kmax)
1 solutionFitness ← EvaluateSolution(solution)
2 if(solutionFitness ≤ BestFitness * VnsThreshhold)
3 k ← 1
4 while(k ≤ kmax)
5 for(i = 0, i ≤ 50, i++)
6 newSolution ← NeighbouringSolution(solution, neighbourhood, k)
7 newSolutionFitness ← EvaluateSolution(s’)
8 if(newSolutionFitness < solutionFitness)
9 solutionFitness ← newSolutionFitness
10 solution ← newSolution
11 k ← 1
12 goto line 3
13 end if
14 end for
15 k += 2
16 end while
17 end if
18 if(solutionFitness < BestFitness)
19 BestFitness = solutionFitness
20 BestSolution = solution
21 BestSolutionLog = SolutionLog(solution)
22 LPM = MineLocalProcessModel(BestSolutionLog)
23 LPMDictionary = UpdateDictionary(LocalProcessModel)
24 end if
25 return x

are generated. In line 6, k changes are made to the existing best solution based
on the passed neighbourhood operator of line 0. Four neighbourhood operators,
i.e., basic change, greedy change, PD change, and PDD change, are used in line
6 and will be explained in detail after the algorithm description. In line 7, the
fitness of the new changed solution is evaluated.
The VNS is restarted on a first-improvement basis. This can be seen in lines 8
to 13. The found improved solution replaces the current best solution for this
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variable neighbourhood.
Lines 18 to 24 show that the MA also stores the best-found solution. If a new
best solution is found and the neighbourhood operator is one of the PD oper-
ators, a solution log of this solution is generated and a LPM mining algorithm
is applied. The mined LPM replaces the LPM of the currently best solution. It
is assumed that key workstations of existing solutions are part of the LPM. Ex-
amples are workstations that are used frequently in the best existing solution.
Utilizing this information in the genetic algorithm might be good for already
promising solutions to assign operations to these workstations.
Fig. 3 shows the development of a PDD. A dictionary with all workstations
is created to utilize information extracted from multiple LPMs. Each worksta-
tion has a base weight of 1. Each time a new LPM is mined, the weight of all
workstations that are part of this LPM is increased by one.

5 Numerical experiments

5.1 Data and code

The problem files for the cobot assignment and job shop scheduling problem
can be found at https://doi.org/10.5281/zenodo.7691316 and the problem files
for the cobot assignment and flexible job shop scheduling problem at https:
//doi.org/10.5281/zenodo.7691455. Algorithm 1 is implemented in C# and em-
bedded into HeuristicLab, a framework for heuristic optimization [26]. The simu-
lation framework Easy4Sim4 was used to evaluate solutions. The code is provided
at https://zenodo.org/badge/latestdoi/614876607.
The evaluation of the approach necessitates large-scale computational experi-
ments. For this, the HPC3 cluster5 in Vienna was used. All calculations were
executed on nodes with a Xeon-G 6226R CPU 2.9 GHz. To execute the C#
code on a Linux cluster, the mono framework [27] was utilized. To evaluate the
overhead of the runtime environment, preliminary experiments were conducted.
Stretching the computation time by a factor of 1.6 allows for a similar number
of solutions to be evaluated compared to the same code running on a native
.NET platform (MS Windows). All runs of the MA have been done on the HPC.
Therefore, this factor has been used for all runs of the MA, and the original
runtime is reported in this paper.

5.2 Constraint programming formulation

A constraint programming (CP) formulation for all solved problems has been
done to measure the implemented algorithm’s performance. If the CP model
terminates, it finds the global optimum of a problem. Therefore the CP model
gives an overview of the complexity of the problem (can the optimum be found
in a reasonable time?). If no optimum is found, it gives a good base quality which
4 https://www.risc-software.at/
5 https://w3.vdc.univie.ac.at/wiki/index.php/Slurm

https://doi.org/10.5281/zenodo.7691316
https://doi.org/10.5281/zenodo.7691455
https://doi.org/10.5281/zenodo.7691455
https://zenodo.org/badge/latestdoi/614876607
https://www.risc-software.at/
https://w3.vdc.univie.ac.at/wiki/index.php/Slurm
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can be compared to the solutions found by the developed algorithm.
The exact formulation for the first two data sets can be found in [12]. To solve
the third problem, minor adjustments have been made to the CP model. Since
the CP formulation of the problem requires a lot of space, it is not presented
here. IBM ILOG CP Optimizer has been employed for implementing the model
and for solving the example problems. The model definition can be found at
https://doi.org/10.5281/zenodo.7754794.

5.3 Data dimensions

Three different data sets were solved with all neighbourhood operators. In [12],
the first two data sets are explained. The first data set is a combined cobot
assignment and job shop scheduling problem from the industry. It has 54 work-
stations, 210 jobs, and 1265 operations. This instance is split into two halves and
four quarters to create additional smaller instances. The second data set is in-
spired by this real-world data set and has 50 artificial instances. These instances
are similar in size compared to real-world instances (full, halves, quarters). In
[6], the third data set is introduced. This data set contains large flexible job shop
scheduling instances that are extended with a cobot-to-workstation-assignment
in this paper. The instance size ranges from 30 × 10 (jobs × workstations) to
100× 20.

5.4 Real-world cobot assignment and job shop scheduling problem

The real-world problem described in [12] has been solved with the following
parameters:

– Runtime: Short (100 minutes), medium (200 minutes), and long (300 min-
utes) runtime

– Cobots: 0, 5, and 10
– neighbourhood operator: Basic change, greedy change,

PD change, PDD change
– Instances: Full, halves, quarters
– Repetitions: 10

These settings result in 2520 runs of the MA. The reported runtime is used for
the full instance and 30%, and 10% of this runtime is used for the half and
quarter instances, respectively. In [12], the CP model has been used to solve the
real-world data set with zero and five cobots.

In Table 2, the average normalized objective value of all runs of the MA is
reported and compared to the CP results. Both values of the objective function
(makespan, cost) are normalized so that a higher normalized value represents
a better value. The maximum of each normalized value is 1, which means the
closer the objective value gets to 2, the better the result is. The values in the
cells represent the average for 10, 20, and 40 runs of the algorithm for the full
instance, the half instances, and the four quarters, respectively.

https://doi.org/10.5281/zenodo.7754794
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Table 2. Detailed results for the real-world problem

0 Cobots 5 Cobots 10 Cobots
NBOp Time Quarters Halves Full Quarters Halves Full Quarters Halves Full
B 1.2698 0.9654 1.0644 1.7878 1.5955 1.6491 1.7926 1.5995 1.6414
G 1.2213 0.9574 1.0423 1.7565 1.5714 1.6583 1.7884 1.6245 1.7343
PD 1.2475 0.8933 1.0262 1.7604 1.5790 1.6714 1.8168 1.6277 1.7423
PDD

Short

1.2766 0.9653 1.0722 1.6111 1.5351 1.5504 1.8176 1.6200 1.7279
B 1.2876 0.9915 1.0854 1.8227 1.6115 1.7227 1.8489 1.6563 1.7329
G 1.2886 0.9845 1.0646 1.8074 1.6018 1.7164 1.8343 1.6516 1.7457
PD 1.2838 1.0436 1.0821 1.8134 1.5967 1.7071 1.8431 1.6746 1.7511
PDD

Medium

1.2877 1.0349 1.1154 1.6463 1.6624 1.7268 1.8540 1.6776 1.7919
B 1.3004 1.0897 1.1099 1.8322 1.6244 1.7506 1.8584 1.7019 1.7617
G 1.2968 1.0587 1.0685 1.8215 1.6738 1.7394 1.8455 1.6829 1.7461
PD 1.2946 1.0322 1.0973 1.8257 1.6738 1.7237 1.8616 1.6936 1.7975
PDD

Long

1.2954 1.0520 1.0930 1.6660 1.6756 1.7814 1.8672 1.6921 1.8086
CP 0.9057 1.1493 1.0216 -2.4404 -1.0479 0.9258
NBOp: neighbourhood Operator; B: Basic; G: Greedy; PD(D): Process discovery (Dictionary)

The colored cells mark the best neighbourhood for each combination of runtime,
instances size, and the number of cobots. This highlights the advantages of the
different neighbourhood operators.
The PD operators try to identify important workstations in generated solutions.
The PDD operator even learns over a large number of generations. Since applying
PD operators comes with an overhead, the instance must be hard enough that
this generated knowledge has enough impact in the remaining time. In Table 2,
it can be seen that the PD operators, especially the PDD operator, outperform
other neighbourhood operators on complex problems (large instance, high num-
ber of cobots) if enough runtime is given.
Once the number of cobots increases, the CP model has difficulties finding a
valid solution. This can be seen in the last line of Table 2. The CP approach
delivers good zero cobot results, especially for the half instances. However, with
five cobots, the CP formulation already has trouble finding valid solutions.

5.5 Generated cobot assignment and job shop scheduling problem

The second data set solved is the artificial data set described in [12]. In this data
set, 50 instances in 3 sizes have been created:

– Small instances (10 instances)
300 operations / 30 workstations

– Medium instances (20 instances)
600 operations / 30 workstations
600 operations / 50 workstations

– Large instances (20 instances)
1200 operations / 30 workstations
1200 operations / 50 workstations

All instances have been solved with the following parameters:

– Cobots: 0, 5, and 10
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– neighbourhood operator: Basic change, greedy change,
PD change, PDD change

– Repetitions: 10

These settings result in 6000 runs of the algorithm. The runtime was 60, 180,
and 300 minutes for the small, medium, and large instances, respectively.

Table 3. Detailed results for the artificially generated instances

0 cobots 5 cobots 10 cobots
neighbourhood Small Medium Large Small Medium Large Small Medium Large
B 0.8140 0.5258 0.3657 0.9704 0.6342 0.5450 1.1592 0.7708 0.6781
G 0.8124 0.4991 0.3483 0.9463 0.6188 0.5399 1.1331 0.7570 0.6792
PD 0.8192 0.5243 0.3883 0.9767 0.6473 0.5576 1.1462 0.7799 0.6801
PDD 0.8123 0.5355 0.3897 1.0100 0.6632 0.5426 1.1903 0.7953 0.6815
CP 0.4139 0.2989 0.1240 0.4898 0.2989 -0.2926 0.5690 0.2989 -0.2926
NBOp: neighbourhood Operator; B: Basic; G: Greedy; PD(D): Process discovery (Dictionary)

Table 3 summarizes the performance of the neighbourhood operators com-
pared to the CP model on the artificial instances. The value in each cell represents
the normalized objective value (normalized cost + normalized makespan) with
an upper bound of 2. A larger value means that on average better solutions have
been found. The coloured cells represent the best neighbourhood operator with
regard to the instance size and the number of cobots.
If the CP model did not find a solution for a cobot setting, the solution with
fewer cobots is taken. It can be seen that the MA outperforms the CP model for
this problem. This is independent of the used neighbourhood.
Table 3 shows that the PD neighbourhood operators outperform the basic and
greedy neighbourhood operators over the whole data set. This is again espe-
cially true for the PDD operator. Which performs, on average, 2.4% better than
the basic neighbourhood, 4.5% better than the greedy neighbourhood, and 1.5%
better than the PD neighbourhood.
The values in the table represent the average over 100 and 200 instances for
the small and medium/large instances, respectively. Due to the larger number of
instances, results from this data set are less prone to errors than the real-world
instances.

5.6 Cobot assignment and flexible job shop scheduling problem

The third data set solved is the flexible job shop scheduling problem described
in [6], cf. Problem 2. For the previous two problems, it could be seen that the
CP results have performed better for simpler instances and worse for complex
instances. In this problem, CP delivers good results due to the simple, makespan-
only objective. To compete with the CP formulation with an equal runtime, mi-
nor adaptations had to be done in the MA.
A fraction of the initial population of the MA has been initialized with solutions
generated using priority dispatching rules. These priority rules allow the gener-
ation of acceptable initial solutions that can be further improved with the MA.
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A considerable amount of priority rules are described in [22]. The following have
been used in the operation-to-workstation assignment in this paper:

– Most work remaining
– Shortest processing time remaining
– Most operations remaining
– Operational flow slack per processing time
– Flow due date per work remaining
– Shortest processing time per work remaining
– Shortest processing time and work in next queue

Additionally, the Highest number of assignable operations and the Largest amount
of assignable work priority rules have been designed for the cobot-to-workstation
assignment. In the first cobot-to-workstation rule, workstations are sorted by the
number of operations that can be assigned and the available cobots are assigned
to the top workstations. In the second rule, the sorting is done by the duration
of all assignable operations on a specific workstation.
Additionally, generating LPMs has been stopped until the first generation is fin-
ished. Four problem files (0, 10, 20, 30) of two categories (smallest and largest)
were selected. The smallest category has 30 jobs with 10 workstations, and the
largest has 100 jobs with 20 workstations. These problems were solved with
cobots assigned to 0%, 20%, and 40% of the workstations. Each problem was
solved with all four described neighbourhood operators and 20 repetitions. This
resulted in 1920 runs of the algorithm. The CP solver and the MA had a runtime
limit of 60 minutes.

Table 4. Detailed makespan results for the cobot assignment and FJSP

B G PD PDD CP
small 0% 764 764 765 764 762
small 20% 702 703 703 702 699
small 40% 650 650 650 649 646
large 0% 3906 3906 3906 3906 3904
large 20% 3587 3587 3587 3587 3587
large 40% 3314 3314 3314 3314 3317

Table 4 reports the average solution quality for the MA and the CP model of
the flexible job shop scheduling instances. The values represent the average objec-
tive value (makespan) across each instance group. Hence, smaller values indicate
a better solution quality. The CP solver delivered good results for all numbers
of cobots for the small instances. With growing problem difficulty (increasing
number of cobots and instance size), the performance of the MA increased.
For the large instances with 40% cobots, a slight advantage of the MA over the
CP model can be observed. Even though the performance of the neighbourhood
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operators is pretty similar, the PDD operator outperforms the other neighbour-
hood operators again and delivers the best results for the most complex (largest,
highest amount of cobots) instances.

6 Summary and Outlook

This paper introduces a novel combination of an MA with a feedback loop that
utilizes LPM mining. This MA uses different neighbourhoods that utilize the
information generated with this PD algorithm, and the results are compared to
traditional neighbourhood operators and a CP model.
Two problems from OR were tackled to show the algorithm’s generalizability.
The algorithm should be easily adaptable to new problems due to the flexibility
of the base algorithm, the genetic algorithm. Additionally, it has been imple-
mented in HeuristicLab, which can, due to its plugin-based architecture, easily
be extended with new problem formulations.
Running additional code like the PD algorithms during the execution of a genetic
algorithm to generate knowledge comes with overhead. This knowledge can help
identify important parts of the process.
A series of experiments on different problems were started to quantify the im-
pact of this generated knowledge. This paper reports the results of 10440 runs
of the MA. A CP formulation was employed for all problems to have a baseline
performance measure.
For small instances and simple problems, the overhead incurred through PD
inhibits the competitiveness of our approach. However, it was shown that neigh-
bourhood operators that utilize PD algorithms to generate knowledge outper-
form other neighbourhood operators and the CP model on large and complex
instances. In further research, different metaheuristics, feedback variants, prob-
lems, and PD algorithms can be reviewed. In the current version, the order and
connections between workstations in the LPM is not utilized, however, utilizing
this information might be helpful in upcoming research.
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