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Abstract—Suffix prediction of business processes forecasts the
remaining sequence of events until process completion. Current
approaches focus on predicting the most likely suffix, representing
a single scenario. However, when the future course of a process
is highly uncertain and variable, a single scenario may have
limited predictive value. To address this limitation, we propose
probabilistic suffix prediction, a novel approach that returns a set
of sampled suffixes. The method is based on an uncertainty-aware
encoder-decoder LSTM combined with a Monte Carlo suffix
sampling algorithm. We capture epistemic uncertainty via MC
dropout and aleatoric uncertainty as learned loss attenuation.
Comparisons with two other uncertainty-aware PPM approaches
across four datasets demonstrate that our probabilistic suffix
prediction approach achieves reasonable predictive performance
while it allows estimating prediction intervals for multiple objec-
tives within a single model.

Index Terms—Probabilistic Suffix Prediction, Epistemic &
Aleatoric Uncertainty, Encoder-Decoder LSTM

I. INTRODUCTION

In recent years, predicting the future course of a running
business process (BP) using machine learning (ML) models
has gained considerable attention in the field of Predictive
Process Monitoring (PPM) [1]. Many PPM approaches have
focused on predicting a single objective, such as the next
activity, remaining time, or the process outcome [2]. Recent
works have developed approaches that predict an entire se-
quence of remaining events, known as suffix prediction using
neural networks (NNs) [3]-[10]. Current suffix prediction
approaches predict a single most-likely suffix. However, in
domains such as healthcare or manufacturing, the future course
of a business process can be highly uncertain and variable. In
such situations, given the low likelihood that the true suffix
matches the most likely prediction, one may be more interested
in exploring possible suffix scenarios and obtaining prediction
intervals for relevant aspects.

Consider a simple repair process of a service center as
depicted in Fig. [I] where the repair activity fails frequently,
meaning that it must be repeated until the quality control
is passed. Suppose that an organization nevertheless aims to
provide customers with predictions regarding the return date of
their parts. Providing a single return date might not be practical
because it would often be missed, possibly leading to customer
dissatisfaction. By instead offering a time range with a given
coverage probability (e.g., 75%), the organization can reflect
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inherent uncertainties while still providing useful information
to the customer. Assume further that the organization wants
to inform customers about the expected range of repair costs,
which depends on the number of repair attempts required.
Accordingly, the organization would likely aim to provide
a prediction interval for the number of repair cycles that a
part might undergo, which could be extracted from the same
suffixes to be consistent with the time range.

Hence, this work aims at learning uncertainties from his-
torical data and to take these uncertainties into account for
predicting and sampling possible suffix scenarios, from which
multiple prediction intervals can be obtained. In ML, uncer-
tainties are often categorized into epistemic and aleatoric.
Epistemic uncertainty stem from a lack of knowledge, e.g.,
a lack of training data, and are defined as reducible. Aleatoric
uncertainty, conversely, are irreducible. In the context of a
business process, they can, e.g., stem from external factors
such as delays in deliveries from external stakeholders or from
human involvement in the process execution. Both forms of
uncertainty can be learned jointly with NNs [11]. However, no
existing approach has yet incorporated epistemic and aleatoric
uncertainties for suffix prediction of business processes. We
refer to our approach as probabilistic suffix prediction which
we achieve by first training an uncertainty-aware encoder-
decoder long short-term memory (U-ED-LSTM) NN on event
log data. The U-ED-LSTM captures epistemic uncertainty by
applying MC dropout and aleatoric uncertainty by learned
loss attenuation [|11]—[|13[]. For a given prefix, we then sample
suffixes with our Monte Carlo suffix sampling algorithm (MC-
SA). The MC-SA draws suffix samples by using the U-
ED-LSTM and takes aleatoric and epistemic uncertainty into
account. For generating a suffix, the MC-SA algorithm sam-
ples events until completion in an autoregressive fashion. The
algorithm uses a novel combination of dropout as a Bayesian
approximation and sampling from the via loss attenuation
learned probability distributions to realize event attributes in
an autoregressive fashion.

We show that i) our probabilistic suffix prediction approach
yields multiple prediction intervals from sampled suffixes and
ii) achieves competitive predictive performance against single-
objective methods. The paper is outlined as follows: Sec.
covers preliminaries, Sec. |III| describes our probabilistic suffix
prediction framework, Sec. m presents the evaluation, Sec. M
discusses related approaches, and Sec. [V concludes the work.
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Fig. 1. Suffix samples of a repair process and histograms of the remaining time and number of repair activities with a 75% prediction interval

II. PRELIMINARIES

This section introduces uncertainty in machine learning,
followed by suffix prediction of business processes.

A. Uncertainty in Machine Learning

ML distinguishes epistemic and aleatoric uncertainties.
Epistemic uncertainty is referred to as “uncertainty due to a
lack of knowledge about the perfect predictor” [14] and is
reducible. There is an ongoing debate regarding how epistemic
uncertainty should be captured, with one possibility being the
use of probability distributions [14]]. Aleatoric uncertainty is
considered irreducible as it stems from inherently random
effects in the underlying data. Aleatoric uncertainty is “ap-
propriately modeled in terms of probability distributions” [14]
and can henceforth be learned in a probabilistic model.

Epistemic Uncertainty using Dropout as a Bayesian Ap-
proximation. Using dropout at every activation layer (or
variants such as drop-connect) in an NN during training
and inference can be a simple and computationally efficient
method for approximating Variational Inference, thereby en-
abling a Bayesian approximation of the posterior predictive
distribution [[12]]. This approach is referred to as Monte Carlo
(MC) dropout because the posterior predictive distribution
p(ylz, X,Y) is approximated via MC sampling, using mul-
tiple stochastic forward passes where at each forward pass,
a dropout mask is sampled from a variational distribution
go(W') and applied on the activations, which approximates
the posterior predictive distribution. In practice, a dropout
mask is often sampled from a Bernoulli distribution z ~
Bernoulli(1—p), where p denotes the dropout probability. The
dropout mask is then applied to the NN’s activations. During
training, applying L2 regularization to the NN parameters 6
corresponds to a Gaussian prior over its parameters, enabling
the overall objective to approximate the evidence lower bound
in Variational Inference.

Heteroscedastic Aleatoric Uncertainty as Learned Loss
Attenuation. Heteroscedastic models assume the observation

noise o can vary with the input 2. This noise o(x) can rep-
resent aleatoric uncertainty arising from inherent randomness
in the data-generating process. The model explicitly quantifies
this irreducible uncertainty by learning o (z). Assuming that
the noise o(z) is normally distributed on an output neuron
[V (x) of the NN, where f"(.) denotes the NN with its
weights W, then the noise can be learned as an additional
output neuron fY(x). Training the standard deviation of a
normal distribution f%¥ () by including it in the loss function
is referred to as learned loss attenuation (see [11]]).

In the case of classification, NNs typically employ the
Softmax function, which already outputs a categorical proba-
bility distribution. However, this probability distribution might
not capture model uncertainties [[I1]. Therefore, means and
variances should also be learned on the predicted logits to
capture model uncertainties.

B. Suffix Prediction

We define an event log EL := {t() ¢t . +(I)} as a set
of cases, where L denotes the total number of cases. A case is
a sequence of events denoted by t(!) := (ey, ey, ..., epr), where
M is the number of events in case [. An event is a tuple of
continuous and categorical event attributes, denoted e,, :
(@con, Geat)- In this work, we assume that an event has at
least one categorical attribute: An event label, which links the
event to a class of event types; and one continuous attribute:
a timestamp attribute, which expresses the time at which an
event happened. A case can be split into several prefix and
suffix pairs. A prefix is defined as p<j, := (e1, e, ..., €), With
1 <k < M. A suffix is defined as sy := (€xt1,..., €M)
Suffix prediction involves predicting a suffix § based on an
input prefix p<.

III. PROBABILISTIC SUFFIX PREDICTION FRAMEWORK

This section presents the probabilistic suffix prediction
framework consisting of the U-ED-LSTM model and the MC-
SA.



A. Uncertainty-Aware Encoder-Decoder LSTM

The U-ED-LSTM implementation comprises the data prepa-
ration, model architecture, and loss functions for training.

Data Preparation and Embedding. Given an event log,
we first apply feature engineering techniques to the events’
timestamp attribute to derive additional features for the U-
ED-LSTM. We introduce a case elapsed time attribute, repre-
senting the time elapsed since the first event in the case, an
event elapsed time attribute, representing the time since the last
event within the same case (with the value set to O for the first
event), a day of the week attribute, and a time of day attribute.
The latter two features are incorporated due to the potential
influence of periodic trends on the future course of a process.
E.g., in a company that operates only on weekdays, when an
activity is completed on Friday evening, the next activity is
unlikely to occur before Monday. We apply standard scaling
to all continuous event attributes, except for the raw timestamp,
and encode missing values as 0. Following [10], we also apply
input padding to facilitate batch training: Each case is padded
with zeros at the beginning to a fixed length, determined by
the maximum case length in the event log, excluding the
top 1.5% of the longest cases. For every categorical event
attribute with K unique category classes, we add an additional
NA (not available) class for missing values and an unknown
class (category class not present in the training data). After
the data pre-processing, all categorical event attributes are
embedded using an embedding layer stack that maps each
categorical event attribute into a vector of fixed dimensionality.
The embedding layer is defined as a learnable weight matrix of
size (K +2)x D, where D = min(600, round(1.6(K +2)°-56))
is the chosen embedding dimension, following a common rule
of thumb [[10].

Model Architecture. The U-ED-LSTM employs an encoder-
decoder (ED) architecture based on LSTMs [15]], similar as in
[7]. LSTMs are well-suited for handling sequential data and
have been proven effective for suffix prediction in business
processes [2]]. Additionally, ED architectures offer flexibility
by decoupling tasks between the encoder and decoder and
by handling different input and output event features: the
encoder can focus on summarizing the prefix and can take
all event attributes as input, while the decoder leverages these
representations to predict target event attributes, e.g., only the
event labels and time features (see [6], [7]). The U-ED-LSTM
implementation allows users to flexibly select the encoder’s
input event attributes, as well as the decoder’s input and output
event attributes. For both the encoder and decoder, we use
LSTMs with stochastic LSTM cells, which apply dropout as
a Bayesian approximation, as in [16]]. Rather than employing
single output neurons to represent either a mean or logit value,
each output is now represented by two neurons: one for the
mean (or logit) and a second for the standard deviation. Fig. 2]
illustrates the U-ED-LSTM architecture during training. Naive
dropout has shown to be ineffective in recurrent NNs such as
LSTMs [[13]]. Therefore, [[13]] have proposed a different dropout
variant in which the same dropout mask is applied across all

time steps in an RNN, referred to variational dropout. We
apply variational dropout in our U-ED-LSTM, indicated by
the colored arrows in Fig.
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Fig. 2. Exemplary U-ED-LSTM model and training pipeline

The encoder processes input prefixes to compress the event
sequence information into a fixed-length representation, known
as a latent vector. More formally, we define the encoder as
a function f%Wene(.), with masked weights sampled from the
encoder’s variational distribution W,,,. ~ qo.,,.(Wene). For
a given input prefix p<y, a latent vector tuple is predicted:
fWene (p<k) = (hg,ci). Thereby, hy and c¢j represent the
last hidden and cell state in the encoder.

The decoder receives at the first timestep the latent vector
from the encoder (hepc,Cenc) and the last event from the
prefix eg. It then updates the latent vector and generates a
new event. At each subsequent timestep, the model uses the
previously updated latent vector tuple and a previous event.
During training, teacher forcing is applied, selecting either
the previous event from the target suffix or the last predicted
event randomly. Then the decoder autoregressively predicts
S events, where S is a predefined fixed sequence length.
Similar to the encoder, we sample the decoders masked
weights from its variational distribution Waee ~ qo oo Wiee)-
For a given time step s = 0,1,...,5 — 1, we define ey as
the current event, (hk+570k+s) as the current latent vector
tuple, and the prediction of the next event and updated latent
vector tuple as follows: fWace (e s, (Rpgs, Chys)) =
(ék+(s+1), (Pkt(s41)> ck(s+1))). A predicted event
consists of the concatenation of all its event attributes.

These can be categorical or continuous, such that
the predicted event is defined as: Epy(s41) =
(LS (s ooy F2 1 (VY AL (), ooos Foni ()}), where D

the number of continuous and K the number of categorical
attributes. The continuous attribute predictions consist of
a mean prediction § and a log-variance prediction ¥cop,
fWace () := (9,Deon). The categorical attribute predictions
consist of a mean [ and a log-variance vector ¥.4¢, Where each
element in the respective vectors represents a mean and a
log-variance value of a categorical class, f/aec(-) := (I, Deat ).
The log-variance is predicted, rather than the variance itself,
to ensure numerical stability [11]].



Loss Functions. To train the U-ED-LSTM, we use two distinct
attenuated loss functions, one for continuous and another one
for categorical event attributes. The loss is calculated for a
batch of N prefix-suffix pair training samples, {pgc, sgﬂ}fil
The continuous loss function is implemented as follows:

Y S o Iter)? 1

£ _ Z Z +(s+ —+(s+ + 7{[)];
con 5 (sl
N X S i=1 s=0 2- exp(vél(s+1)) 2 ( )

(D

For categorical event attributes, we calculate the loss using

MC integration by averaging the cross-entropy loss (CEL) over

multiple samples drawn from the logits distribution. 2 = I+

o €, where ¢, ~ N(0,I). The categorical loss function is
implemented as follows:

N §-1
(4)
Lear = NXSZZ ZCEL Yt s+1)’zk+(s+1)t)
=1 s=0 t=1

2)

The total loss consists of a weighted sum of continuous

losses and categorical losses, weighted by weight coefficient

vectors Weon, and weq: and the Lo regularization term of

the encoder’s and decoder’s parameters (6). The total loss is
implemented as follows:

K
L :waon con + chat cat + A H96n0||2 + ||0d€0||
d=1

3)
B. MC Suffix Sampling Algorithm

The MC-SA draws suffix samples from our U-ED-LSTM.
This algorithm is specifically designed to generate multiple
samples from uncertainty-aware event sequence prediction
methods, such as probabilistic suffix prediction. Unlike time
series forecasting, event sequence prediction is less commonly
addressed in the AI domain. However, it plays a central role
in business process management, which makes the proposed
MC-SA particularly suitable for process sequence forecasting.
It combines dropout as a Bayesian approximation during
inference to take epistemic uncertainty into account and the via
loss attenuation learned probability distributions to consider
aleatoric uncertainty. It is formalized in Alg. [I| and can be
outlined as follows: At each MC trial, a new suffix is
sampled. For sampling a suffix, the prefix is first passed into
the encoder to obtain a latent vector tuple (hene,Cenc). We
apply variational dropout already on the encoder to account
for potential uncertainties in encoding the prefix into the latent
space. The decoder is then employed for sampling a suffix in
an autoregressive fashion. At the first step, the latent vector
tuple and the last event from the prefix are taken as input.
The event attributes of the first event of the suffix are then
sampled, with categorical and continuous attributes handled
differently: For continuous event attributes, the event attribute
values are drawn from normal distributions with the predicted
mean and variance pairs. For categorical event attributes,
the logit values of the individual categories are first drawn
from normal distributions and then passed through a Softmax

Algorithm 1 MC Suffix Sampling

Require: 7" € N: number of MC samples, M € N: max. suffix length to be sampled,
p € [0, 1]: dropout probability, p<j = (e1, ez, ..., ex): prefix

1: function MCSUFFIXSAMPLING(T, M, p, P<k)

2 S0 > Set of sampled suffixes
3 for t =1to T do

4 Ssk () > Current suffix
5: Wene VariationalDropout(We ., p)

6: (henes Cenc) = fineme (p<i)

7: €+ ep

8 i+ 0

9: repeat

10: Wiee 4 NaiveDropout(Waec, p)

11: 6k+17(h c) deec(ev(henc’ccnc»

12: Acon, Geat < €k41

13: for j = 1 to |D| do

14: G, Deon + ald),

15: ald) NN(y,emp(vmn))

16: end for

17: for]—lto\K| do

18: [, Dear a(w)t

19: "gja) ~ Categorical (Softmax (N (I, exp(cat))))
20: end for

21: € < (Gcon, @cat)

22: Ssp < 8> 0€

23: i—i+1

24: until i = M or GetActivity(Gcat) = "EOS’

25: S« SU{ssr}

26: end for _

27: return S
28: end function

function to obtain a categorical distribution. In a subsequent
step, the categorical class is drawn from this distribution.
The autoregressive prediction of the next event continues
until either £OS is predicted or the predefined maximum
sequence length M is reached. The algorithm returns S, a set
of sampled suffixes with size 7. It combines aspects of two
other autoregressive sampling algorithms for time series data,
namely that of [[17], which also uses variational MC dropout on
the encoder and naive dropout on the decoder for sampling the
next timestamp, and that of [[18]], which samples from trained
probability distributions.

IV. EVALUATION

In this section, we first describe the experimental setting,
i.e., how we conducted the training, and which data sets and
hyperparameters we chose. We compared the predictive perfor-
mance of our probabilistic suffix prediction approach against
most-likely suffix predictions from our U-ED-LSTM model
and against two other uncertainty-aware PPM approaches from
the literature. Our implementation and models are publicly
availabld'|

Datasets. We evaluated on one synthetic and three real-life
data sets. The synthetic data set resembles the repair shop
process as depicted in Fig. [I] The data set and its generating
code are available in our repos1t0rym The Helpdeskﬂ dataset
is an event log from a ticket management system from an
Italian software company. The SepsisE] dataset represents the
pathway of patients diagnosed with Sepsis through a hospital.

itory: https://github. P ilisti fixPredictionLab/P ilistic_Suffix_Prediction_U-ED-LSTM_pub

2Hc]pdcsk: https://doi.org/10.4121/uuid:0c60edf1- 6f83-4¢75-9367-4c63b3e9d5bb,
3St:ps|s: https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad- a286- dc35f063a460),
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TABLE I
DATASET PROPERTIES

Dataset ‘ cases ‘ events ‘ variants ‘ event labels ‘ mean-sd case length ‘ mean-sd case duration (days) ‘ cat. event attr. ‘ con. event attr.
Helpdesk 4580 21348 226 14 4.66 - 1.18 40.86 - 8.39 12 4
Sepsis 1049 15214 845 16 14.48 - 11.47 28.48 - 60.54 26 8
BPIC-17 31509 1202267 15930 26 38.16 - 16.72 21.90 - 13.17 9 9
Repair Shop 9896 79 874 16 7 8.07 - 2.14 2.27 - 1.42 1 4

The BPIC-l?E] dataset is a loan application process from
a Dutch bank and has been investigated in the Business
Process Intelligence Competition (BPIC)-17. Properties for
each dataset are presented in Tab. |} The datasets were split at
the case level into training and testing sets using an 80%-20%
ratio, following the approach in [[19]. The training data was
further divided into a training and validation set, resulting in
an overall 65%-15%-20% training-validation-testing data split.
We conducted our evaluation on the test set, starting from a
prefix length of 1, ie., p<x,Vk > 1.

Training and Sampling. We trained our U-ED-LSTM model
on an NVIDIA GTX 4090 GPU. Several training optimization
techniques were implemented: Since sequence-to-sequence
training is more effective than single-event training for suffix
prediction [9], we calculated the loss and optimized the
model using sequences of S 5 events. Using a fixed
sequence length S' performed better in our approach and also
reduced the impact of early prediction errors in the suffix.
Furthermore, we applied teacher forcing (open-loop training),
i.e., selecting either the last predicted or target event as input
for the next event prediction [7]. We set the initial teacher
forcing probability to 0.8, meaning that 80% of the input
events came from the target suffix, and then decreased the
ratio from 20% of the training epochs onward. Since suffix
prediction is a multi-task learning problem involving different
categorical and numerical event attributes, we implemented
a task-balancing algorithm called GradNorm [20]. GradNorm
dynamically tunes the weight coefficient vectors wg,, and
Weqt Of the loss terms after each optimization step based on
the relative importance of each event attribute on the overall
loss. We set the MC dropout rate to a constant value of p = 0.1
and sampled sampled 7" = 1000 times.

Hyperparameter Setting. For each dataset, three different U-
ED-LSTMs with varying hyperparameter settings were trained
and compared. The results are described in detail in our
technical report [21]]. Here we present the hyperparameter
setting of the U-ED-LSTM with the best evaluation results.
We trained the U-ED-LSTM with four LSTM layers for the
encoder and decoder, along with fully-connected layers for the
mean and variance of each output event attribute. All event
attributes were used as input features for the encoder, while
only the event label (i.e., activity) and time attributes (i.e.,
case and event elapsed time) were used as input and output
features for the decoder. The remaining hyperparameters were
set as follows: Both the encoder and decoder have a hidden
size of 128. We used the AdamW optimizer with a learning

4 BPIC-17: https://doi.org/10.4121/uuid:5f3067df- f10b-45da-b98b- 86ac4c7a3 10b

rate of 10~* for the Repair Shop 10~5 for Helpdesk and
Sepsis, and 10~° for the larger BPIC-17 dataset. We used
a batch size of 128, except for BPIC-17, where a larger batch
size of 256 was needed to speed up training. All models
were trained for 100 epochs without early stopping, but with
continuous monitoring of performance on the validation set.
The regularization parameter was set to A = 1074,

Reimplemented Approaches. For obtaining prediction inter-
vals for suffix lengths, we reimplemented the LSTM model
based suffix prediction approach from [5]. Their approach im-
plicitly models uncertainty in predicting next-event labels by
random sampling from the categorical distributions produced
by the LSTM. While random sampling could also be applied
to other suffix prediction approaches, we adopted the approach
of [5f, as they are the only ones who explicitly proposed
random sampling from categorical distributions and evaluated
this scenario. For comparison, we could also consider a beam-
search strategy as in [7]. However, beam search does not
capture uncertainty in the same way as random sampling and
typically generates only a limited number of suffixes (fewer
than ten). Additionally, we reimplemented the uncertainty-
aware LSTM model for remaining time prediction from [16].
This approach was chosen because it captures both epistemic
and aleatoric uncertainties within the same framework pro-
posed by [11] and enables the construction of remaining-time
prediction intervals.

For both reimplemented approaches, we used the same
datasets and data preparation (i.e., preprocessing, splitting,
and embedding), training-related hyperparameter settings (i.e,
optimizer, learning rate, epochs, and batch size), and sampling
iterations (i.e., 1000), as employed for training our U-ED-
LSTM and sampling with our MC-SA. We reimplemented
the full-shared LSTM approach from [35], which employs one
shared LSTM layer, and one LSTM and fully-connected layer
for each predicted event attribute. The input event attributes
include event labels, resources, and case elapsed time, while
the model predicts suffixes in an autoregressive fashion. Unlike
conventional suffix prediction methods, which select the event
label via the arg-max operation on the softmax output, their
approach samples the next event label from the categorical
distribution derived from the softmax function at each step
(random-sampling), thereby implicitly considering uncertain-
ties [[11]]. We reimplemented the LSTM model in accordance
with the specifications provided in [5]], using a hidden size
of 50 and batch normalization as regularization between the
shared and task-specific LSTMs. The reimplemented approach
proposed by [[16] uses two LSTM layers with MC dropout and
learned loss attenuation. The event labels and the case elapsed
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time are used as input as well as predicted output. As the
target, we used the case elapsed time. We reimplemented the
LSTM model with the parameters specified in [16], namely a
hidden size of 10, a fixed dropout rate of p = 0.1, and the L2
regularization parameter A = 0.1.

A. Mean Predictions

We evaluated the predictive performance of point predic-
tions (i.e., mean aggregations) from our probabilistic suffix
samples and compared them against most-likely suffix pre-
dictions obtained from our U-ED-LSTM and against the two
reimplemented approaches from the literature 5], [[16].

Metrics. To evaluate the mean predictions, we adopted three
commonly used evaluation metrics for suffix prediction: The
Damerau-Levenshtein Similarity (DLS) metric to assess the
predicted event labels, also known as activity sequence pre-
diction [5], [ 7], [8[l, [10], [22] and the Mean Average Error
(MAE) of the remaining time prediction [4]], [5], [7], [10].
Previous studies [4]], [S] showed that some suffix prediction
methods struggle to predict the correct suffix length. To
address this, we also evaluated the suffix length prediction by
calculating the MAE. The most-likely suffix prediction was
obtained by auto-regressively generating a suffix by sampling
the most-likely event label at each step until the £FOS token
is reached, similar to other works [4]|-[7]], [9], [10]. The
DLS on the event labels is defined as a normalized DLS
distance DLS(8,s) := 1 — % where s and § denote
the true and predicted sequence of event labels. Informally,
DLS = 1 expresses that the two sequences are identical, while
a DLS = 0 expresses that the two are entirely dissimilar. For
the most-likely suffixes, we computed the DLS by comparing
the prediction to the ground truth suffix. For the probabilistic
column in Tab. [II, we calculated the DLS for each sampled
suffix and took the mean. To obtain the most-likely remaining
time MAE, we calculated both the last case elapsed time and
the sum of the event elapsed times of the most-likely suffix,
compared each with the ground truth remaining time, and used
the better of the two. For the probabilistic remaining time
MAE, we calculated the mean of the last case elapsed time
and the mean of the sums of the event elapsed times across
all sampled suffixes and compared it to the ground truth, and
used the better of the two. For the most-likely suffixes, we
compared their lengths with the ground truth lengths. For the
probabilistic, we computed the length of each sampled suffix,
took the mean, and compared it to the ground truth lengths.

Results. All mean prediction results are depicted in Tab.
An overview of the results and comparisons across different
hyperparameter settings of our approach is provided in a
technical report [21]. For the Helpdesk test data, our model
achieved a DLS score of 0.82 when the most-likely suffix
is obtained and a score of 0.65 when suffix samples from
our MC-SA are aggregated. In comparison, the approach of
[5] achieved a DLS of 0.66 for random-sampling (probs.)
and 0.67 when the arg-max (most-likely) next event label is
used. The results from our approach and from the approach

from [5] are comparable; our technical report [21] shows that
deeper and more advanced models tend to produce the best
results. For the Sepsis test data, our approach achieved only
DLS score of 0.12, while the simpler model of [3] achieved
a better DLS of 0.33 at random sampling and even 0.37 for
the arg-max suffix. For the BPIC-17 test data, our MC-SA
approach achieved a DLS score of 0.31, which outperforms
the DLS score from the most-likely suffixes. The improved
DLS score of the probabilistic approach may be attributed to
the lower MAE in suffix length, as many most-likely suffixes
sampled in this dataset can exceed 50 events. The approach of
[5]] achieved a DLS of 0.11 for random-sampling and 0.1 for
using arg-max. For the Repair Shop test data, the DLS of our
probabilistic approach with 0.75 is slightly lower than that of
the most-likely predictions with 0.85, yet both outperform the
results achieved by the model of [5]. While we also achieve

TABLE I
PREDICTIVE PERFORMANCE

Metric Dataset ‘ Our approach 6] 151
most cob most rob most cob
likely P | likely P% | likely P
suffix event Helpdesk 0.82 0.65 0.67 0.66
iabel% Sepsis 0.11 0.12 0.37 0.33
DLSAT BPIC-17 0.21 0.31 0.10 0.11
Repair 0.85 0.75 0.69 0.67
N Helpdesk 0.36 0.38 0.90 0.65
suffix .
leneth Sepsis 8.80 6.83 1.90 2.82
l\‘/’l‘fE f BPIC-17 | 40.83 1142 4557 45.51
Repair 1.05 1.38 2.10 2.16
remainin Helpdesk 9.10 10.99 11.73 17.50
. & Sepsis 34.50 31.18 29.48 32.12
time (days)
MAE | BPIC-17 10.73 10.62 10.44 12.53
Repair 0.70 0.90 0.97 1.13

reasonable results for remaining time prediction, a notable
finding is that our probabilistic approach can outperform the
most-likely predictions. In contrast, this does not hold for
the model of [[16], where the most-likely predictions even
slightly outperform the probabilistic ones of our approach on
the Sepsis and BPIC-17 datasets. For the Helpdesk test data,
the remaining time MAE is 10.99 days for the probabilistic and
9.1 days, outperforming the results of [|16]. For the Sepsis test
data, our approach reached a remaining-time MAE of 31.18
days for the probabilistic, which is slightly higher, but still
close to the best MAE of 29.48 days achieved by the most-
likely variant of [16]. For the BPIC-17 test data, the MAE was
10.62 days for our probabilistic approach, essentially matching
the best result of 10.44 days from the most-likely variant of
[16].

B. Prediction Intervals

Secondly, we assess the accuracy of prediction intervals
for remaining time and suffix length intervals. For that, we
compared the empirical coverage of the prediction intervals
obtained from our suffix samples with the coverage of the
prediction intervals for remaining time predictions obtained
from the implementation of [[16] and for suffix lengths ob-
tained from the implementation of [5]].
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Prediction Intervals. We used our approach to predict 50%, TABLE III
.. . .. . EMPIRICAL COVERAGES
75%, and 95% prediction intervals of remaining times and
sequence lengths based on the samples obtained from our MC- Metric Dataset | Our approach 116} / 5
SA and compared it with the same intervals that we obtained | 50% 75% 95% | S0% 75% 95%
for the sufﬁ).( ?engt.hs from using the approach from [5]] apd Helpdesk | 091 094 097 | 083 090 097
for the remaining time by using the approach from [16]]. Fig. suffix length Sepsis 037 055 080 | 054 072 093
DT ‘s | BPIC-17 | 047 075 099 | 003 003 004
[3] shows for the individual prefix lengths the average empirical Repair 088 091 098 | 042 042 042
ver measur he pr ion of ground truth suffix
coverages, measu edast e p oportion of ground truth suffixes Helpdesk | 0.65 084 098 | 0.57 087 1.0
contained within the predicted confidence. The plots show that remaining time PSS 064 077 085 | 071 077 081
for all but the synthetic repair shop data set, the empirical BPIC-17 | 047 057 0.94 | 047 076  0.93
y p P ’ p Repair 045 069 096 | 057 072 081

coverage clearly increases with the nominal level, indicating
that our approach can be used to predict multiple levels of
confidence. Our model shows overcoverage for both metrics
on Helpdesk and undercoverage for Sepsis. For BPIC-17 and
Sepsis, the most pronounced undercoverage is shown in the
suffix lengths for small prefix lengths, indicating that the
model predicts EOS tokens too frequently. The aggregated
coverages aggregated across all prefix lengths are shown in
Tab. Prediction intervals are useful for estimating ranges
of possible outcome scenarios, which can provide more valu-
able information than predicting only an expected outcome.
Moreover, when combined with a process model or domain
knowledge, suffix length confidence intervals may allow for
computing count intervals.

V. RELATED WORK

Suffix Prediction. Current suffix prediction approaches focus
on predicting accurate most likely suffixes. The methods differ
in the models used, predicted event attributes, and strategies
to enhance training. Early suffix prediction approaches use
LSTMs [3]-[5], [9]. Predictive performance is improved by
using encoder-decoder LSTMs [6]], [7]. More recent encoder-
decoders are enriched by more complex NN architectures
such as combined General Recurrent Units, Graph NNs, and
attention [8] or transformers [10]. Recently, LLMs have been

used for suffix prediction [22f, facing challenges such as
lack of interpretability or not all prefixes can simultaneously
be passed into a prompt. In addition, existing approaches
can be categorized based on predicted event attributes. Some
approaches predict only the sequence of activities [3]], [8],
[22] and lifecycle transitions [[6]. Other approaches predict the
sequence of activities and time attributes [4]], [7]], [9]], [10], and
resource information [5]. Special training considerations are
applied to improve predictive performance. [7]], for example,
introduce teacher forcing and enhance its encoder-decoder
LSTM with adversarial training to improve performance and
robustness. For testing, [5] try random sampling from cate-
gorical distributions against an arg-max strategy to derive the
best matching activities in a suffix.

Uncertainty in PPM. For remaining time and process out-
come predictions, combined epistemic and aleatoric uncer-
tainty for NNs is applied to PPM by [16]. [23] applies and
compares deep ensemble and MC dropout in attention-based
NN for the next activity prediction. Both approaches aim to
improve single-event prediction performance and show how
uncertainty and prediction accuracy correlate. Most recently,
[24] introduces Conformalized MC dropout, leveraging un-
certainty and conformal predictions to construct prediction



intervals for the processing time of the next event prediction.
However, they do not evaluate their approach on open-source
datasets.

Business Process Simulation. Predicting suffixes can also
be performed via simulation techniques [25]], [26], which are
based on simulation models that can also be directly and au-
tomatically discovered from data. A main difference between
suffix prediction and simulation approaches lies in how to
overall system’s state, e.g., the current resource availabilities
or concurrently running instances, is modeled: Simulation
approaches explicitly model the system’s state, whereas suffix
prediction approaches learn it implicitly, e.g., waiting times in
a simulation model arise explicitly due to resources being busy
or unavailable, whereas in PPM approaches, waiting times
are emulated implicitly through learned patterns [27]. Using
business process simulation approaches to generate suffixes
starting from a given prefix would pose some challenges: First,
the overall system’s state at the last event of a prefix must be
modeled, which may be done by using information from recent
events. Second, the state of the prefix’s process itself would
need to be modeled, which may pose challenges, e.g., when the
control flow is based on a Petri net, replaying the prefix on the
Petri net could yield several possible markings (unless the Petri
net has unique labeled transitions), resulting in multiple possi-
ble starting points for the simulation. The primary advantage of
probabilistic suffix prediction lies in its minimal reliance on
assumptions about the underlying process. In contrast, data-
driven business process simulation approaches, e.g., a control-
flow discovery algorithm, resources’ roles and availabilities, or
activity durations [25]]. On the other hand, due to the explicit
representation of the system’s state, simulation models may
have the potential to provide more exact results.

VI. CONCLUSION

In this work, we propose a probabilistic suffix prediction
approach based on our U-ED-LSTM and a novel, event-
sequence-specific MC-SA. Our approach learns and approx-
imates epistemic and aleatoric uncertainties via MC dropout
and leveraging learned loss attenuation. We demonstrate that
our approach can be used to predict prediction intervals for
multiple objectives based on a single set of sampled suffixes.
Our results show that both the calibration of the approach
with respect to a specific prediction interval and its overall
predictive performance can often be improved. Hence, we aim
to address calibrating prediction intervals and adapt methods
for enhancing the predictive performances. E.g., different NN
architectures, such as transformer architectures, as well as
learning different distributions via loss attenuation, appear
promising. Lastly, we see potential in applying probabilistic
suffix prediction in data-driven business process simulation or
in proactive conformance checking.
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