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Abstract. The outcome of a process e.g., the quality of a produced part,
constitutes a key performance indicator for process analysis and moni-
toring. Process outcomes are not only affected by process data, but also
by data that is not associated with the process logic through decisions
or task input. The rising temperature in a machine, for example, might
cause deterioration of part quality. Assessing the impact of context data
on the process outcome at runtime is particularly useful to reduce the re-
action time to possible errors or deviations. However, as process models
contain loops and decisions, grouping and making context data streams
interpretable is not always straight-forward, especially under the con-
dition that describing dependencies between context data and process
data should be simple and flexible. The contribution of this paper is a
classification of context data types, how they are connected to a process
model, and how process models can be segmented into stages to group
semantically related tasks. The impact of context data on the process
outcome is then determined during runtime, i.e., as a process instance
is progressing through these segments at runtime, impact calculations
using context data can be gradually refined. The approach is prototypi-
cally implemented and applied to an artificial logistics and a real-world
manufacturing data set.

Keywords: Manufacturing Intelligence · Runtime Process Analysis ·

Process Outcomes · Process Context Data · Impact Factors.

1 Introduction

Business processes are specified in the form of process models containing nec-
essary tasks to reach a goal as well as the sequence of their execution. The
process logic typically depends on data elements (e.g., the amount of a loan or
the decision of process actors) that are available in the process. While tasks im-
plementing a database access typically only receive data that can be utilised in
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the process logic as a whole, tasks such as starting a machine and waiting for
the machine to finish typically receive raw machine telemetry data that is dis-
carded as it is not important for the process logic. Explicitly dealing with such
telemetry data in the business logic is often not desirable (even to implement
standardised data collection), as it complicates the process models and makes
them much harder to maintain and improve. Another category of context data,
is data that is never part of the process execution, but instead exists entirely
outside of the scope of any process model. For example a hardware tempera-
ture sensor might continuously collect data while a machine is running, but the
resulting data stream is never connected to a particular process instance.
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Fig. 1: Sample Process With Data Streams Collected During Process Run

Figure 1 shows a sample process from the manufacturing domain, which waits
for (a) the machining of a part, (b) measurement results of a laser based optical
micrometer, and finally (c) the tactile measurement results. While (a) from the
perspective of the process is just about waiting until the task is finished, it yields
gigabytes of data from the machining process itself and additional power and
temperature measurement sensors. (b) on the other hand collects measurement
information, that could be used for early termination of the process, but addi-
tionally gathers information about the temperature of the produced part. A part
being too hot or too cold can have a serious impact on measurements, although
this is not considered in the process. With (c) finished, a machined part as well
as a detailed report about its quality is available. This is referred to as process
outcome. Individual data streams (e.g., machining, power, temperature) are
not part of the data flow, but nonetheless are important when reasoning why a
certain outcome has been reached. Hence, data streams can be considered as
impact factors for quantifying the process outcome.

Online (runtime) analysis of impact factors has the potential to predict out-
comes, thus holding the possibility for optimising production processes regarding
time and quality. Furthermore, analysing processes during their execution in-
stead of ex-post enables to utilise information from unfinished process instances
running in parallel. Another important aspect when dealing with impact factors
is relevance. Not all impact factors might contribute equally to the quantification
of the output. In previous work [2], first ex post analysis means for impact factors



of process outcomes based on annotating the process model is provided. How-
ever, methods for determining the importance of individual impact factors at
runtime are missing. We tackle this research gap based on the following research
questions:

– How can relevant impact factors be found in an online setting where process
instances are only partly executed? How can we deal with decisions and
loops?

– How does the completion of a trace including its outcome contribute to the
confirmation or contradiction of the determined impact factors?

– How does the order in which traces are completed influence the certainty of
the determined impact factors? How can this be used to reorder the traces
to achieve a higher certainty in a faster way?

To tackle the above research questions, we introduce stages as a means to
group tasks and their impact factors. Based on comparing information between
stages of different instances we present static stage clustering and dynamic stage
analysis approaches to predict the process outcome.

In order to evaluate the concepts presented in this paper, two data sets are
analysed: (1) a synthetic simple logistic data set that comprehensibly demon-
strates the main concepts, and (2) a real-world manufacturing data set with a
multitude of sensors and high velocity machining data, that shows how complex
multi-faceted data streams can be handled.

The remainder of the paper is structured as follows: Sect. 2 introduces funda-
mentals, Sect. 3 presents the approach, and Sect. 4 delves into how the clustering
of impact factors can be realised, and how forecasts can be achieved. The ap-
proach is evaluated in Sect. 5 and the results are discussed in Sect. 6. Finally,
related work is shown in Sect. 7 and the paper is concluded in Sect. 8.

2 Context Data Fundamentals

In general, impact factors are determined based on data that is available in the
process. This data can stem from different data sources and ranges from data
determining the control flow of the process to independent sensors measuring
data streams that can influence the process. To handle these different types,
context data probes are introduced to abstract from the underlying type of
data when determining impact factors.

2.1 Context Data Probe Types

To track data in a process, different types of data probes can be distinguished
(cf. Fig. 2):

(1) Intrinsic Context Data Probes (cmp. a in Fig. 2) describe data col-
lected inside the process where an intrinsic motivation to obtain this data



exists stemming from the execution semantic of the process (i.e., a data ele-
ment that is used to make a decision in the process or gives the termination
condition for a loop). In literature this is often referred to as “process data”
or “data elements”.

(2) Extrinsic Context Data Probes (cmp. b in Fig. 2) describe data pro-
vided by tasks enacted in the process, but not manifesting in data elements of
the process. Examples include tasks that interact with a machine or worklist
where data is returned to the process.

(3) Discrete Context Data Probes are directly connected to the continuous
stream of data from external sources not used in tasks of the process. Ex-
amples include data from temperature sensors or twitter feeds which might
influence the execution of the process. Two different types exist:
• Instance Based Discrete Context Data Probes (cmp. c in Fig. 2)

track the continuous data stream during the whole execution time of the
instance. This allows for the collection of data streams from continuous
data streams not connected to any of the tasks in particular but possibly
being able to influence the process instance during its runtime.

• Task Based Discrete Context Data Probes (cmp. d in Fig. 2) only
track the continuous data stream during the execution of a specific task.
This enables collecting parts of data streams from autonomous sources
that only have an influence when certain operations are performed.
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Fig. 2: Types of Data in the Process Context

2.2 Impact Factors and Impact Profiles

This section explains impact factors and profiles as introduced in [2] and de-
picted in Fig. 3. Data probes produce homogeneous data streams, which are



then aggregated. This can happen either with simple (avg, median) or complex
domain specific aggregation functions depending on the use case, similarly to
calculating key performance indicators, cf. [7]. An impact factor itself can be an
aggregation, e.g., inside a machine the temperature might be taken at various
locations to account for local heat build-up. The impact factor combines the
data from all temperature sensors. Finally, different impact factors are weighted
and combined to form profiles. Profiles can either exist for individual tasks or at
the instance level.

How to derive the weights between impact factors is one of the contributions
of this paper, and will be explained in detail in the next chapters. It is assumed
that there is a notion of good or bad outcome: i.e., in a manufacturing process,
after quality control it is known if a part is good or bad. We can thus summarise
that the following domain specific input to derive impact profiles is necessary:

– A superset/list of data streams which might potentially influence outcome.
– A function how to aggregate each homogeneous data stream.
– A function how to aggregate one or more data impact values (even if the

values e.g., derive from different sensor types).
– A set of impact factors that contribute to an impact profile.
– A binary notion of process outcome: good/bad.

The weights for the impact profile function are then calculated in a way so
that good parts yield a result that tends towards 1 and bad parts 0.

Data Probe 

Aggregator(Data Stream) 

Impact Function(IV₁ ... IVₙ) 

Impact Profile Function(IF₁ ... IFₙ)X

Impact Value (IV)

Impact Factor (IF)

Task Impact Profile (TIP) or
Process Impact Profile (PIP)

Data Stream1

2

3

4

Context Data Example Temperature, Vibration

1.5°C,  1.7°C, 1.8°C, ...

Average: 1.66°C

Median (Sensor₁..Sensorₙ): 1.15°C

Quality (Temp.*0.5 + Vibr.*0.8): 0.5
(0..1 min/max normalized)

Fig. 3: Impact Profiles and Related Concepts

3 Runtime Context Data Analysis

The fundamentals of context data as used in this paper are explained in Figs. 2
and 3: (a) which data types can occur in the process context and (b) how to
handle data streams that are collected during process execution. Figure 4 shows
a concrete example of a process in the manufacturing domain where external
data is collected in some tasks. Individual data streams can then be aggregated
and combined as outlined in Fig. 3 and performed in the example in Fig. 4
where different ways of building impact factors from data streams are shown.
The impact factors are then used in further steps of the approach.
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Fig. 4: Running Example Process

3.1 Comparing Process Instances - Stages

During runtime, a multitude of process instances might be active and in different
states of their execution. An execution state is defined by the set of tasks that
are currently executed. As the definition of impact factors depends on the tasks,
the different execution states result in a varying number of impact factors for
the currently active process instances. This can aggravate the comparison of the
impact factors over a set of process instances. Hence, we suggest the usage of
stages that reflect certain execution states in a process and enable to cluster
the running instances along these states. Figure 4 depicts the running example
process with three stages reflected by boxes.

Stages are especially important when process models allow different be-
haviour for individual instances. For example, a manufacturing process might
skip steps or run through certain steps in a loop, e.g., for iterative refinement of
certain aspects that require constant adaptation of manufacturing parameters.
Obviously, only process instances being in the same stage can be compared as
different control flow behaviour can affect the collected data. However, even with
different process models (e.g., different versions of a process), similar process in-
stances might be comparable if they share certain stages.

Stages are user defined at the process model level, and consist of one or
several tasks, based on semantic affiliation of included data (e.g., same source,
collected in same step)3. If, for example, one overall machining operation consists
of multiple tasks which represent different machining programs applied on a
single piece of raw material, and supervised by a set temperature and vibration
sensors, they can be grouped in a stage by the process designer. At the process
instance level, a stage is complete, when all tasks contained in the stage have been
completed. This constitutes a trigger point for (a) forecasting the next stage, and
(b) refining the forecasting data set for the finished stage (see Sect. 4.2).

3 In future work, we aim at the automatic definition of stages based on process ab-
stractions [9] or inspired by automatic approaches such as [6].



Predicting how an upcoming stage might contribute to the outcome depends
on one or several stages that have been already finished. When analysing the
data modified in finished stages, two types of data can be identified.
Static Stage Clustering: If data points in a set of stages are similar, they
can be grouped. Future stages of instances being in the same groups might also
contribute to outcome similarly. Therefore instances with such static stages are
clustered (see Sect. 4.1 on how a data stream is analysed to cluster instances).
Dynamic Stage Analysis: If a process instance has new data points compared
to instances that are in an earlier stage, the difference constitutes a potential
progression an early-stage instance might take. An outcome prediction based
on this potential progression is possible when comparing instances which are in
different stages (see Sect. 4.2).

4 Realisation

Two techniques are employed to realise the introduced concepts, i.e., clustering
and refinement of the importance of impact factors when a process instance
progresses from one stage to the next one.

4.1 Clustering

Data streams need to be grouped to find out which ones are important for the
outcome of a process instance. Without results from earlier process executions it
is necessary to identify the streams being similar for “normal” process executions
and others deviating from the norm. During clustering, points being close to
each other based on a distance metric are grouped. This grouping is utilised by
assuming that data streams that can easily be clustered are more important for
the outcome. Therefore, the following steps are performed:

p r o c e s s i n s t an c e = ( (DS,A)+,IFU) *) # each process instance contains a l l
impact f ac tor ( IF) d e f i n i t i on s cons i s t ing of data streams (DS) ,
aggregat ions (A) , and impact funct ions (IFU)

poss ib l e DS combinat ions = a l l p o s s i b l e combinations o f data streams

for DS set in poss ib l e DS combinat ions
a l l I F l i s t s =[ ]
for p r o c e s s i n s t an c e in a l l p r o c e s s i n s t a n c e s

I F l i s t =[ ]
for ( (DS,A)+,IFU) in p r o c e s s i n s t an c e

i f ( (DS,A)+ con t a i n s a l l DS o f DS set )
I V l i s t =[ ]
for (DS,A) in (DS,A)+

IV = aggregate (DS,A)
IV l i s t . push ( IV)

IF = c r e a t e impa c t f a c t o r ( IV l i s t , IFU)
I F l i s t . push ( IF )

a l l I F l i s t s . push ( I F l i s t )
params = dete rmine c lu s t e r ing params ( a l l I F l i s t s ) # kNN p lo t
c l u s t e r a s s i gnment = bu i l d c l u s t e r s ( a l l I F l i s t s , params ) # assign

c l u s t e r to each process ins tance using DBSCAN
for c l u s t e r in c l u s t e r a s s i gnment

c l u s t e r q u a l i t y ( a l l I F l i s t s , c l u s t e r ) # s i l h ou e t t e va lue
add l i s t o f a s s i gned c l u s t e r s & th e i r qua l i t y to each p r o c e s s i n s t an c e

Algorithm 1.1: Static Stage Clustering



Looking at the running example (Fig. 4), two temperature based impact
factors and two impact factors based on the diamater are available. Therefore, a
process instance is assigned to two clusters (one for the temperature data streams
and one for the diameter data stream). The concrete clustering technique is not
important for the general idea. However, as different techniques require different
information to perform them, two techniques are considered for this paper:

– The k-means algorithm, following the argumentation in [3], is a well explored
approach. On the flip side, it requires the number of clusters (and their
initial centre points) as input. Using this clustering technique for finding
similar data streams is therefore difficult as it is not known beforehand how
many clusters should be found as stream data can show a multitude of
different behaviours. Even with methods existing for determining the number
of clusters, this technique is not suitable for the intended purpose.

– The DBSCAN algorithm [8] finds clusters based on the distance between data
points. These distances are used to determine which points form a cluster and
which are too far apart. Therefore, it is not necessary to provide the number
of clusters as input. However, the epsilon value needs to be provided which
defines the neighbourhood of points used for finding points being in the same
cluster. This value can be found using a k Nearest Neighbours (kNN) graph
if no value from expert knowledge is available.

Based on these considerations we opt for the DBSCAN algorithm. Concerning
a quality measure for the whole clustering as well as for individual clusters, the
silhouette value is used. The silhouette value can be calculated for each data
point and is between −1 and 1. Low values are obtained if points from other
clusters are closer than the ones of the same cluster and high values are gained if
the point is close to points from its own cluster. Therefore, the silhouette value
of a cluster or of all points gives an idea of how close data points are to other
points in the same cluster (i.e., how well clustering works).

4.2 Stage Progression

All steps described before are performed in one go where some data streams are
already available while other information is not. The final step of the approach
presented in this paper is to have individual instances progress in their execution.
Two cases exist: for a stage where some instances already have impact factors
/ data clusters, a forecast for the outcome of the stage can be derived. For
stages, where this is not the case, forecast is not possible. The information about
available clusters is used (as described in Alg. 1.2) to determine the overall score
of a process instance (representing the impact profile) taking into account the
importance of different impact factors and their values for the specific instance.



p r o c e s s i n s t an c e = ( (DS,A)+,IFU) * , c l u s t e r a s s i gnment ) #
process ins tances add i t i ona l l y contain t h e i r c l u s t e r assignment

poss ib l e DS combinat ions = a l l p o s s i b l e combinations o f data streams

for DS set in poss ib l e DS combinat ions
for c l u s t e r in c l u s t e r s

s t a t v a l u e = g e t s t a t i c v a l u e ( c l u s t e r )
i f ( c l u s t e r in c l u s t e r a s s i gnment )

dyn value = get dynamic va lue ( c l u s t e r )
upda t e o v e r a l l s c o r e ( s t a t va lu e , dyn value )

Algorithm 1.2: Dynamic Stage Analysis

As also described in Sect. 4, the static value of stages is obtained by using the
silhouette value of the corresponding cluster based on the group of unfinished
process instances. The dynamic value, is based on already finished process in-
stances. Therefore, the share of positive outcomes of the corresponding clusters
represents the dynamic value and is combined with the static value to determine
the value added to the overall score for determining the outcome of the examined
process instance.

5 Evaluation

5.1 Settings

One evaluation scenario is a manufacturing process where a part is produced by
a machine tool and afterwards measured twice. Data about the manufacturing
process is therefore collected (1) during the manufacturing of a part, (2) during
the fast, but imprecise measurement directly after the manufacturing of a part,
and (3) during the slow, but precise measurement of the part performed indepen-
dent of the manufacturing of a part. Parts being taken out of the machine can
have a metal chip from the machining on it requiring special handling. After the
production step, process instances of the manufacturing process are in a stage
where all data (i.e., machining and the fast, but imprecise measurement data) is
already collected, but the outcome (i.e., chip occurrence or quality control test
result) is still unknown. The data streams used for the evaluation are the work-
load of the drive (aaLoad) and the axis speed (aaVactB) for the X, Y, and Z axis
together with the actual speed of the spindle (actSpeed) and the workload of the
spindle (driveLoad) from the machining of the part and the measurement values
from the fast, but imprecise measurement which measures the silhouette of the
part. For all of these values the minimum, maximum, average, and weighted av-
erage (which tries to tackle irregular machine tool measurements) are used to get
characteristic values of the timeseries for clustering. Furthermore, the weighted
average of an important segment of the fast, but imprecise measurement is used
for determining the outcome of a quality control test.

Another data set used for the evaluation is adapted from a realistic container
transportation case described in [1]. The process includes the loading of a ve-
hicle which afterwards moves towards its destination. During this journey, the
temperature is constantly measured. When the temperature is beyond a certain



point for a certain period of time, the vehicle has to return to its origin. Oth-
erwise it continues towards the destination where the container is unloaded. As
this process only contains one data stream that is measured (i.e., the temper-
ature) it was decided to additionally use the temperature of each third of the
measurement interval as an individual data probe (resulting in 4 data probes)
to showcase the approach. Again, minimum, maximum, and average are chosen
for obtaining values for clustering the time series. The outcome of the process is
defined by normal cases and exceptional cases (i.e., cases where the vehicle has to
return to its origin). The process instances are in a stage where the temperature
is already measured. However, it is not known if the vehicle has to return to its
origin (negative case) or if it is able to stay on the route to its final destination
(positive case).

5.2 Evaluation Process

As described in Sects. 3 and 4, the first step of assessing the impact factors of data
streams on process outcomes during runtime is to obtain the static characteristics
by clustering traces based on the available data. This is done individually for each
data stream meaning process instances are clustered multiple times (i.e., once
per data stream). The DBSCAN clustering algorithm is used because the number
of clusters is not previously known. The epsilon value (needed for performing
DBSCAN) is determined using kNN plots and finding the elbow in the graph.

Clustering provides a silhouette score describing how close data points in one
cluster are together compared to other clusters. The silhouette value can be given
for the overall clustering result of a data stream as well as for individual clusters.
As explained in Sects. 3 and 4, clusters sticking closer together are assumed to
also be more important impact factors for the outcome of a process.

The first example from the manufacturing scenario is shown in Fig. 5. Here,
the outcome is represented by the occurrence of a chip on the part. Figure 5a
shows the development of the importance of data streams for the outcome af-
ter the specified number of process instances have been continued (therefore
considering the static characteristics as well as the change of the dynamic char-
acteristics of different data streams). Obviously, the imprecise measurement is
the most important impact factor for this outcome. The development of the
overall score of process instances based on static and dynamic characteristics is
shown in Fig. 5b. The scores of process instances with positive (i.e., no chip on
the part) and negative (i.e., chip on the part) outcomes differ from a certain
point on. This is depicted by green (positive outcome) and red (negative out-
come) boxplots for different numbers of finished process instances. Lower scores
signal a negative outcome while higher scores signal a positive outcome.

However, it is also important to get to a point where cases can be distin-
guished as fast as possible (i.e., by having to finish as few process instances as
possible). The approach presented in this paper selects the next process instance
up for continuing execution based on the clusters to which the data streams are
assigned by choosing the one having the overall highest impact. In contrast to
this strategy, continuing the execution of process instances randomly (Fig. 5c)
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Fig. 5: Chip Occurrence in Parts of Batch 15

or always choosing the one with the lowest overall impact (Fig. 5d) leads to
different behaviour. It can be seen that process instances with positive outcomes
can be distinguished from ones with negative ones at an earlier point in time
(approximately after 15 process instances have been finished) when choosing
process instances with high impact for execution as shown in Fig. 5b in contrast
to different ordering techniques as shown in Figs. 5c and 5d. Additionally, the
order of process instances can be chosen before any process instances are starting
to continue or it can be adapted each time another process instance finishes and
therefore more information is available. However, this difference is not discussed
due to shortage of space. If not specifically described otherwise all following fig-
ures show the approach when the most impactful process instance is chosen and
continued after the previous process instance has finished.

Using the same data set as above, but another outcome (i.e., the passing of
a specific quality control test) leads to the results shown in Fig. 6. For batch 15
positive and negative outcomes are not clearly distinguishable (see Fig. 6b) and
no data stream clearly important for the outcome can be found (see Fig. 6a).
However, for batch 14, the overall score of individual process instances can be
used to distinguish between cases with different outcomes (see Fig. 6d). Fur-
thermore, it can be seen in Fig. 6c that even if no single important data stream
can be identified, there is a group of data streams (actSpeed, aaLoad Z, and
aaVactB X) being more important than the other ones.

Using the logistics data set for the evaluation leads to the results shown
in Fig. 7. Figure 7a shows the development of the impact factors of the data
streams that are chosen for the logistics data set as given in the scenario de-
scription. Furthermore, Fig. 7b shows that the overall score of process instances
with a positive outcome (i.e., normal cases) achieve higher values than ones with
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Fig. 6: Quality Control Test Result in Parts of Batch 14 and 15

a negative outcome (i.e., exceptions) after the initial information gained from
clustering is refined by executing additional traces (i.e., about half the process
instances have been executed). However, as with the last example, no single data
stream can be highlighted as most important.
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Fig. 7: Completion of Route for Logistics Use Case

Overall, the evaluation shows, that it is possible to identify the importance of
different impact factors for outcomes of a process at runtime. Using the identified
influence of the impact factors on the outcomes allows to calculate an overall
score. The approach is evaluated using different domains and shows its appli-
cability by making it possible to distinguish between process instances with a
positive outcome and ones with a negative outcome after the initial importance
of impact factors has been refined by finishing some initially unfinished process
instances. The evaluation also shows that the order in which traces are finished
has an effect on how early different outcomes can be identified.



Code and data used for the evaluation along with instructions how to use
it is available on gitlab 4. The manufacturing data is based on the process logs
available at cpee.org 5 6. The logistics data is based on the case described in [1].

6 Discussion

The evaluation shows that impact factors along with their influence on the out-
come can be found. However, supposing that the order in which process instances
are continued can be freely defined, the question emerges how the determination
of impact factors can be sped up. A possibility is to reorder process instances
such that always the one for which the data streams are assigned to the most
promising clusters is continued next. As shown in the evaluation this allows
to faster distinguish between process instances having a positive/negative out-
come. The order can be set either before executing any process instances or
it can dynamically change each time new information is available (i.e., when a
process instance is continued). This also has implications for real-world applica-
tions. In the manufacturing domain it might be necessary to know the order in
which parts should be measured beforehand. For static processes this cannot be
adapted. However, more dynamic processes which allow to adapt processes based
on new insights may support changing the order during the process. An example
for a static scenario where the order in which process instances are executed has
to be known beforehand would be a robot taking parts from a conveyor belt
in the order in which they have been placed. In contrast to this, a robot which
picks parts from a tray based on the information available in the process only
needs the information which part to pick right before picking.

Concerning the data set of the manufacturing process, two batches are used
for the evaluation. One is used to evaluate the described approach for finding
impact factors and their importance for two different outcomes (i.e., occurrence
of a chip and passing of a quality control test). The other one is used to perform
the evaluation for passing a quality control test with different data and the
results are compared to each other for validation. The logistics data set is used
to show that the approach is applicable to multiple areas where data inside a
process is measured over a time period. Another area matching this description is
the medical domain where process instances correspond to the treatment of one
person and different data such as the temperature or the blood pressure of the
patient is measured multiple times. Other domains where the impact of different
data streams on the outcome should be determined could also be suitable.

As discussed, the presented approach has certain limitations regarding the
scenario. To use the knowledge gained from process instances being slightly
ahead of others it has to be possible to intervene in the latter ones. This al-
lows to use information gained from further advanced process instances to adapt

4 https://gitlab.com/me33551/runtime_impact_factor_assessment [Online; ac-
cessed 12-Aug-2021]

5 https://cpee.org/~demo/DaSH/batch14.zip [Online; accessed 12-Aug-2021]
6 https://cpee.org/~demo/DaSH/batch15.zip [Online; accessed 12-Aug-2021]



process instances which are similar to improve the outcome or at least be pre-
pared for formerly unexpected events. However, this does not necessarily mean
that process instances influence each other, it is just about identifying similar
instances to improve prediction of the outcome. Regarding the complexity of the
proposed algorithms, Alg. 1.1 analyses each instance for every combination of
data streams which may lead to long execution times for big data sets with many
data streams. Algorithm 1.2 is also depending on the number of possible data
stream combinations (but only once because instances progress individually).

Future work will deal with how stages are best defined and if there is a way to
identify them automatically instead of manually. Furthermore, the composition
of impact factors based on data probes needs to be developed towards the direc-
tion of finding meaningful combinations instead of needing domain knowledge.

7 Related Work

Recently, process mining and predictive process monitoring approaches have
started to consider and analyze process perspectives beyond control flow, in-
cluding process data [5]. Also external data such as time series data is exploited
for detecting concept drifts during runtime [10]. In contrast to these approaches,
this paper tries to determine how much impact data streams collected during the
process have on the outcome. The survey presented in [11] compares different
outcome-oriented predictive process monitoring techniques. However, existing
approaches do not consider the impact of continuous data streams from external
data sources on the outcome of the process. Anomaly detection for manufactur-
ing systems based on sensor data is, for example, tackled by [4]. However, the
process aspect and particularly the impact of the sensor streams on the process
outcome are not considered. [7] defines an ontology for process performance indi-
cators (PPIs), together with templates and patterns. The PPIs can be defined to
aggregate observations in the process. This constitutes valuable input for aggre-
gating impact factors after being transferred to work on external data streams.
[6] presents an approach to find stages in a process by automatically maximising
the measure of modularity which describes a high density of connections within
a stage and a low number of edges between stages. However, [6] only considers
the control flow of processes. Therefore, external data which is important for the
definition of stages, is not taken into account. The definition of stages is also
connected to process abstractions. A survey on process abstractions is provided
in [9], also discussing why, when, and how abstraction is applied. For this paper,
abstraction supports the focus on the data perspective. The abstraction is done
by identifying tasks containing data streams applying to the same abstract steps
of the process and group them together in one stage.

8 Conclusion

Knowing the outcomes of process instances while they are still executed bears
advantages for process operators. This paper presents an approach to assess the



impact of data streams on process outcomes during runtime. Clustering individ-
ual data streams allows to determine the initial importance of different impact
factors i.e., their share in influencing the outcomes. This is initially only based
on the available data from unfinished process instances. Afterwards, process in-
stances being continued are used to refine the initial assessment. Furthermore,
it is shown that when the reordering of traces is possible, it is beneficial to finish
process instances where the data streams belong to clusters that are promising
candidates for important impact factors.

To answer the research questions three concepts are presented in this paper.
Firstly, in order to reduce the complexity of a high number of process instances
being executed until a certain task, stages are used to support the comparison
between different instances that are comparable regarding the collected data.
Secondly, static characteristics of impact factors for the process outcome are used
to describe their maximum impact on the outcome. Thirdly, dynamic character-
istics are used to deduce the actual impact of different factors on the outcome.
In contrast to static characteristics which are determined only with unfinished
process instances and stay the same, dynamic characteristics are adapted based
on the actual outcomes of process instances finished over time.

The approach presented in this paper is evaluated using two batches of a real-
world data set from the manufacturing domain including multiple data streams
as well as one data set from the logistics domain to show the applicability of the
approach for other domains where continuous data streams are included.

References

1. Dunkl, R., Rinderle-Ma, S., Grossmann, W., Fröschl, K.A.: A method for analyzing
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