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Abstract. Decision mining enables discovery of decision rules guiding
the control flow in processes. Existing decision mining techniques deal
with different kinds of decision rules, e.g., overlapping rules, or includ-
ing data elements, for example, time series data. Though online process
mining and monitoring are gaining traction, online decision mining al-
gorithms are still missing. Decision rules can be, similarly to process
models, subject to change during runtime due to, for example, changing
regulations or customer requirements. In order to address these runtime
challenges, this paper proposes an approach that i) discovers decision
rules during runtime and ii) continuously monitors and adapts discov-
ered rules to reflect changes. Furthermore, the concept of a decision rule
history is proposed, enabling (manual) identification of change patterns.
The feasibility and the applicability of the approach is evaluated based
on three synthetic datasets, BPIC12, BPIC20 and sepsis data set.

Keywords: Online Decision Mining · Decision Rule Evolution · Decision
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1 Introduction

Process mining enables process discovery, conformance checking and process en-
hancement [1]. An important part of process discovery is decision mining, provid-
ing techniques to discover decision points in processes as well as the underlying
decision rules guarding that decision based on event logs [6]. Process and decision
mining are increasingly gaining traction as transparency and standardization be-
come more and more important across different domains [5]. Existing decision
mining approaches [7, 8, 11, 14] operate in an ex-post way, i.e., by analyzing event
logs after the process instances have been completed. Recent process mining re-
search focuses on online process mining, for example, online process discovery
[2], online sensor stream analysis [3] or online concept drift detection, i.e. de-
tecting control flow changes during runtime, see for example [17]. However, to
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the best of our knowledge, neither runtime decision mining algorithms nor al-
gorithms to detect and monitor decision rule evolution, independent of control
flow changes, exist. Hence, this work focuses on discovering decision rules dur-
ing runtime and updating decision rules if changes occur in the process or the
process environment. Such process or process environment changes include:

– Available data: Internal process data i.e., data attributes available in the
event log such as patient age in a medical scenario, as well as external data,
that can be mapped to process events, e.g. sensor data, has changed or addi-
tional data has become available. Examples comprise newly installed sensors
and varying ranges of measured values in a workpiece within the specified
tolerance range. Being able to adapt existing decision rules to additional
information can lead to more comprehensive decision rules.

– Seasonal or cyclical changes: For example seasonal price adaptations in the
tourism domain that are not specified as a data element.

– Environmental changes: Decision rules reflect business or objective rules
based on, e.g., regulatory documents. The underlying rules might change
over time, e.g., new regulations occur or customers change their require-
ments, resulting in an evolution of the corresponding decision rule.

If changes are not taken into account, outdated rules might drive decisions
in running process instances, no longer reflecting, for example, state of the art
parameters or current regulations.

Fig. 1. Running example: loan application (modeled using Signavio©).

Consider the loan application process as depicted in Fig. 1. A customer ap-
plies for a loan. There are three levels of scrutiny: simple, normal, and extensive.
Assume that the levels depend solely on the amount that is applied for as re-
flected by the following decision rule:
IF amount loan <= 20.000 THEN Simple
IF amount loan > 20.000 AND amount loan <= 80.000 THEN Normal
IF amount loan > 80.000 THEN Extensive
During execution, regulations might change, resulting in a lower limit for an
extensive check, i.e, an amount greater than 50.000.
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A comprehensive decision mining and monitoring approach would mean to i)
discover the first version of the decision rule when the loan process starts to be
instantiated and executed based on the event stream emitted during process exe-
cution (7→ RQ1), ii) monitor and update the rule when the rule evolution comes
into effect, again based on the event stream (7→ RQ2). In order to tackle RQ1
and RQ2, this paper proposes a novel algorithm to discover decision rules during
runtime. It takes an event stream as input and determines the current decision
rule as output. The algorithm uses windows that adapt according to the current
performance measured by the F1 score. The different versions of a decision rule
discovered during runtime are stored in a decision rule history. The decision
rule history can be exploited for further analysis, e.g., to discover patterns in
the decision rules such as seasonal variations. Three scenarios for decision rule
evolution during runtime are described and the corresponding synthetic data
sets are used for evaluating the feasibility of the approach. In addition, three
real world data sets are used to evaluate the applicability of the approach.

Section 2 describes the decision mining and monitoring algorithm, which is
evaluated in Sect. 3 and discussed in Sect. 4. An overview of related work is
given in Sect. 5 and a conclusion is provided in Sect. 6.

2 Decision Rule Mining and Monitoring

During runtime, process instances are started and executed based on a process
model that consists of control and data flow. The execution history is stored in
the associated process event trace. Each trace is signified by a unique id and
constitutes a sequence of events that reflect the execution of process tasks. The
order of the activities is reflected by timestamps in the process event log. Events
can hold additional information, i.e. data elements. An event stream contains the
same elements as an event log. However, whereas an event log is finite (i.e., no
more events are incoming) and complete (each trace has a start and end event),
an event stream constitutes a continuous flow of events produced by process
instances, with no specific start or end [17].

The decision mining and monitoring algorithm (DMMA) proposed in this
work uses an event stream as input, with new instances being executed continu-
ally. We assume a predefined decision point DP in the underlying process model.
DP could be discovered in a previous step using (online) process mining. At the
start of the DMMA, no data and no decision rule are available. Hence, a grace
period is implemented, where data is gathered, but not analyzed yet. As soon as
the grace period has finished, a decision rule for DP is mined and added to the
decision rule history which holds all discovered versions of a decision rule (cmp.
process model history as proposed in [17]), formally:

Definition 1 (Decision rule history). Let P be a process model with a de-
cision point DP. The decision rule history RHDP :=< R0, R1, . . . Rk > for DP
constitutes a list of discovered versions Ri := (ni, pi, li) for the decision rule R
connected to DP (i ∈ N). ni denotes the number of instances active at the point
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in time when Ri was discovered, pi the performance of the algorithm for Ri, and
li a link to the textual description of Ri. Rk denotes the current version of the
decision rule for DP.

The decision rule history RHDP is updated continually, i.e., as soon as a new
decision rule version is mined. In addition to the rules itself, the history includes
the number of instances a specific rule was in place as well as the mean perfor-
mance. We opt to store the decision rules textually to enable manual analysis.
Note that in a process with multiple decisions, multiple decision rule histories
might exist, each one covering decision rule versions for a specific decision point.

In the DMMA, a decision rule version Rk is mined and continually checked
if it still aligns with new process instances. The window size determines the
point in time to check the current rule. The alignment is assessed based on
the performance, measured using the F1 Score, i.e., the ability of the rule to
accurately classify new instances. If the rule is able to achieve a high performance,
the window size is increased. If the performance drops below a certain threshold,
i.e. the remining criterion is met, we assume that either the underlying data or
the underlying rule has changed, and therefore the rule has to be remined which
is then added to the decision rule history. If the remined rule is still not able
to accurately classify new instances, the window size is decreased and increased
in parallel for the next iterations to check which leads to more performant rule
versions. The DMAA continues until no new process instances occur.

The pseudo code for DMAA is provided in Alg. 1. Input parameters are upper
limit, lower limit, increase size, threshold, and step size (all parameter values in
[0,1]). The upper limit up marks the point at which the performance of a rule
version is seen as robust. On the contrary, the lower limit low is the threshold
where the current version is not assumed to be robust anymore. The threshold
t is used when deciding if the difference in F1 Score of the current (Rk) and the
previous version (Rk−1) is significant. The increase i defines the percentage the
window size is increased by if the rule version is robust, whereas the step size
s defines the percentage by which the window is increased/decreased to find a
new appropriate window size. In addition, a maximum window size can be set to
avoid increasing the window to a size larger than the amount of incoming data,
leading to no further performance checks. Similarly, a minimum size can be set.
These mainly depend on the expected amount of data and the need to minimize
computing resources, as smaller windows lead to more computational effort.

For rule mining a CART decision tree, a standard decision mining tool [6],
is used. Any other decision mining implementation can also be used at this
point, e.g. Incremental Decision Trees [10], which are optimized for runtime
classification. Similarly, multiple metrics can be used to evaluate the performance
of a decision rule, i.e., how accurately a rule classifies instances, such as accuracy,
F1 Score, precision, recall, logloss, or AUROC. For DMAA, we choose the F1
Score, which is commonly used as performance metric for concept drift detection
[15]. The F1 Score combines recall and precision. Precision is defined as all
instances that are correctly labeled as class x, divided by all instances of class x,
and recall as all instances that are correctly labeled as class x, divided by all
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Algorithm 1 DMAA

Input: start window size w, increase i, threshold t, upper limit up, lower
limit low, step size s

Output: current rule version, decision rule history

1: initial = True, robust = True, w smaller = w, w bigger = w
2: create trace dictionary
3: while new event do
4: add event to trace dictionary, counter + = 1
5: if initial mining AND grace period reached then . grace period default 200
6: initial = false
7: mine decision rule, store in model
8: calculate F1 Score
9: output decision rule, add rule to decision rule history

10: end if
11: if (robust AND counter >= w) OR not robust AND
12: (counter >= w bigger OR counter >= w smaller) then
13: set w test to appropriate size . depending on if condition
14: F1 Score old = F1 Score
15: counter = 0 . not for w smaller
16: calculate F1 Score for w test and model
17: if F1 Score < F1 Score old*t then . t default 0.9
18: remine decision rule, store in model
19: calculate F1 Score
20: output decision rule, add rule to decision rule history
21: end if
22: if F1 Score > up then . up default 0.98
23: w = w test
24: if robust then
25: increase w by i . i default 1%
26: end if
27: w smaller = w test, w bigger = w test, robust = True
28: else if F1 Score < low then . low default 0.90
29: robust = False
30: w smaller = w smaller ∗ (1 − s) . s default 20%
31: w bigger = increase bigger ∗ (1 + s)
32: end if
33: end if
34: if length dictionary > w bigger then . set to biggest window size
35: remove first dictionary entry . first in, first out
36: end if
37: end while

instances labeled class x. Overall, an F1 Score close to 1 indicates high recall
and precision values. The F1 Score is calculated for each class separately and
then weighted according to the occurrence of the specific class in the data. For
DMMA, we calculate the F1 Score each time the window size is reached and
when a new rule version is mined. We compare the current F1 Score to the
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last F1 Score. If the performance has significantly decreased, defined by a user-
defined threshold t, the remining criterion is met, a new rule version is mined.
If a rule achieves an F1 Score of above the threshold up, we assume that it is
robust, i.e. able to adequately classify the current instances.

Checking the remining criterion for each instance is computationally ineffi-
cient, in particular in connection with a large number of instances. Therefore,
we use a window based technique, where only the most recent instances are kept
in memory. The input, in form of a process stream, where new events arrive
continually, is kept in an ordered dictionary and as soon as the window size is
reached, the first instance with all respective events and data elements, is re-
moved, i.e. the first in, first out principle is applied. This window also defines
when the performance is checked, i.e., as soon as a complete turnover of stored
instances has taken place, the performance is checked.

The optimal window size depends on the data, the underlying rules, as well
as if and in what way the rule evolves and can impact the results significantly.
Setting it too small might result in rules not being discovered, as the available
data does not appropriately cover the rules. On the contrary, a too large size,
might lead to the inability to discover a robust rule as multiple versions are
present in the current window [15]. Therefore the goal is to find a balance dis-
covering new versions as fast as possible and keeping the ability to mine robust
and comprehensive rules, while minimizing computational complexity. The win-
dow size can be set statically or in an adaptive manner, i.e. the window size
changes during the process. In related approaches it was shown that adaptive
setting can lead to optimized results, reducing the impact of the initial size [9].
DMMA uses adaptive windows with a manually set starting size. If the last cal-
culated F1 Score is above a fixed limit up, the window size is increased by i as
we see the rule as robust. If the score is below lower limit low, the window size
should be either increased, because the algorithm is not able to discover complex
rules or the window size should be decreased to be able to discover rule changes.
As we cannot know which is the case, two windows, w smaller and w bigger,
are used in parallel, which are set by subtracting and adding a fixed step s to
the current window size. Further incoming instances are checked and the rule
remined if necessary for each of the different window sizes. If no robust rule is
achieved, the windows are further decreased and increased. As soon as a robust
rule is found, the current window size is set as w, and the process continues as
described before until no more instances arrive.

3 Evaluation

The approach is implemented in Python, using the ‘scikit-learn’ module [13] as
decision tree implementation. All data sets are preprocessed, simulating an event
stream by reading in each event in the order of timestamps. In addition to the
loan example, presented in Sect. 1, we provide a manufacturing and tourism use
case with synthetic data sets, reflecting different decision rule evolutions.Data set
characteristics are described together with the results in the following sections.
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The source code, the data sets as well as the full results are available online3. For
the synthetic data sets, the exact point of change is known, therefore the results
contain the mean number of instances from the point where the underlying rule
change happened until a new robust rule version is mined (not including the
grace period), as well as the number of transition rules, being defined as rules
mined in between changes, where the resulting rule does not fully represent ei-
ther the old or the new rule version. This is currently detected manually.
Use Case 1 - Loan Application: A synthetic data set according to the pro-
cess shown in Fig. 1 is generated, containing 5000 instances in total. The rule
change happens at instance number 2500. After the initial grace period, a rule
was discovered that stayed consistent until the underlying rule changed at in-
stance 2500. 241 instances later, a new rule version was successfully mined and
stayed consistent until the process finished. The overall F1 Score is 97%.
Use Case 2 - Manufacturing: This scenario consists of a simplified manufac-
turing scenario where a workpiece is produced. The observed decision is whether
the workpiece is OK or not (NOK). In the beginning the only available data
are the diameter measurements. During production, a second data element, the
temperature is made available. The synthetic data set contains about 5000 in-
stances, the additional sensor is added from the 2500th instance on. Before the
additional sensor was added, 16 rule versions, i.e. transition rules were mined in-
dicating that no robust rule was found due to lack of data. As soon as the sensor
was added it took 23 instances until a robust version, appropriately reflecting
the underlying rule, was discovered. The mean F1 Score is at 0.93.

Use Case 3 - Tourism: This use case describes the process of calculating a
room offer for hotel guests and can be seen in Fig. 2. The synthetic data set
contains four seasons in total, each containing 2500 instances. Depending on the
season and the occupancy rate, either a standard or a premium price is offered.
Assuming that there are more guests in winter than in summer, the premium
price is already offered at 60% capacity in winter, the summer rule version states
that a premium is offered at 90% capacity. The seasons are not logged, therefore
no respective data element exists. In total 6 rule versions are discovered during
runtime, meaning that the four seasonal rules are discovered as well as two
transition rules after changes occurred (70− 100 instances later), containing old
as well as new versions. However, if these rules are not taken into account the
F1 Score is high with 98%, with those rules the mean F1 Score is at 0.95.

Real Life Data: The applicability is tested on three real life data sets, BPIC124,
BPIC205, and a sepsis data set6. The BPIC12 contains a loan application pro-
cess similar to the running example. The observed decision is whether a loan
application was accepted or rejected. The only available data element is the re-
quested amount. The decision rule history discovered by the DMMA contains 64
rule versions, i.e., after each window remining was necessary due to the low F1

3 https://github.com/bscheibel/dmma
4 https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
5 https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
6 https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
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Fig. 2. Use Case 3: Tourism.

scores between 0.28 and 0.59. However, the discovered rule versions are similar
to the one described in [7], i.e. mostly loans are accepted when their amount is
neither too high nor too low, e.g., one of the version states that the amount has
to be between 5750 an 42000 to be accepted. The BPIC20 log contains permit
applications and declarations from a travel expense reimbursement system. The
analyzed decision determines whether an instance is marked as ‘Overspent’. The
discovered rule stays consistent over the entire runtime, with a mean F1 Score
of 0.99, leading to the assumption that the underlying rule is robust and does
not evolve. The sepsis data set contains event logs from a hospital. The decision
point whether a patient is admitted to either “Normal Care” or “Intensive Care”
is analyzed. Available data elements include lab values as well as other informa-
tion such as patient age. In total, 7 decision rule versions are discovered by the
DMMA with F1 Scores varying between 0.49 and 0.98 for the last discovered
version. The last rule version states the lactic acid values as the decisive factor.

4 Discussion

The evaluation shows that the approach is feasible and able to discover deci-
sion rules and their evolution during runtime, enabling greater transparency of
a process and its decision points. For the BPIC20 and the sepis data set we as-
sume that not all necessary information is available to mine robust rules, leading
to frequent remining. The extracted rule versions are stored in a decision rule
history and can be used to manually analyze rule evolution, e.g., seasonal or
alternating rules.
Limitations and threats to validity: Several parameters have to be set man-
ually. In future work, guidelines on how to set these parameters based on process
characteristics, e.g., amount of expected data or frequency of expected changes,
will be developed. One window size is used to determine the amount of stored
instances, the number of instances that are used to check a rule version as well
as to the number of instances that are used to remine a rule version. Differing
window sizes could be used for these values. However, this would increase the
complexity of the approach without a clear benefit to it.
Computational complexity and runtime of DMAA depend on the under-
lying data, the window size (also depending on the underlying data) as well as
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the number of decision points in a given process. The computationally most ex-
pensive part is the rule (re)mining. If no underlying changes occur, rule mining
happens only once. In contrast, if changes happen frequently and therefore the
rule evolves continually, the computational complexity increases. The extreme
case is that remining occurs for each window. An optimization with regards to
computational complexity is part of future work.

5 Related Work

Decision mining was introduced as a way to discover data conditions that im-
pact the routing of a specific instance at a decision point [14]. Multiple different
decision mining algorithms exist, focusing on different aspects [6], e.g. aligning
control flow and data flow to discover decision rules [7], discovering overlapping
rules [11], incorporating linear relationships between variables [8], or mining de-
cision rule based on time series data [16]. These algorithms are applied ex-post,
i.e., after the process instances have finished. Recent work in online process min-
ing focuses on process discovery [2], conformance checking [4], drift detection [17]
and predictive process monitoring [12] during runtime. However, none of these
works focus on online decision mining, especially with regards to the generation
of textual decision rules, decision rule evolution and decision rule histories.

6 Conclusion

This paper presents DMMA, an algorithm for discovery and monitoring deci-
sion rule evolution during runtime. Decision rule evolution might become neces-
sary due to newly available data and changes in environmental conditions. The
DMMA algorithm takes as input an event stream and processes it as events
occur. The output of the DMAA algorithm is the decision rule history for a
decision point containing all versions of the decision rule connected with this
decision point. The decision rule history enables the analysis of how decision
rules evolve over time, i.e., lays the foundation for decision rule pattern analysis.
In future work, we will investigate the potential of decision rule history analysis,
together with root cause analysis why decision rules evolved. This provides in-
sights into the evolution of the process and the decision structures behind. The
decision pattern analysis will require the comparison of decision rule (versions)
and similarity measures based on decision rules.
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