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Abstract—Data-driven engineering refers to systematic data
collection and processing using machine learning to improve
engineering systems. Currently, the implementation of data-
driven engineering relies on fundamental data science and
software engineering skills. At the same time, model-based
engineering is gaining relevance for the engineering of complex
systems. In previous work, a model-based engineering approach
integrating the formalization of machine learning tasks using
the general-purpose modeling language SysML is presented.
However, formalized machine learning tasks still require the
implementation in a specialized programming languages like
Python. Therefore, this work aims to facilitate the implementation
of data-driven engineering in practice by extending the previous
work of formalizing machine learning tasks by integrating model
transformation to generate executable code. The method focuses
on the modifiability and maintainability of the model transforma-
tion so that extensions and changes to the code generation can be
integrated without requiring modifications to the code generator.
The presented method is evaluated for feasibility in a case study
to predict weather forecasts. Based thereon, quality attributes
of model transformations are assessed and discussed. Results
demonstrate the flexibility and the simplicity of the method
reducing efforts for implementation. Further, the work builds
a theoretical basis for standardizing data-driven engineering
implementation in practice.

Index Terms—Model-Driven Engineering, Machine Learning,
Model Transformation, SysML

I. INTRODUCTION

The attractiveness of machine learning and data mining
in engineering has been increasing for years, as seen in the
number of publications on machine learning and data mining
[1]. In technical product development, the application of
machine learning for making informed decisions is called data-
driven engineering [2]. The complexity of technical product
development is increasing due to the number of components,
functions, and interactions of systems. This in turn leads to
an increasing need for Model-Based (Systems) Engineering

This work has been partially supported and funded by the Austrian Research
Promotion Agency (FFG) via the” Austrian Competence Center for Digital
Production” (CDP) no. 881843.

(MBE) techniques, which are promising to manage the com-
plexity due to different system modeling methods proven in
practice [3]–[5]. However, MBE techniques focus on for-
malizing knowledge rather than processing data to generate
valuable insights. Therefore, efforts are required to integrate
data-driven engineering into technical product development
and support to make informed decisions. Consequently, the
formalized integration of data-driven engineering or machine
learning into MBE approaches is necessary. The authors previ-
ous work introduced a model-based formalization of machine
learning tasks based on the systems modeling language SysML
[6]. Although this approach supports the formalization of
machine learning tasks using SysML, a gap exists between
the formalized knowledge within the SysML model and the
actual implementation in dedicated programming languages
such as Python. In this respect, this work aims to introduce
a method for the automatic generation of machine learning
code to reduce the duplication of effort for formalizing and
implementing machine learning tasks and to extend the model-
based approach to a model-driven approach. Consequently, the
following research questions are elaborated in this work:

RQ1 Which model properties can be used in the context
of model-driven engineering to automatically derive a
machine learning model?

RQ2 What means of software engineering allows to extend
and maintain the machine learning code derivation with-
out changes in the model transformation?

As a result, this work presents a method that facilitates the
implementation of machine learning code by deriving the for-
malization of machine learning tasks in SysML using a map-
ping mechanism that completes code snippets with properties
and contexts from SysML and introduced stereotypes. From a
more general point of view, this work contributes by improving
the efficiency and effectiveness [7] of the development of
machine learning in the context of systems engineering. The
method is implemented and assessed for feasibility based on
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a use case involving an online dataset for weather forecasting
including sensor data. The source of the implementation and
evaluation is available online. Furthermore, an evaluation and
justification with regard to the quality characteristics of the
model transformation [8] is conducted. The reminder of the
paper is as follows. First, relevant background on MBE and
the previously introduced approach to model machine learning
concerns using SysML is depicted. Second, a method is
introduced, allowing to derive machine learning code using
model transformation techniques. Next, an evaluation based on
an open dataset is presented. Finally, the results are discussed,
future work is highlighted, and a conclusion is presented.

II. BACKGROUND

In the following, relevant background concerning Model-
Based Engineering (MBE), SysML, and a basic understanding
of the machine learning modeling method published in [6] are
presented. Additionally, related work is discussed.

A. Model-Based Engineering & Model Transformation

The core of MBE includes the pillar concepts of models,
metamodels, and model transformation [9]. Depending on the
application domain, the involved engineering concepts, e.g.,
software or hardware, and the degree of automation, various
acronyms are typically used for the concepts of MBE1. Model
transformation can be characterized as the mapping between
one or multiple input and output models. The mapping itself
is defined on metamodels and not on the actual instances
of a metamodel (model) to allow for reuse and generality.
Model transformation aims to achieve the highest degree of
automation by mapping artifacts [9]. The transformation can
either be programmed manually using any programming lan-
guage or using appropriate languages provided by the model-
driven software engineering domain, e.g., ATL2, Epsilon2, etc.
Model transformations can be classified as model-to-model
or model-to-text transformations, depending on whether the
transformation output is a model or text/code [9].

B. Machine Learning Task Formalization using SysML

SysML is a general-purpose modeling language allowing to
describe a system of interest with machine-readable artifacts.
In previous work, we introduced the concept of machine
learning task definition based on an extension of the SysML
metamodel using stereotypes and the definition of semantics
to interpret the model [6]. A stereotype is a concept that
allows the semantics of a metamodel to be extended to include
specific properties suitable for a particular purpose and to
which any block applying the stereotype must conform. A
block in SysML represents a specific system, abstraction
of a part of a system, or components, among others. The
particular purpose of a block in the preliminary work is the
representation of a specific task or subtask of a machine
learning definition, e.g., data preprocessing or more specific,

1See https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
for a discussion.

2https://www.eclipse.org/atl/

«Stereotype»
Text_File

+ Encoding: String
+ Path: String

«Stereotype»
CSV

+ Delimiter: String
+ SkipNrOfLines: Integer

Fig. 1. Sample stereotype defining a text and CSV data source.

«Block, CSV»
Sensor_Log

attributes
«Datetime»  + date: String
«Float»  + sensorValue1: Real
«Float»  + temperature: Real

«Block, DateConversion»
Format_Date

Output_Format=%Y-%m-%d 

«Block, Encoding»
Encoded_Values

ToEncode=sensorValue1 

Fig. 2. Sample application of stereotypes and semantic integration.

datetime conversion. In this respect, each stereotype abstracts
a specific function or set of functions applied to a specific
input value, e.g., the loading of a CSV file is abstracted using
a stereotype defined in Figure 1. The properties of a stereotype
are the mandatory parameters of the abstracted function and
have to be defined. Additionally, properties of a stereotype can
be inherited, allowing to define specific attributes only once,
e.g., Path attribute is valid for a text and CSV file.

Figure 2 depicts the application of the defined stereotypes.
The block association indicates that a specific block that is part
of another block can be interpreted as input. Date conversion,
for example, is applied to the Sensor Log data source of
type CSV with a defined Output Format. Since only the date
attribute is suitable for the date conversion, no further details
are required. Still, if further details are necessary, the modeling
can be extended by adding additional attributes, e.g., selecting
the correct input value, etc.

The modeling of the specific machine learning tasks is
based on block definition diagrams, which are a means of
structural modeling. To specify an execution order for a set
of functions abstracted behind a block, behavior diagrams,
especially state diagrams, are used. More precisely, each
state of a state diagram is connected to a previously-defined
machine learning block. The connection is established using a
custom stereotype. With the connection of blocks to the state
diagram, the execution order of the method is defined: For
this, each task is specified with a sequential execution order,
allowing implementation or deriving machine learning code.

C. Related Work and Research Gaps

The concept of model-driven software engineering with a
special focus on machine learning concerns can be found in
literature [10]–[12].

In [10], an extension of the CPS modeling framework
ThingML [13] called ThingML+ is proposed. The extension
ThingML+ allows to model machine learning artifacts using
a textual domain-specific language. The extension focuses on

https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
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modeling supervised machine learning, and the Xtext-based
transformation generates both Java and Python code. Instead
of a standardized general-purpose modeling language like
SysML, a custom domain-specific modeling language is used.
Customization and extension of the code generation or adding
additional machine learning algorithms require extending the
source code by adding specific algorithms.

In [11], a platform supporting the integration of machine
learning in a cloud application by experts called “Stratum”
is proposed. The domain-specific modeling language allows
the modeling of machine learning pipelines and models. The
models and functions can be enriched with parameters, such
as hyper-parameters for the learning method. Various machine
learning frameworks are integrated and code can be gener-
ated. A graphical modeling interface is available by using
WebGME3 as a base. The extension and customization of the
code generation require code extensions. A shortcoming of
the method is the stiffness of the code snippets for the code
generation, making it hard to use the generator for approaches
other than the proposed case study.

In [12], textual modeling is used to describe neural net-
works. The approach mainly focuses on artificial neural net-
works. We have observed that a considerable amount of work
is required to add more functions. Additionally, the integration
of various data sources is limited.

Apart from related scientific work, frameworks such as KN-
IME4 or RapidMiner5 can be considered as related approaches.
However, these approaches solely rely on machine learning
concerns while their embedding into product development,
such as MBE approaches, is not provided. Furthermore, the
higher degree of freedom to formalize and document specific
machine learning concerns requires less rigidity in terms of
extensibility and adaptability.

Summarizing the analysis of existing literature, machine
learning code generation based on model-driven methods is
under development and state of the art [14]. The actual
approaches mainly rely on custom domain-specific languages
that define machine learning tasks using models. However,
the given approaches are stiff regarding extensions due to the
encapsulation of the machine learning algorithms in the source
code of the code generation. Additionally, the integration of
knowledge from intersecting domains is not given, making it
hard to synchronize changes or to transfer knowledge. Last
but not least, the approaches often propose new modelling
languages, which in turn might limit users to the already
scarce Data Scientists [15], instead of extending the modelling
languages used in other fields. Accordingly, using a modeling
language that is already known may make sense.

III. METHOD

In preliminary work, a method to describe all relevant
information for implementing a machine learning approach
using SysML is defined [6]. Particularly, the model represents

3https://webgme.org/
4https://www.knime.com/
5https://rapidminer.com/

all information concerning the composition of various relevant
systems, their related data collection and the formalization
of relevant data transformation and machine learning-related
tasks on a single step (subtask) level. Additionally, the execu-
tion order of the machine learning tasks in the implementation
is formalized using state diagrams. Each state of the diagram
describes a set of sub-activities, e.g., a sequence of python
functions with a dedicated purpose, such as the transformation
of Datetime into another format.

To enable the decomposition of the defined SysML model,
the here presented method relies on templates, defined as
code snippets in a dedicated programming language, such as
Python, and a mapping configuration that allows to identify a
template based on a stereotype. The purpose of the template-
based approach is to enable extendability and maintainability
without the necessity to make changes in the model transfor-
mation. Additionally, an exchange of the template can be used
to derive code within another programming language, such as
JAVA or R. Figure 3 depicts the generic method to generate
machine learning code based on templates in a flow-diagram
aligned workflow, aligned with a sample model transformation
depicted as images on top of the figure. The transformation
applies the following subsequent steps:

1) A state diagram is provided as input, referencing each
machine learning subtask formalized using stereotypes
and blocks

2) For each of the states, which are provided in ascending
order, the machine learning blocks are identified.

3) Based on the unique stereotype name, a template is
selected.

4) Stereotype and block attributes 1 are mapped to the
template 3 using a mapping configuration 2 to
generate a code snippet 4 (see Figure 3

5) A file is generated representing the executable code
snippets in the correct execution order. In the actual pro-
totype implementation, a Jupyter Notebook is generated.

The model transformation in Figure 3 is slightly simplified
and omits the step of an intermediate transformation. In the
following, this intermediate transformation is introduced in
Section III-A. Next, the composition of the templates with
placeholders is introduced. Finally, the mapping configuration
is introduced, focusing on model commands.

A. Intermediate Model
The purpose of the intermediate model is to extract infor-

mation from the SysML model and to merge the state diagram
information with the linked blocks. The source metamodel is
a SysML model, and the target metamodel is a custom one,
referred to as “block context” in the following. The block
context consists of the following parts:

First, a reference to the original block in the SysML
model to allow change tracking and to potentially enable
synchronizing changes in the generated code with the original
model.

Second, a list of rich-text blocks that can be rendered
as text before a code block, modeled as so-called owned

https://webgme.org/
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Identify Machine
Learning Block

Read Machine
Learning

Properties
Select Template Generate Code

Yes

Another Block?

Print File

«Block, CSV»
CSV_1

Delimiter=, 
SkipNrOfLines=0 
GenerateTimestamp=false 
Encoding= 
Path=absolute\path\file.csv 
Online_Accessable=false 

attributes
«Datetime»  + date: String
«Float»  + wind: Real
«Float»  + temp_min: Real
«Float»  + temp_max: Real
«Float»  + precipitation: Real

1

2
3

4

Select State
Diagram

Fig. 3. A sample model transformation to load a CSV File.

comments in the SysML model. Note that rich-text annotations
are represented as text block cells in the actual implementa-
tion. A dedicated format for Jupyter Notebooks and must be
considered separately for other environments or programming
languages.

Third, references to connected block contexts based on the
qualified name, a unique identifier for named SysML elements.
Due to the uniqueness of the qualified name, it can be used
as an identifier for attributes or blocks.

Fourth, a list of block and stereotype attributes with their
values. If a value is a primitive type, the value is used.
Otherwise, the qualified name is stored and translated to a
value when assigned.

Finally, an integer represents the execution order in the
state diagram. The transformation is executed for each block
connected to a state and for each block connected to such a
block. Care is taken to prevent the multiple execution of the
transformation for the same block more than once by tracing
the unique identifiers of a block.

B. Code Snippet Template Definition

The templates defining code snippets are defined in textual
editors. Particularly, a template consists of formatted plain-
text with various placeholders filled with property values from
the stereotypes during the code generation. The marker 3 in
Figure 3 depicts a sample of a template with all possible types
of variables, which are:

1) Standard variables are highlighted with ${variable
name}. In this case, the attribute is mandatory and has
to be set in the model.

2) An optional variable that alternatively is set with a
default value, indicated with a default value in the
variable definition ${(variable name, default value)}.

3) Arbitrary other attributes.
Since a function in a code snippet can have countless

attributes, not all attributes can be defined in a stereotype,

and it would not make sense due to the complexity for the
user. Therefore, additional properties can be added to a block
instance without being defined in the stereotype. These addi-
tional properties are added to a specific position in the template
indicated by an anchor-indicator **kwargs. For an additional
property to be used for the template function, the name of the
additional property must be similar to the parameter name of
the corresponding programming language function, but with
two asterisks after it, e.g., if a parameter of a chart printing
function in Python calls X-Axis Name, the attribute in the block
must be named **X-Axis Name. The double-stared unforeseen
attributes are rendered to the template in the following format
attribute name = attribute value without the double-stars.
If a template requires two **kwargs, the transformation must
be adapted, or two sub-stereotypes must be used.

C. Mapping Configuration

A mapping configuration in 3 in Figure 3 illustrates the
content of a mapping between a stereotype and a code snippet
template using JSON file format. The definition of JSON
mapping is depicted in Listing 1.

The mapping configuration is defined as follows:
First, the mapping allows defining whether empty lines shall

be trimmed during the generation of the Jupyter Notebook
(Line 2 in Listing 1).

Second, the definition of constant values allows reusing
specific strings as static text, e.g., as a global variable for all
templates (Line 3-6 in Listing 1).

The stereotype mapping (Line 7-18 in Listing 1) allows
specifying which template to use for a stereotype. The stereo-
type mapping (Line 10-13 in Listing 1) defines the mapping
of stereotype properties to template variables.

A command can be defined (Line 14-17 in Listing 1) and
mapped to a variable by using the following keywords to
collect information:

1) THIS: the information can be found on the block with
the stereotype



1 {
2 "trimEmptyLines": <true||false>,
3 "constants": {
4 "<TemplateVariableName>": "<

↪→ ConstantValue>",
5 ...
6 },
7 "stereotypeMappings": {
8 "<StereotypeName>": {
9 "template": "<TemplateName>",

10 "properties": {
11 "<stereotypeAttributeName>": "<

↪→ TemplateVariableName>",
12 ...
13 },
14 "modelCommands": {
15 "<ModelCommandKeywordCombination>

↪→ ": "<TemplateVariableName>",
16 ...
17 }
18 },
19 "nameMappings": {
20 "<BlockName>": {
21 "template": "<TemplateName>",
22 "properties": {
23 "<

↪→ PropertyOrStereotypeAttributeName>"
↪→ : "<TemplateVariableName>",

24 ...
25 },
26 "modelCommands": {
27 "<ModelCommandKeywordCombination>

↪→ ": "<TemplateVariableName>",
28 ...
29 }
30 }
31 }
32 }

Listing 1. JSON Mapping Structure

2) CONNECTED[Name=””, Nr=0, Stereotype-
Name=””, AttributeValue=”AttributeName”: ””,
OUTPUT Name=””]: the information can be found
on an associated block based on a search query, e.g.
CONNECTED[Name=”Sensor Log”] for Format Date
in Fig. 2

3) BLOCK: the information is stored on the block directly
4) STEREOTYPE[”StereotypeName”]: the information

is stored on a specifically applied stereotype (blocks can
inherit from multiple stereotypes)

5) NAME: the information is the name of the block spec-
ified by the preceding keywords

6) ATTRIBUTES: the information is a list of attributes
defined in a specific block

7) STEREOTYPEofATTRIBUTE[”AttributeName”]:
the information is stored in a data stereotype of an
attribute, e.g. Datetime stereotype of the date attribute
of the Sensor Log block in Fig. 2

8) OUTPUT: the information is the last declared variable
name of the template, which refers to the block specified
by the preceding keywords

The command’s syntax consists of at least three keywords,
separated by a period. The first keyword is either THIS or
CONNECTED with a selector to choose the correct connected
block. The second keyword is either BLOCK if the information
is directly stored on the block or STEREOTYPE with a
parameter specified for the stereotype name if it does not
belong to the block itself. The third parameter is depicted in
the enumeration list of keywords above with the item numbers
5-8. After the last keyword, it is always possible to select
a value if the result is a list using square selector [Nr.].
After the ATTRIBUTES and STEREOTYPEofATTRIBUTE, op-
tionally ATTRIBUTES or STEREOTYPEofATTRIBUTE can be
defined again to dig deeper into specific information. The
OUTPUT value is one of the essential values to connect a
code block with the result of a previous one.

If a specific mapping is only applied to a specific block,
name mapping can be used (Line 19-31 in Listing 1). Name
mapping is similar to stereotype mapping, but it specifies the
input model block via the block name instead of the stereotype
name. The only difference is that properties can also be defined
on the block without being defined on the stereotype. Name
mappings take precedence over stereotype mappings if both
apply for a block.

D. Composition of Code Snippets

Based on the generated code snippets and the defined execu-
tion order of the snippets, an executable file can be generated.
The method presented in this work is implemented for Jupyter
Notebook. For this, the following steps for composition are
conducted:

1) Rich-text information modeled as owned or applied
comment is directly converted to a Jupyter rich-text cell.

2) The generated templates are put in a source-code cell.
Each block context (intermediate model) from the state
machine gets one source code cell and, optionally, one
rich-text cell.

The code snippets are analyzed for ”from ... import ...” or
”import ...” lines of code to increase the readability and reduce
potential errors due to multiple inputs of modules required.
These lines are cut out and inserted in the first code cell on
top of the Jupyter Notebook file.

After all block contexts are iterated over, the cells are put
together as a single file, leading to an executable Jupyter
Notebook file. Finally, the syntax is validated, so the execution
is ensured. If the syntax is incorrect, the user is notified, but the
task is still defined as completed. The validation for semantics
is considered out of scope.



IV. EVALUATION

The evaluation of the presented method aims to assess
the feasibility and applicability of the method for generating
executable machine learning code.

In the following, we present the case study used for the
evaluation with the used artifacts from an open dataset. Ad-
ditionally, an excerpt of the generated artifact is presented.
The comprehensive results and generation of code is available
online6.

A. Case Study and Artifacts

As of [9], two approaches can be followed to implement
a model transformation, 1) using current high-level program-
ming languages, APIs, and frameworks or 2) relying on MDE
principles and dedicated languages such as ATL2 and Epsilon2.
This evaluation uses traditional programming paradigms and
the well-known high-level programming language JAVA.

The dataset for the evaluation is based on an open dataset7 to
predict weather forecasts based on sensor data from a weather
station. The scenario of a weather forecast based on weather
station data is suitable for application in the engineering
domain because the data comprises multiple sensors with
different timestamps and sampling rates. Additionally, the
use of temperature or humidity sensors is also relevant in
manufacturing specific components and the resulting quality.
The model transformation concept is wholly decoupled from
data-driven engineering and could therefore be evaluated for
any machine learning problems.

The modeling of the machine learning tasks is depicted in
a previous publication [6], extended with various comments
to support the readability of the generated code. Further
details, such as a representation of the model as images or
the transformation result of the evaluation, are shown in the
artifacts available online8.

B. Results

This section depicts the results from the model transforma-
tion applied to the model in [6].

Figure 4 to Figure 7 depict the four parts of the developed
model transformation.

Figure 4 depicts two blocks with stereotype properties
defined and a block comment connected to a block, which is
further used in the final Jupyter Notebook as Rich-Text Cell.
The TrainSplit block is defined only by stereotype attributes.
Additional attributes for hyper-parameter tuning, etc. are not
defined. The composition indicates that the Merge DF block
is an input value for the TrainSplit function. Therefore, it is
accessible through the modelCommand functionality defined
in Listing 1.

To enable the mapping from the input model in Figure 4 to
the output in Figure 7, a mapping configuration as defined in
Figure 5 and a template as depicted in Figure 6 is required. The

6https://github.com/sraedler/MDE for ML Generation
7https://www.kaggle.com/datasets/ananthr1/weather-prediction
8https://github.com/sraedler/MDE for ML Generation

«Block, DataFrame_Merge»
Merge_DF

MergeOn=[date, date_date] 
How=inner 

«Block, Train_Test_Split»
TrainSplit

TrainTestSplitSize=0.7 
Features_X=[precipitation,
temp_max, temp_min,
wind] 
Prediction_Y=weather 

### Train-Test-Split
Here a comment on the train and test split.

 1

0..1

Fig. 4. Sample input model.

Fig. 5. Mapping configuration.

mapping configuration assigns a stereotype Train Test Split to
a template with a name and, potentially, a path if sub-folders
are used in the given structure. Each stereotype property is
defined within the template’s properties, whereas the left side
of the assignment is the original variable in the stereotype and
the right side is the placeholder in the template. The mapping
defines two modelCommands, i.e., the first to get the name
of the actual block and the second one to collect the output
variable of the first connected block.

Figure 6 illustrates a sample code snippet for a machine
learning function, more precisely, a template for the train-test-
split. Within each template, necessary imports must be defined,
and arranged at the end of the code generation, as defined in
Section III-D.

Figure 7 depicts the generated code based on the template
and the input model attributes. As it can be seen, the formatting
is aligned with the template in Figure 6.

Fig. 6. Template for the Train Test Split stereotype.

https://github.com/sraedler/MDE_for_ML_Generation
https://www.kaggle.com/datasets/ananthr1/weather-prediction
https://github.com/sraedler/MDE_for_ML_Generation


Fig. 7. Result of the code generation.

V. DISCUSSION

This section discusses the introduced code generation
method for machine learning based on model transformation
and SysML. First, general advantages and disadvantages are
discussed. Next, quality attributes of model transformation are
discussed to allow an assessment of code generation. Finally,
potential future work is presented.

A. Advantages and Disadvantages

Using model transformation to decompose formalized ma-
chine learning tasks is beneficial in several ways. First, it
reduces the programming effort required for machine learning
and consequently reduces the effort for rarely available data
scientists [15]. In addition, it allows the formalized knowledge
in the model to be validated from an implementation point of
view. Validated knowledge enables the creation of a proven
machine learning model library, leading to standardization
of machine learning implementation within an organization’s
infrastructure. This potentially favors the creation of machine
learning tasks without profound programming knowledge.

Nevertheless, the method can be costly for small programs
and too complex and cumbersome for large-scale problems.
One reason is the initial effort required to create and validate
templates. However, the resulting templates lead to standard-
ization and can thus be reused in multiple projects, which
becomes an advantage in future projects. Another reason is
that traceability can suffer with larger and more complex data
preprocessing steps, requiring additional documentation. How-
ever, these problems are more of the nature of formalization
than model transformation. Finally, it should be mentioned that
the transformation is currently only directional, which does not
allow changes in the generation code to be synchronized with
the model.

B. Quality Attributes of Model Transformation

Quality attributes of model transformation can be distin-
guished in direct assessment, which is the actual assessment
of the model transformation and its properties, and indirect
by analyzing the input and output artifacts, e.g., metamodels
[8], [16]. Furthermore, a distinction is made between internal
quality, which focuses on development and maintenance, and

external quality, which focuses on compliance with require-
ments and performance [8], [16]. In the following, direct
internal quality attributes are discussed. Although various
metrics are available to assess these quality dimensions, a
qualitative discussion is chosen. The metrics are adapted to the
transformation language used, which is not applicable here as
the implementation is not based on a transformation language
but on a traditional programming language [17].

1) Understandability: The effort required to understand the
purpose of the model transformation [18].

The model transformation is easy to understand because a
high-level programming language is used for the implementa-
tion, which can be adopted by most programmers. In contrast,
the use of specific transformation languages such as ATL or
Epsilon is less common and therefore the concept needs to
be learned and understood. Moreover, the overall concept of
mapping model artifacts using a configuration in JSON file
format is a simple technique with typical concepts known from
programming. A possible argument for weaknesses is that the
programming of the JAVA code could be more complex to
understand than MDE techniques for transformation. However,
these problems are more related to software engineering than
to model transformation.

2) Modifiability: The effort required to adopt a model
transformation to provide other or additional functions [18].

The effort for modifications is potentially small because
1) the input metamodel can be adapted, and the concept of
mapping attributes to a template is simple 2) the mapping
configuration is highly customizable and can be adapted
without deep programming experience, and 3) the output
templates are small code fragments that can be formulated
in any programming language. In addition, any functions can
be added from the programming perspective by adding addi-
tional templates or stereotypes. The mapping already provides
modelCommands, allowing the collection of specific attributes
or related information. Even if more complex extensions are
required, such as inserting security-related code to authenticate
users, this can be adapted due to the use of the high-level
language JAVA.

3) Reusability: The extent to which parts of a model
transformation can be reused by other (related) model trans-
formations [18].

Due to the possibility to exchange the output templates,
the transformation can be applied to any textual programming
language that enables machine learning and can be assembled
from small code fragments. Similarly, the concept of transfor-
mation can be used for any other model-to-code generation
that can be broken down into small code fragments, as it is
simply a mapping mechanism between input stereotype and
output template.

4) Modularity: The extent in which a model transformation
is systematically separated and structured [18].

Modularity is given in two aspects. First, stereotypes can
be arbitrarily organized as long as they inherit from the
core ML stereotype. Second, output templates can be stored
in folders to structure templates. However, the method does



not allow defining a mapping only for a specific subset of
functions. Therefore, always a single JSON is required to
represent the mapping configuration. Nevertheless, extending
the method to include the ability to parse multiple JSON
files for mapping configuration is possible with little effort,
allowing for complete separation and modularization of certain
aspects of transformation.

5) Completeness: The extent to which a model transforma-
tion is fully developed in relation to the requirements [18].

Completeness is conformance to requirements, which can
be separated into functional or non-functional requirements of
the model transformation.

The functional requirements for the model transformation
can be summarized as the ability to generate executable ma-
chine learning code, which is given as of the first evaluation.

From a non-functional perspective, aspects such as genera-
tion performance must be evaluated. Due to the early stage of
development, performance assessment using Big-O-notation is
not reliable, as extensions are potentially required that distort
the estimate. For this reason, the non-functional requirements
are not yet assessed.

6) Consistency: The extent in which a model transforma-
tion is implemented in a uniform manner [18].

Because of the small programming code that compiles the
input, mapping configuration, and templates, consistency is not
a main quality criterion in this method, as it would be if ATL
or Epsilon were used. Therefore, this criterion is not further
discussed.

7) Conciseness: The extent to which a model transforma-
tion is free of superfluous elements [18].

Due to the high entanglement of the mapping configuration
and the code templates, superfluous elements are barely avail-
able. Additionally, the functionality to add arbitrary attributes
to the generation using **kwargs reduces the number of super-
fluous elements. However, elements can be created during the
modeling, or unnecessary templates can be defined. However,
these expressions are part of the nature of the application rather
than a weakness of the model transformation.

C. Future Work

Future work involves implementing improvements and vali-
dating the method within user studies to prove its applicability
in industrial projects. Additionally, the systematic backflow of
results from machine learning to the SysML model requires
to be implemented to allow to use the yielded results in
further model-based systems engineering methods. Similarly,
it is beneficial if changes in the Jupyter Notebook can be traced
back to the model so that synchronization and an authoritative
source of truth9 can be achieved. With respect to this, the
actual transformation traces the model elements, allowing the
identification of the origin, and within the Jupyter Notebook,
unique block markers can be used to map the changes to
the model elements. However, profound changes require a
mechanism to generate further blocks or adapt templates.

9https://www.omgwiki.org/MBSE/doku.php?id=mbse:authoritative
source of truth

VI. CONCLUSION

This work presented a model transformation to facilitate
machine learning applications using model-based techniques
based on the general-purpose modeling language SysML. The
goal of the code generation is to enable standardization of
machine learning code within a company and allow to reuse
formalized knowledge on machine learning tasks. The code
generation is enabled by generic templates providing concise
code snippets that are mapped using a mapping configuration
defined in JSON file format to stereotypes or specific blocks
in the SysML formalization. The generated executable code
enables the validation of the formalized machine learning
tasks in the SysML model. The method is validated in a
case study and artifacts are made available online. Through
the study results, RQ1: ”What model characteristics can be
used to derive machine learning models to enable model-
driven engineering automatically?” can be answered by using
stereotypes to identify features. Based on this, templates made
specifically on stereotypes are selected, and attributes of the
stereotypes are inserted into the template. Consistent with the
answer to RQ1, RQ2: ”What means of software engineering
allows to extend and maintain the machine learning code
derivation without profound model transformation changes?”
can be answered by choosing a code generation that builds
on a mapping configuration with templates and stereotyped
definition.

By extending stereotypes and adapting or adding new
templates, the method can be extended without changes in
code generation. Moreover, this allows the target programming
language to be selected based on the defined templates without
changing the model transformation.

Future work will include elaborating an information back-
flow from the derived and potentially changed code to the
SysML model to introduce a single source of truth. Further,
the method will be validated in a user study to improve its
applicability in practice and streamline the research agenda of
model-driven engineering methods for machine learning.
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