arXiv:2505.23536v1 [cs.Al] 29 May 2025

Synchronizing Process Model and Event Abstraction
for Grounded Process Intelligence (Extended Version)

10| Gyunam Park?®| and Stefanie Rinderle-Ma!

Janik-Vasily Benzin
! Technical University of Munich, TUM School of Computation, Information
and Technology, Garching, Germany {janik.benzin,stefanie.rinderle-ma}@tum.de
2 Process Mining Group, Fraunhofer FIT, Aachen, Germany
gyunam.park@fit.fraunhofer.de

Abstract. Model abstraction (MA) and event abstraction (EA) are means
to reduce complexity of (discovered) models and event data. Imagine a process
intelligence project that aims to analyze a model discovered from event data
which is further abstracted, possibly multiple times, to reach optimality goals,
e.g., reducing model size. So far, after discovering the model, there is no
technique that enables the synchronized abstraction of the underlying event
log. This results in loosing the grounding in the real-world behavior contained
in the log and, in turn, restricts analysis insights. Hence, in this work, we
provide the formal basis for synchronized model and event abstraction, i.e.,
we prove that abstracting a process model by MA and discovering a process
model from an abstracted event log yields an equivalent process model. We
prove the feasibility of our approach based on behavioral profile abstraction
as non-order preserving MA technique, resulting in a novel EA technique.

Keywords: Event Abstraction - Model Abstraction - Complexity - Synchro-
nization

1 Introduction

Discovering a process model M from an event log L is a key step in analyzing the
actual process behavior recorded by information systems [I5]. However, events are
often logged at a low granularity level, leading to the discovery of complex and
uninterpretable process models that do not match stakeholders’ expectations. Fvent
abstraction (EA) techniques [I8/50] have been proposed to address this challenge by
lifting the granularity of events to satisfy an abstraction goal that formalizes stake-
holder’s expectations. While empirical studies have evaluated whether EA techniques
can satisfy abstraction goals like model complexity reduction [41], existing EA tech-
niques neither provide formal guarantees on the reduction of model complexity nor on
satisfying any other goal. Hence, current EA techniques cannot be applied to find the
optimal abstraction. Without optimality, downstream process intelligence tasks such
as process enhancement [I5], business process simulation (BPS) [19], and predictive
process monitoring (PPM) [49] are uncertain to meet the stakeholder’s expectations.

Model abstraction (MA) techniques [37120/32], by contrast, ensure satisfying an
abstraction goal such as reducing model complexity through solving an optimization

https://orcid.org/0000-0002-3979-400X
https://orcid.org/0000-0001-9394-6513
https://orcid.org/0000-0001-5656-6108
https://arxiv.org/abs/2505.23536v1

2 J.-V. Benzin et al.

problem [20032]. Specifically, the optimization objective is the abstraction goal and
decision variables are the application sequence of abstraction operations and their
parameters. Hence, the question arises how the optimality guarantees of MA
can be utilized for EA and, in turn, the knowledge of real-world process
behavior stored in the logs can be exploited for process intelligence tasks
on abstracted models, i.e., how to synchronize MA and EA (RQ).

For illustrating RQ and its effects on process intelligence, consider the scenario
depicted in A bank runs trading processes for i) derivative and ii) fixed income
products logged by two information systems. The bank wants to understand the
common business process underlying the trading of i) and ii) through simulation and
prediction tasks.

The bank starts with discovering a process model M (cf. [Fig. 1[3)) from log L

merged from the two information systems (cf.), ie., RN using data-aware
discovery, e.g., [19] after [16], as in this case also data objects are of interest. Assume
now that in order to reduce the obvious complexity of M, behavioral profile abstraction
(BPA) may,, [37] abstracts M into M, (cf. (®) and subsequently, in order to gen-
eralize data objects to streamline the underlying processes, abstracts M, into M, (cf.
Fig. 1|D). While M, and M,, fulfill the optimization goals, they have lost their ground-
ing in an event log. Thus, the bank cannot proceed due to missing abstracted event

logs Lg (cf. @) and Lgg (cf. ©®) that match the granularity of M, and

M, respectively and contain the actual observed behavior with rich event attributes.

One solution would be to generate logs by playing out the abstracted models. How-
ever, this cannot reproduce the actual behavior stored in the log w.r.t., e.g., number
of traces, frequency of paths, or data values. To overcome this information loss and to
maintain flexibility of process intelligence tasks, we propose synchronizing MA with EA
techniques to mirror the abstraction applied to M on L. The core idea of synchroniza-
tion is to prove that abstracting a model via ma and discovering a model from an log
abstracted by ea yields equivalent models M, (annotated by question mark in |Fig. 1)).

MA techniques can be distinguished into order-preserving and non-order-preserving
techniques. In this work, we opt to study non-order-preserving techniques such as [37]
as they pose the more general, harder problem. Moreover, MA techniques like [37]
enable both, unrestricted abstraction of control flow with data flow abstraction by
clustering activities according to similar data flow or semantical control flow abstrac-
tion by clustering activities that are semantically-related according to domain-specific
part-of relations between activities [33]. Overall, the contributions of this work include
conditions under which MA and EA can be synchronized for non-order-preserving
MA and an EA technique that maintains observed distributions in the abstracted
log. As these contributions are conceptual and formal, the evaluation is the formal
synchronization proof.

Section [2] introduces background and related work. establishes the theo-
retical foundation for synchronization by formalizing the problem and presenting our
general approach. presents our concrete BPA-based synchronization method,
including the adaptation of the BPA technique and the design of the corresponding
synchronized EA technique. lays the theoretical foundations needed for proving
synchronization correctness, and proves synchronization correctness to estab-

Synchronizing Process Model and Event Abstraction 3

@ Excerpt of event log L. Each row represents an event. @ Multi-step O @ Discovered process model M BPMN 2.0
Id Tr. Act. Time Client Product Terms (represented as JSON) Abstraction

918422 d ; Terms

918422 ("derivat n, " bp, . P! S

X 918422 L—M T o
918422
918422
918422
918422
918422
A2ROVD
A2ROVD
A2ROVD
A2ROVD
A2ROVD
t1; CSTX A2ROVD g

@Abstracto(l event log L, bpal L)+

Id T Act. Time Client Product Terms (represented as JSON) concrete (JSON)

) €, My,

= ea

ma,)w"sgoal: reduce size and respect data flows

parameters: agg(RQ) = {GO,0LS}, agg(DQ) = {RO,0DS},
agg(OT) = {TLS,TOS,0W}, agg(N) = {T,C,UD},
agg(CT) = {TCS,CW}, w,~ 5/9

al absl ty CSTX 918422

ty CSTX 918422

a2 abs

a3 absl N t; CSTX 918422
a4 absl N t; CSTX 918422
a5 absl CT s CSTX 918422
a6 abs2 ROty CSTX A2ROVD
al abs2 OT tj9 CSTX A2ROVD

a8 abs2 Ntz CSTX AROVD

99 abs2 Nty CSTX AROVD

N
Product*****

al0 abs2 CT 14 CSTX A2ROVD

@ Abstracted event log L,,= eas(L,). ma,s goal: generalise data objects
4 T Act Time Trade Sheet Terms (represented as JSON) concrete JSON) v 7o parameters: ""'7"'7"""",’(1""’{" ""'"V = {Party, Product}
LM replace(Unique identifier) by its company
aa aa

@Abstracted process model M, BPMN 2.0

\TI k
iote

Enhance

Simulate
Predict

@ Challenge of model abstractions without abstracted event logs:
Little grounding in actual behaviors and their distributions

Fig. 1: Process Intelligence in the Financial Domain (Example)

lish the equivalence of MA’s and EA’s resulting process model. demonstrates
the impact of synchronization on the illustrative example from the financial domain.

concludes the paper.

2 Background and Related Work

Model representation, abstraction, and existing techniques: As logical repre-
sentation of process models, we opt for process trees due to their block-structuredness,
often advocated in MA literature [26/37/20] and due to its favorable properties like
soundness [16]. Let A be the set of all possible activity names and the silent activity
7¢ A. Then process trees are recursively defined by

— M =v for ve A or M =T are process trees (referred to as leaves), and
— M =&®(M,,...,M,) with n process trees Mj,...,M,, and operators Pe {x,— A}
is a process tree referred to as a @-node.

Let M be the set of all models. Then, a model abstraction (MA) is a partial
function ma: M —» M that maps a process model M to another (abstracted) process
model M, where it is assumed that the complexity of M, is reduced compared to M.
We call ma is applicable to M when M € dom(ma). The most common complexity

4 J.-V. Benzin et al.

metric used in MA techniques is the size of the process model [35/20] (cf. [Tab. 1).
ig. 1| size |[M|=28 <|M_q =12 if we count all nodes in the models. For process

trees, the size of |M| is defined as the sum of @-nodes and leaves. We refer to the

activities in a process tree M with Ay, e.g., Aps,, ={RQ,0T,N,CT} in @.

In we report the 19 MA techniques that are not covered by the MA
survey [37] from 2012. In addition to the year of publication, we report the following
nine properties for each technique. The abstraction goal (goal in specifies the
target of the MA technique. The type specifies whether the abstraction operators
are only order-preserving (OP), only non-order-preserving (NOP), or both. The
model reports the modeling language in which process models are represented. The
process perspective (Persp.) reports what perspective is represented in the model and,
subsequently, abstracted by the technique. For the perspective, we abbreviate the
control-flow persp. by C, the data persp. by D, and the organizational persp. by O.

Ref. Year Goal Type Model Persp. Op. Abs. Obj. Optim. pd ea
[25] 2023 Efficient verification OP BPMN C,D E SESE, data objects v X X
[E3] 2023 Quick overview oP BPMN [AE SESE X X X
04 y: j

B0 9029 Quick overview OP BPMN Collab. C,D,0 A,E,G D or» data objects, X x
38 lanes, messages

Bl 2020 Quick overview OP WoMan [§] c A SESE X WIND [8] X
[44] 2019 Quick overview OP BPMN c A SESE X X X
28] 2019 Quick overview ~ OP BPMN C,D A,G SESE, data objects v MARBLE [27] X
45] 2018 Quick overview (0)54 BPMN C A SESE X X X
[32]31] 2018 Efficient prediction ~OP GSPN C,P A SESE v IM[I7] X

Quick overview,
Bl 2015 balanced discovery NOP PN c E PF X ILP [47] X
[I0] 2015 Configurable (N)OP BPMN C AE SESE, Flows X X X
[20121] 2015 Configurable oP BPMN C,D,0 A,E,g POl data objects, X X
resources
[14] 2014 Privacy concerns OP PT c E SESE X X X
2013 Balanced discovery ~OP PN c E PF X All X
B3390 5015 Custom views (NJOP BPMN C,D,0 A,E,G SLok: data objects, X X
activities, resources
. SESE, data objects,
[12]11] 2013 Change propagation (N)OP BPMN C,D,0 A,E,G activities, resources X X
mm 2012 Large repository ~NOP BPMN c,D A Activities X X X
23] 2012 Quick overview OP BPMN C,D A SESE, data object X X X
q6] 2011 S TEPOSIOY, - \pop ppyN ¢ AE SESE, flows X X X
quick overview
[A8] 2011 Quick overview opP CCS [AE SESE X X X

Table 1: Model Abstraction Techniques

Next, the abstraction operators (Op.) show whether the technique applies elim-
ination (E), aggregation (A), generalisation (G), or a combination of the three.
The abstraction objects (Abs. Obj.) report what model elements in the domain of
the abstraction operators, i.e., what model elements can be deleted, aggregated,
or generalised. Obviously, the serialization of arbitrary BPMN process models into
their refined process tree structure [42] with single-entry single-exit (SESE) process
fragments is prevalent among MA techniques.

Synchronizing Process Model and Event Abstraction 5

For the last three properties, we report whether the MA technique has the property
or not. A MA technique applies optimization (Optim.) iff the abstraction goal is
translated into an optimization objective and a solver is proposed that finds an optimal
operator sequence and each operator’s respective parameters that must be applied on
a model to satisfy the abstraction goal. A MA techniques is formulated on discovered
process models (pd) iff it takes an event log L as input, discovers a process model
M through process discovery technique pd, and then abstracts M. Additionally, we
report the process discovery technique that is considered in the MA technique. Lastly,
a MA technique synchronizes its abstraction operators (ea) iff for each operator a
corresponding EA technique is defined that also abstracts the event log.

Roughly half of MA techniques focus solely on the “quick overview” abstraction
goal, i.e., aim to reduce the model size. Further selected goals in descending order
are as follows. The goal “large repository” (2 times) is at par with "configurable” and
“balanced discovery”. While the former aims to manage a large repository of process
models by only storing the fine-grained models and generating the coarse-grained
models through MA, the latter two depend on the user through parametrization and
the process discovery quality dimensions respectively. For example, [10] proposes a
process querying language that is capable of abstracting behavior before returning the
result. The remaining five abstraction goals are each only once targeted. Interestingly,
only two MA techniques target a goal, “efficient verification” and “efficient prediction”,
that considers process intelligence tasks beyond understanding and visualisation.

The majority of 19 techniques propose order-preserving abstraction operators
with 6/19 MA techniques considering operators that are non-order-preserving. MA
techniques are commonly proposed for BPMN models with 7 exceptions: One tech-
nique is proposed for the declarative model language of the workflow management
(WoMan) framework [§], one technique is proposed for generalised stochastic Petri
nets (GSPN), two techniques are proposed for Petri nets (PN), and one technique
each for process trees (PT) and models in the calculus for communication systems
[24]. Clearly, the control-flow perspective is always represented and the main target
of any abstraction operator (cf. abstraction objects). 15/19 MA techniques

In the following, we discuss the five MA techniques that consider an event log L in
more detail. MA technique [7] abstracts the discovered process model M by filtering
arcs in the unfolding of M and by applying three structural simplifications on the
refolded M. Likewise, MA technique [5] abstract the discovered process model M
by either projecting M into less complex model classes like series-parallel Petri nets
or by removing infrequently-enabled arcs detected through replay from M. In both
techniques, the mapping between activities in the model and events in the event log
does not change, because both techniques neither abstract activities, nor events. MA
technique [32] optimizes the application sequence of five order-preserving abstraction
operators towards reducing the model size while controlling the information loss for
efficiently predicting process performance. MA technique [28] applies a sequence of
abstraction operators on a discovered process model M; MA technique [3] applies
pattern mining to find order-preserving clusters of activities in M to be abstracted.
All three techniques [32J28]3] face the challenges of MA without abstracted event logs
(cf. : little grounding in actual behaviors and lack of flexibility for applying

6 J.-V. Benzin et al.

downstream process intelligence tasks. Besides, none of the three MA techniques
considers non-order-preserving abstraction.

Log representation and abstraction: An event log L is a multiset of traces, i.e.,
L=[o0y,...]eB(A*). We denote the set of activities that occur in an event log with Ay,
and write e€o iff e occurs in o, i.e., Fie{l,...,|o|}:0[i] =e with o[i] retrieving the ith
event. There are 10 distinct activities (Act.) in Ay, for L in (D. We omit further
rich event attributes like the “Terms” in L in our trace conceptualization, because
they are irrelevant for the proof of synchronization. Event abstraction (EA) is
defined as a partial function ea:B(A*)-»B(A*) such that the number of traces and
events do not increase, i.e., |ea(L)|<|L| and [ea(L)| <|L| with |L|=>,..|o| [50].

We refer to [0J18] for a detailed discussion and taxonomy on EA techniques and
to [41] for an empirical evaluation of EA techniques published through 2024. EA
technique [49] aim to improve the accuracy of remaining time predictions that are
learned from low-level event logs by applying three EA operators on the log. The
three EA operators are designed to mirror the three MA operators sequence, self-loop,
and choice. Yet, no theory is developed to prove the correctness of the designed EA
operators. Moreover, the proposal is specific to remaining time prediction and does
not show how to extend the EA technique with additional operators.

Process tree discovery and formal definitions: The semantics of a process
tree L(M) is the language represented by M [16]. Given an event log L, a process dis-
covery technique pd discovers a process tree M that represents L, i.e., pd: B(A*) —> M
with M the set of all process trees. For example, a process discovery technique, IM [15],
leverages the directly-follows graph (DFG) G(L)=(ALv{><},—~1) with ><¢ A [E|
and —, the directly-follows relation to discover M. An event log L and a process
tree M can be related based on the notion of directly-follows completeness [15], i.e., L
and M are directly-follows complete (df-complete), denoted by L ~q4 M, iff the DFGs
G(L) and G(M) = G(L(M)) are equal: G(L) = G(M). Df-completeness captures
the behavior in L and M as equivalent to the abstract representation of a DFG.
Df-completeness is a condition for the Inductive Miner (IM) to rediscover a process
tree M from L that is isomorphic to M’ that was executed for recording the event
log L and, as such, is integral to the EA techniques presented in [Sect. 4.2] and [Sect. 6]

Two process trees M7,M> are isomorphic, formally M; =~ Mo, iff they are syntac-
tically equivalent up to reordering of children for A- and x-nodes and the non-first
children of (5-nodes. A process tree M is isomorphic rediscoverable by pd from event
log L with L< £(M) iff pd discovers a process tree M’ =pd(L) that is isomorphic to
M [16]. Tsomorphic rediscoverability has been proven for the IM through assuming
a restriction Q(M) that must hold for process tree M and a restriction R(L,M) that
must hold for L and M. Q(M) requires a process tree without silent activities 7,
duplicate activities, and joint start and end activities of a (J-nodes first child and
R(L,M) requires df-completeness [16].

3 > is used to denote the start activity o ={v,...y as a directly-follows pair (>,v)e—r, and
<1 analogously for the end activity of a trace.

Synchronizing Process Model and Event Abstraction 7

3 Synchronization Framework

In this section, we establish the theoretical foundation for synchronizing MA and EA
techniques. We first formalize the synchronization problem and requirements, then
present our general synchronization approach.

Synchronization problem and requirements. For synchronization to be possible,
we must be able to design an EA technique ea,, that transforms the event log such
that process discovery yields an abstracted model isomorphic to what we would
obtain through direct model abstraction.

Definition 1 (Synchronizability). Let L be an event log and M = pd(L) the
discovered process tree such that model abstraction ma is applicable to M, i.e., M, =
ma(M). L, ma, and pd are synchronizable iff there exists event abstraction eap,, s.t.

pd(eama(L)) = M,.

Synchronization approach. We follow a two-step approach for synchronizing MA
and EA: first discovering a complex process tree M =pd(L) followed by applying
ma to yield M, = ma(M), and abstracting L, = eam,(L) followed by discovering
M = pd(L,) should result in isomorphic abstract process trees, i.e., M, =~ M.
Therefore, our approach requires two key components:

— MA Technique Adaptation: Not all MA techniques are immediately suitable
for synchronization. We need to ensure the MA technique is well-defined and
provides sufficient structure for designing a corresponding EA technique.

— Synchronized EA Design: The EA technique must be designed to mirror the
abstractions applied by the MA technique while preserving the behavioral rela-
tionships needed for correct process discovery.

We demonstrate this approach using the behavioral profile abstraction (BPA)
technique [37] for the following reasons. First, synchronizing BPA constitutes a sig-
nificant challenge because it allows abstracting arbitrary sets of activities to allow
abstractions wrt. the data flow (cf. . Hence, the corresponding EA technique
must abstract the event log while guaranteeing the correct order of activities in the
abstracted event log. Second, BPA aims to reduce model size, which aligns well with
the size characteristics of event logs.

We select the Inductive Miner (IM) including fall-throughs for process discovery
[15] to balance practical relevance with proof complexity, as isomorphic rediscover-
ability is already established for IM. Because our synchronization approach requires
the novel EA technique eayy, to result in abstracted event logs L, for which the IM
discovers M, to maintain the relation between log and model, L, enables further
process intelligence tasks that are grounded in the real-world behavior of L, and that

were not possible before (cf. [Sect. 1)).

4 BPA-Based Synchronization Method

In this section, we present our concrete synchronization method based on BPA. We
first adapt the BPA technique to ensure it meets our synchronization requirements
Sect. 4.1)), then design the corresponding synchronized event abstraction technique
Sect. 4.2)).

8 J.-V. Benzin et al.

4.1 Adapting BPA for Synchronization

This section introduces the non-order-preserving BPA technique may,, and adapts
it for synchronization. To illustrate the three steps of may,,, we introduce a running
example. In addition to the illustrative example in we present the running
example that is more detailed to demonstrate the full behavior of both may,, in the
following, our synchronized EA technique eagy, in and our algorithm to
generate minimal df-complete event logs in Hence, the running example
is used to demonstrate the algorithms step-by-step, whereas the illustrative example

motivates our approach in [Sect. 1| and is revisited in

receive buy proposal |
check buying party website

udit buyer)= {check buying party website, check documents}
request further
information from client|

|
{process NDA,} |
check documents}

acilitate due diligence)
vide due diligences

audit buyer |

archive transaction

Abstracted process tree M,= mabsy,,,(M)

sign contract

Fig. 2: Running example: Process tree M and abstracted process tree may,, (M) [37]
for threshold w; =0.5.

Running example: Figure 2]shows pro-

cess tree M which describes a transac- ref trace

Oexl

tion process by a mergers & acquisi-
tions advisor that sells companies for
its clients. The advisor receives buy pro-

(RBP,CBW,NC,RP,AT)
Oew2 (RBP,CBW,NC,RFI,BC,PN,CD,CD,PDD,SC,AT)
Oer3 (RBP,CBW,NC,RFI,PN,BC,CD,CD,PDD,SC,AT)

posals, checks their websites, and notifies ~ Zez4 (RBP,CBW,NC,PN,RFI,BC,CD,CD,PDD,SC AT)

the client about the new proposal. If the
proposal is convincing, further informa-
tion for the buyer is requested from the client and the client is briefed while the advisor
processes the non-disclosure agreement (NDA), followed by providing the buyer with
confidential documents (due diligence) and checking the documents received from the
buyer (multiple times). In the end, an acquisition contract is signed and the proposal
is archived. If the proposal is not convincing, it is rejected. Lastly, Table [2] shows four
traces 0eq1,... of an event log Lo that is recorded from executing M (activity names
are abbreviated by their acronym).

BPA aims to enable unrestricted abstraction of concrete activities into abstract
activities. Consequently, we can cluster activities according to their data flow (cf.

Table 2: Excerpt of event log Lo.

Synchronizing Process Model and Event Abstraction 9

®) and apply may,, to abstract accordingly. At the core of may,, lies the
behavioral profile of a process tree M. It is equivalent to the footprint [I] of a process
model and constitutes an abstract representation of the behavior allowed by the
model similar to the DFG (cf. 7 but more coarse-grained. Hence, a behavioral
profile contains less detailed information on the behavior of the model than the DFG,
e.g., aloop O(a,b) leaves a distinct graph pattern in the DFG, but is indistinguishable
from A(a,b) in a behavioral profile. The behavioral profile is defined as follows:

Definition 2 (Behavioral profile, adapted from [37]). Let M be a process
tree, A= X(M) its activities, and L(M) its language. Let > < Ax A be the weak-
order relation that contains all activity pairs (x,y)€> for which there exists a trace
o={a1,....an)e LIM) with je{l,..,m—1} and j<k<m such that oy =z and ap=y.
Given the weak-order relation, an activity pair (x,y) is either:

— in a strict order relation ~~>p;: x>y and y3x,
— in an choice order relation +pr: z3}y and y+x,
— or in a parallel order relation ||pr: x>y and y>x.

The set of all three relations v nr,+ a1, and ||pr s the behavioral profile pas of M.
The set of all behavioral profiles over activities A is denoted by BP 4.

As aforementioned, we acronym the activity names. For example, we have
RBP v~ RP, RP +37 SC, and CD || CD in the behavioral profile pys of the con-
crete process tree M in Given the behavioral profile notion, we can introduce
mappe (M) =DM, as three subsequent steps:

S1 The behavioral profile is computed: pr(M)=py;€BP 4.

52 Given a behavioral profile, the abstract behavioral profile pys, is derived from
py by a parametrized function: dvagg w, (Par) = pa, - The first parameter is a
function agg: A, — 24 with A, the activities of M, without the silent activity
and A=Y (M). agg specifies which abstract activities correspond to which sets
of concrete activities. The second parameter 0 <w; <1 controls what ordering
relation frequencies are selected for pas, from pas.

S3 Given an abstract behavioral profile, an abstracted process tree M, is synthesized
whose behavioral profile equals py,, i.e., sy(pa,) = M,. To uniquely construct
a process tree M, from profile pys,, the profile is encoded as a graph G(par,)
and the graph’s unique modular decomposition tree M DT(G) [22] is computed.
If each module m in M DT(G) is either linear, AND-, or XOR-complete [37],
then process tree M, is constructed by adding a tree node for each module. As
a module can be primitive, i.e., contains “conflicting” ordering relations, not all
profiles pas, have a corresponding process tree M, such that this step may fail:

S}’(pMa) =1

To illustrate may,,, we refer to The process tree M, the abstracted
process tree M,, and the parameter agg are depicted. First, the behavioral profile
par of M is computed (S1). Given pys, the second step dvagg w, (Par) is computed
(S2). The parameter agg is denoted in by three different colors. For instance,
agg(AB) = {CBW,CD}. For presentation purposes, the mappings agg(y) = {y} for

10 J.-V. Benzin et al.

Algorithm 1 Derivation of an ordering relation (adapted from [37])

1: deriveOrderingRelation,, ., (Activity z,Activity y)
20 w(@ >, y) = [{V(v,u) € agg(e) x agg(y) :v~onr uv v || ar u}|
31 w(y>m, ©) = |{V(v,u) cagg(x) x agg(y) : v~y uv o ar ull
4: e+ ary 4) = [{¥(0,u) € () x aga(y) vyt wv v ar]
90 w(y g, @) = |{V(v,u) € age(z) X agg(y) :v o uv v+asul|
6: wyroa = lagg(a)|-lagg(y)l
T2 w(z+n, y) =min(w(@ +ar, v),w(y m, ©))- m
8 w(w o, y) =min(w(z >, ¥),w(y 3+, ©))- “,pﬁ
9: w(z ""‘*X/[la y) =min(w(y >,), w(@ ¥, ¥))- %ﬁ
10: w(z || m, v) =min(w(z >, ¥),w(y >, T))- m

11: if w(z+ar, y) =w: then
12: return z -+, y
13: else if w(z v~ ar, y) >w; then

14: if w(;cww;[la y) >w(x v, y) then
. -1

15: return Ty Y

16: else

17: return x v, Y

18: else if w(zww;;a y) = w; then
. -1

19: return vy

20: else if w(z | am, y) =>w: then

21: return z||n, y

22: else

23: return z||ar, ¥

y € {RBP,RP,SC,AP} are not visualized in Note that at this stage, the order
of abstract activities in the abstracted process tree M, is unknown and cannot be
derived intuitively, because their mappings of agg may overlap (e.g., AB and FDD)
or the order of their concrete activities is in conflict (e.g., NC and BC in agg(AC) vs.
CD in agg(FDD) are in strict and interleaving order respectively). may,, computes
the ordering relations between two abstract activities x,y€ M, by selecting the most
restrictive ordering relation among those that occur relatively more frequent than
or equally frequent to the threshold w;. To that end, dvagg w, applies to each
abstract activity pair x and y.

consists of three blocks: Counting frequencies of weak order relations
between the respective concrete activities (line 2-5), deriving relative frequencies
for ordering relations from weak order relations (line 6-10), and selecting the most
restrictive ordering relation (+ > w1 > v > ||) that is equal to or greater than
threshold w;. For example, [Alg. 1| applied to AB and AC for w; =0.5 computes the
relative weak order frequency w(AB> s, AC)=5/6, because CBW > NC,CBW >RFI,CBW >
BC,CBW > NC,CD > RFI, and CD > BC. Analogously, we have w(AC >,;, AB) = 3/6,
w(AB ¥z, AC) = 1/6, and w(AC ¥ps, AB) = 3/6. The weak order frequencies are
transformed to order relation frequencies by taking the minimum of the respective
two weak order relations. Thus, w(AB+ s, AC) = 1/6, because 1/6 is the minimum
of w(AB ¥z, AC) and w(AC 3}z, AB). Analogously, we have w(AB v AC) = 3/6,
w(AB W\»X;a AC) =1/6, and w(AB |5z, AC) = 3/6 such that AB v~ AC is the most
restrictive ordering relations whose relative frequency is equal to w;. Overall, the
result is ABv . AC.

Synchronizing Process Model and Event Abstraction 11

As the third step (S3), may,, attempts synthesizing the abstracted process tree
M, from the abstract behavioral profile pys, (cf. Algorithm 3.2 in [37]). To construct
the different nodes of the process tree M,, an order relations graph G(py,) = (V,E)
for a given behavioral profile pys, is constructed. The nodes are the activities V' = A,.
Edges correspond to the strict order relation and the choice relation without the
identity, i.e., F =op, U+, \ida,. For example, (a) depicts the order
relations graph G(pyy,) for the abstracted behavioral profile pyy, that is derived in
step 2 for the running example in

(b) Modules C;and C, (c) Modular decomposition tree

are discovered MDT(G)

(e) Modules C';and C) (f) Primitive module C'y

d) Order relations graph G'(p, , -
(d) grap (p,\l‘,) are discovered is discovered

Fig. 3: Modular decomposition of two order relation graphs G(pas,) and G(pas)
that are derived by mayp, from the running example M for two different parameters
wy. For wy=0.5 (a-c), AND-complete module Cy, linear module Cy, XOR-complete
module C5 and linear module Cy are discovered. For 0.5 < w; < 0.66 (d-e), AND-
complete module Cf, linear module C5, and primitive module C5 are discovered.

To derive a unique tree structure from G(pys,), the modular decomposition
tree MDT(G) [22] is computed. The tree contains a hierarchy of non-overlapping
modules C' € V' that have uniform ordering relations with activities V'\ M, i.e.,
they “agree” on their ordering relations to other activities. Additionally, modules are
classified through the ordering relations between their activities x€C: AND-complete
and XOR-~complete modules have only activities that are in interleaving order (i.e.,
they are not connected in G(pyy,)) and in choice order (i.e., they are completely
connected) respectively, while linear modules have only activities that can be linearly

4 Two modules overlap iff they intersect and neither is a subset of the other.

12 J.-V. Benzin et al.

ordered such that their edges do not violate the direction of the linear order. Any
other module is primitive.

As depicted in (a~c), the modular decomposition of G(pys,) discovers
four modules that each correspond to a node of M, (cf. : Linear module Cy
corresponds to the — (...) root node in M,,, XOR-complete module C5 corresponds to
the x(...) node in M, linear module Cs to the second — (...) node, and AND-complete
module C} to the A(...) node. Because the modular decomposition M DT'(G) (c) does
not contain any primitive module, the abstracted process tree M, with behavioral
profile py, can be synthesized. Additionally, step 3 includes a special case for activities
x€ A, that are in parallel order with themselves: x| x€pyy, . sy constructs a self-loop
node O(z,7), e.g., the self-loop of activity FDD in

In general, parameter agg is assumed to be set (i.e., computed by clustering cf.
Sect. 1)), as the actual value has no impact on our results. We explicitly add three
restrictions (3-5) on magyy, to guarantee that may,, always satisfies its abstraction

goal (cf. ®):

Definition 3 (Behavioral Profile Abstraction (adapted from [37])). The
behavioral profile abstraction mayy, (M) =M, My =sy(pu,),
P, = Vagg w, (DM), P =pr(M) is applicable to M zfﬂ

1. M has no duplicate activities,
2. the modular decomposition tree M DT (G) of the abstract behavioral profile’s graph
G(par,) contains no primitive module,
3. (Anew ::Aa\A # @) A (A(' ::Aa\Anew < A) A (Anew ﬁAc = @)7
4. ({VQ;)E Apew: [agg(z)]>1)A deeAMw agg(y)| > [Anew|+1) A (Vye Ac: agg(y) =
y 7

5. wy s restricted to 0 <wi <Wminmaz With Wininmaz =MiNg ye A, Wmaz(2,y) and

wmaa:(x7y) :max(w :I:+Ma, y>7W($WMa y)’

w(@o it y)w(z | a, v))-

Conditions (1-2) are required for the applicability of may,, by the original proposal

in [37]. Conditions (3-5) are added to guarantee that the resulting process tree M, is
smaller and to prohibit renaming of activities during abstraction.
Conditions (1-2): The original mas,, [37] additionally required both the process
tree M to be of the form M =— (s,M’ e) for start and end activities s and e and
the abstracted process tree M, to be of the form M, =— (s4,M,.e,). In M,, the
activities s, and e, are either equal to their concrete counterparts s and e or are
added in step 3 as artificial start and end activities, if M, would otherwise not have a
start and end activity. Both restrictions are not required for our purpose and, in the
case of adding artificial start and end activities, results in a non-synchronizable model
abstraction. Moreover, the abstracted process tree M, may not be smaller than the
process tree M, i.e., magy,, may not be a model abstraction anymore. Consequently,
we adapted may,, by removing both restrictions.

5 We denote Ay by A and Aps, by M,, because the context is clear.

Synchronizing Process Model and Event Abstraction 13

Conditions (3-5): Restrictions (3), (4), and (5) guarantee that the resulting process
tree M, is smaller and prohibit renaming of activities during abstraction, e.g.,
| M| = |mayp, (M)| for any agg that only renames activities in BPA may,, with
Apew ={AB,ACFCC}, Wi =Wpinmaz =0.5, and agg as depicte is applicable
to M. To illustrate restriction (5), consider the running example. By setting the
parameter w; to a value between 0.5 and 0.66, the order relations graph misses the
choice edge between RP and AB (denoted in red in (a)), because the default
case (line 22) of is reached for these two activities. Hence, order relations
graph G(pas) is derived in step 2 as depicted in (d). Due to the missing edge,
a primitive module Cj is discovered by the modular decomposition (cf. f).
Consequently, no abstracted process tree M, exists that has the same behavioral
profile py . To avoid the default case (line 22) and subsequent discovery of primitive
modules, we restrict w; in restriction (5).

Importantly, these restrictions have not been stated for mayy,, in [37]. Thus,
adding (3), (4), and (5) constitutes an adaptation of may,,. Our adapted may,, is
well-defined (cf. . Next, we present our design for ea,,.

4.2 Synchronized Event Abstraction Design

To ensure synchronization for our novel EA technique eapp,, we design eapp, to
transform L into an abstracted event log L, such that L, and M, are df-complete.
We aim for a df-complete L,, because df-completeness is required for IM’s isomorphic
rediscoverability (cf. . eapp, s composed of two steps.
Preliminarily Abstracting The Event Log. First, eaépa constructs a preliminary
abstracted event log Ly, by abstracting occurrences of concrete events e€ A, (ie.,
e is abstracted by may,,) into new abstract events = trace by trace. Next, eagpa
deletes abstract activities x that are in choice relation to another abstract activity y
from traces ogps € Limp in which both x and y occur. We illustrate ea;pa with the
running example (cf. . Let L be an event log such that IM discovers M as
depicted. For simplicity, we assume that L is a minimal df-complete event log (cf.
[Sect. 5.2).

To start, we have Ly = [0cz1,0e22,0cx3, Oexa, -] (cf. , |Lo| = 46, and
[L]l :45q€l For 0¢z1, €amaps computes A, ={CBW,NC} such that o.,1[2] is the first
event abstracted by ABE A,,.,, = {AB,AC,FDD} (line 8). However, the condition in line
9 is not true, because RP + s, AB € pyy,. Also, for 0.,1[3] the abstract activity NC
is in choice relation to RP. Thus, ogps,1 = (RBP,RP,AT). For oey2, €amabs cOmMputes
Apa = {CBW,NC,RFI,BC,PN,CD,PDD} such that the condition in line 7 becomes true for
any o.,0[2],...,0%42(8]. However, only o7, 5[2],0%,2[3], and o.,,[6] for AB,AC, and FDD
respectively satisfy the condition in line 8. Since no concrete activity ue A_, =
{RBP,SC,AT} is in choice relation to an abstract activity 2 € Ay, three new abstract
events AB,AC, and FDD are added to ogps 2 in line 11. Also, abstract activity FDD is
in parallel relation to itself, so that FDD is added a second time to o4ps2. Overall,
Oabs2 = (RBP,AB,AC,FDD,FDD, SC,AT). Since in every trace the activity CBW always
occurs before NC and both always occur before PN (cf.[Fig. 2, the next 44 iterations

5 Minimal df-complete event logs are computed by in [Sect. 5.2

14 J.-V. Benzin et al.

Algorithm 2 First step to synchronize magy,: eal%pa

Require: : Event log L, process discovery technique pd;,,;, MA technique may,, with corresponding

P AasAncw, and agg (cf.
Ensure: : Preliminary abstracted event log Ly¢,,, abstracted process tree M,
1: Limp<—{}, M «—pd; (L), M, (—Inabpa(]W)7
2: for all traces o€ L do
Tabs <
Ama<—{e€o|Iz€Asew recagg(x)}
A-ma<—{e€c\Ama
for all eeo in the order of o do

if e€e A, then

for all x€ A, ¢y, with ecagg(z) first appearing in o do
if ve A . does not exist s.t. v+, TEPN, then
Oabs < Oabs <:E>
if x| p, x€pM, then
Gabs < Tabs (@’
else if ee A_,, then
Tabs €< Oabs <6>

Limp < Ltmp+{0aps} // standard multiset addition
16: Ay <« {ACSApew |3ICeMDT(G(puy,)), Y€ A:x belongs to XOR-complete module C'}
17: Ly p < deleteChoiceActivities(Limp,Ax)
18: return Limp, Mg

SRl T i=Ye PR foN < NN

of the for-loop (line 2) always results in the same abstract trace: ops2=".. = apsa6-
and Limp = [Gabst, Tabs2s -+ s Oavsas). Consequently, Lip, = [Gabs1,0nn.,] when the
for-loop terminates.

Because no abstract activities x,y € Apey are in choice relation = +r, y € pas,
(cf. no XOR~complete module in (c)), it holds that Ay = & in line 17
such that no abstract activities are deleted in line 18. Hence, eayp, returns Ly,
without further changes. In general, Ay contains sets of activities that are in choice
relation to each other, i.e., for any A € Ay, all abstract activities x,y € A are in
choice relation. Abstract activities that are in choice relation must not both occur
in a trace ogps € Limp. Also, the frequencies of traces in which they occur should
be “similar'’] While it is important that not always the same abstract activity is
deleted from a trace for proving correctness in similar frequencies ensure
that distributions like trace frequencies are maintained as faithfully as possible. The
function deleteChoiceActivities ensures that the aforementioned requirements on
abstract activities in choice relation are met. For the result Ly, of eau,fpa7 the order of
events in Ly, may not adhere to the order of activities in M, which is guaranteed

through the second step.
Transposing Events To Ensure Correct Orders. The second step eagpa es-

tablishes the correct order of events in Ly, with respect to the order of events
in the reference minimal df-complete event log L, of M, (cf. . The correct
order is established through the Kendall Tau Sequence Distance Oendan [4] that
computes the minimal number of transpositions needed to transform one trace oy
into the other o9. AS dkendan requires that both traces are permutations of the same
multiset of activities, it is undefined otherwise (dxendau =-L1). Put succinctly, eagpa
finds a matching between equivalence classes of traces in the reference L, (line 3) and

7 Same frequency means Yoqus € Limp, A€ Ay 1 |As,,, Al <1 and Vz,ye A,Ac Ay :
[freq,, (Limp) —freq, (Limp)| < |A| with freq, (L) = [{0abs € L| T € 0abs}|

Synchronizing Process Model and Event Abstraction 15

Algorithm 3 Second step to synchronize magq: eagpa

Require: : Preliminary abstracted event log Ly, Abstracted process tree M,
Ensure: : Abstracted, df-complete event log L,.

1: Lo« L,,(M,) // take the minimal df-complete log as reference (cf.[Alg. 4
2: L, <[] // initialize empty log for the result

3: Lo/~ {L' S La|¥01,02€ L :6pendar(01,02) # L}
4: Limp/~<«{L' S Limyp |Vo1,02€ L :6penaan(01,02) # L}
5: for all L**eL,/~ do

6: for all L¢3 e Ly,,,/~ do
7

8

9

tmp

s clas: las:
if 30e Ly 0qbs EL;Z; :0kendall (0,04ps) # L then

15T pelass) <—evenSplitSizes(|Lff:f;sHLZI’“S‘S b

for all j,o€ enumerate(Lgl‘”) do

10: L

tmp < ClosestTracess, (n; ,Lffﬁ;s ,0)
11: Lips® < Lims® — Ly
12: Li:,?:smsed «—transposeAll;, (L:,zlpﬁ)
13: LT<—LT+L;’;?:SW“‘1

14: return L,

equivalence classes of traces in the input Ly, (line 4) where equivalence is defined
modulo transposition (cf. . To maintain relative trace multiplicities within
an equivalence class of the reference (line 8-9), the traces in the matched equivalence
class of the input are evenly split (line 10-11) and transposed (line 12) to exhibit the
same order of events as the reference traces (line 13).

To continue the illustration, £, computes L, =[o1,...,04] with o1 =(RBP,RP,AP),
o3 = (RBP, AB, AC, FDD, FDD, SC, AP), 03 — (RBP, AB, FDD, AC, FDD, SC, AP) and oy =
(RBP, AB,FDD,FDD,AC,SC,AP. Hence, Liyy/ ~={[aps1],[022.5]} (line 3) and L,/ ~=
{[o1],[02,03,04]} (line 4) are the two quotient sets modulo transposition. In the
first iteration of the for-loop in line 5, the equivalence class L&** = [g] and the

equivalence class L§l5% = [0441] satisfy the condition in line 7. Therefore, the one
trace of Lgﬁggs is evenly split to the one trace of L% i.e., nypetass) =11 = 1. Next,

the single closest trace ogps1 of Lffg;s is assigned to Ly,

(line 10), removed from
the equivalence class L{is* (line 11), transposed according to the zero distance of
Okendall between ogps1 and o (i.e., no transposition is applied), and assigned to the

result: L, =[0aps1]-

In the second iteration of the for-loop in line 5, the equivalence class L5 =

[02,03,04] is matched with the equivalence class L{is® = [o77,] by satisfying the

condition in line 7. The 45 traces in Lﬁ,‘i;s are evenly split across the 3 traces of
Lglass in line 8: n; = 15,n5 = 15, and ng = 15. Because 45 can be divided without
remainder, each split size nq,... is of equal size and the remainder does not have to
be spread across the splits. The enumeration in line 9 of LZ%%* results in je{1,2,3}.
Hence, closestTraces finds the 15 closest traces o’ eLfigff (=1, n1 =15, 0 =09) that
have the smallest distance dxendaii(0/,02) to the current trace oo of L&%** (line 10).

Because all traces in L§***% have the same distance of 0 to o9, 15 traces of L% are

tmp tmp
assigned to Ly, = [os5,]- Subsequently, Ly}, is removed from L§i%*¢ (line 11), no

transpositions are applied (line 12), and L, =[01,04°].

16 J.-V. Benzin et al.

For the second iteration of the for-loop in line 9 (j = 2, ny = 15, 0 = 03),
closestTraces finds the next 15 closest traces o’e ngzs that have the smallest distance
Skendan(0,03) =1 to the current trace o3 of L% (line 10). Because all 30 traces
in Lgl4ss have the same smallest distance of 1 to o, another 15 traces are assigned
to Ly;2,, (line 10) and removed from L{/45* (line 11). As the distance greater than
zero, the respective transposition to transform each o’ EL?ﬁw into o9, i.e., transposing
the AC with the directly-following FDD, are applied in line 12. Hence, Lixgswsed =
[(RBP,AB,FDD,AC,FDD,SC,AP)'?] and L, = [04ps1,0.5,,,(RBP,AB,FDD,AC,FDD,SC,AP)'®] in
line 13. Analogously, the third iteration applies the two transpositions to transform
each o4ps2 Of the 15 remaining traces in Lfﬁzs into trace oy, resulting in L, =
[Tabs1,0Lp . (RBP, AB,FDD, AC,FDD, SC, AP)!5 (RBP, AB,FDD,FDD,AC,SC,AP)!5]. Obviously,
the resulting abstracted event log L, is df-complete wrt. M,: L, < L.

Importantly, only the transpose edit operation on traces for swapping the order
of two directly-following events in a trace is allowed, i.e., any other distance metric
on traces cannot be applied here. Since eaépa substitutes and deletes concrete events
of abstract activities, inserts abstract activities for self-loops, and deletes events that
are in choice order, it already applies the substitute, delete, and insert edit operations
in a controlled manner. Consequently, the perfect matching of equivalence classes
between L,/ ~ and Liy,,/ ~ uniquely exists, because the determinants for the number
of equivalence classes in both quotient sets are aligned by ea,%pa.

First, choice relations are satisfied in the previous step and no loops other than
the self-loop can occur and are included in Ly, (cf. Def. 5). Second, Ly, and L,
share exactly the same activities. Third, L, has fewer traces and is smaller than
any concrete event log L from which Ly, was abstracted (cf. , SO no
equivalence class of L, can have more traces than the corresponding equivalence class
in Lypyp. Finally, we point out that transpositions render the timestamp attribute
incorrect. To heal the timestamp after transposition, we can either find a timestamp
that adheres to the new ordering of events among the concrete events in the “concrete”
event attribute (cf. last step) or we must interpolate it and flag it as artificially-created
accordingly to avoid confusion during process intelligence.

To sum up, we define eayp, :eagpaoea;pa. In the next section, we prove that eag,
composed of eaipa and eafp ., synchronizes may,,, under restrictions. To that end, we
prove the correctness of our design: eayy, returns df-complete event logs L, < L., i.e.,
both have the same DFG.

5 Theoretical Foundations

This section establishes the theoretical foundations needed to prove synchronization
correctness. We define process tree classes that support isomorphic rediscoverability
(Sect. 5.1)), propose an algorithm ntl to generate minimal df-complete event logs
with size metrics (Sect. 5.2)), establish conditions under which our approach produces
well-defined results in (Sect. 5.3), and prove that these conditions actually establish
well-defined results (Sect. 5.4). For full proofs, we refer to the respective lemma in

the appendix

Synchronizing Process Model and Event Abstraction 17

5.1 Process Tree Classes and Rediscoverability

The first step for proving synchronizability is to connect the levels of model abstraction
and event logs based on isomorphic rediscoverability. As stated in process tree
M is isomorphic rediscoverable by a process discovery algorithm pd (in this work IM)
from event log L iff M’ =pd(L) is isomorphic to M. In the following, we will show
that any abstracted process tree M, =may,, (M) is isomorphic rediscoverable under
certain model restrictions. These restrictions are summarized by classes of process
trees, ie., C. and C, in Def.] such that M, always satisfies the model restrictions of
class C,.

Definition 4 (Class C.,C,). ®(M,...,M,) denotes a node at any position in
process tree M. M s in class C, iff restrictions 1. and 2. are met and in class Cy, iff
restrictions 1.-3. are met:

1. M has no duplicate activities, i.e., Vi# j: Ay, NAn, =,

2. If ®=0), then the node is a self-loop, i.e., O(v,T) for some actwity ve Ay (i.e.,
any other loop O(M,...M,,) is prohibited),

3. No 7’s outside of the self-loops are allowed: If ®# (O, then Vi<n:M; #T.

M, in the running example is in class C,. These classes differ from standard IM
restrictions regarding loop and 7 handling, requiring separate rediscoverability proofs.
Note that we number the lemmata in this extended version according to our main
paper, i.e., lemma 1 and 2 of the main paper are similarly numbered in the extended
version.

Lemma 3 (Process trees in C, are isomorphic rediscoverable). Let M be a
process tree and L be an event log. If M is in class Cy and M and L are df-complete
(cf. , t.e., M ~g L, then pd;,; discovers a process tree M’ from L that is
isomorphic to M.

The proof strategy is to distinguish whether M in C, contains a self-loop or not.
If M does not contain a self-loop, M adheres to the restrictions in [16]. If M contains
a self-loop, we extend the base case of the induction in Theorem 14 [I6] to also hold
for any splitted log L, < [{v,0)™ {v,v,0)",...] for which the “Strict Tau Loop” fall
through discovers the self-loop. Since any M in C, is isomorphic rediscoverable, what
is left to prove is that M, =may,, (M) is in class C,.

Lemma 4 (may,, abstracted process trees are in C,). If may,, is applicable to
process tree M, then My, =mapp, (M) is in class C,.

The main idea of the proof lies in the inability of a behavioral profile pys, to
distinguish whether activities are in a A-node or in a (J-node. may,, handles the
inability by always synthesizing a A-node for AND-complete modules in the M DT(G).
The only 7 in M, can occur due to the additional step that adds a self-loop node
to M, (cf. step 3 in [Sect. 4.1)). Overall, [Lemma 3| and [Lemma 4] together imply
isomorphic rediscoverability of M,. Because the isomorphic rediscoverability of M,
is conditioned on df-complete event logs L,, we generate L, given M, using the
semantics £(M,,) in the next section.

18 J.-V. Benzin et al.

5.2 Minimal, Directly-follows Complete Event Logs

Given a process tree M either in C. or in C,, there exist countably infinite many
df-complete event logs L due to the self-loop node. However, an EA eay,, must
reduce the size of the event log. Therefore, we generate the minimal, df-complete
(mdf-complete) event log L,,(M,) of the countably infinite set of df-complete event
logs as a target for our EA technique. Because there are no further (b-nodes in M
other than self-loop nodes, minimality of |£,,(M,)| is equivalent to minimality of
[L (M,)|. Hence, L,,(M,) can be easily computed using the recursive definition
of M’s language L(M) for @nodes with @€ {x,—,A} and leaves M =7 or M =w.
The only difference of L,,(M,) compared to L£(M) is the case for the self-loop node
O(v,7) that simply assigns the trace {(v,v).

Algorithm 4 Computing trace number and lengths of £,,(M): ntl

Require: Process tree M in C.
Ensure: Number of traces |£,,(M)| and sequence of trace lengths lens(M) =lens(L,, (M))
if M = 7 then
return |L,,(M)| « 1, lens(M) < <0)
: else if M = v then
return |L,, (M)| < 1, lens(M) « (1)
else if M = O(v,7) for some ve Ay then
return |L,,(M)| « 1, lens(M) < <{2)
. else if M = x(May,...,M,) then
return

PN

[Lo, (M)| — Z | Lo (M;)|,lens(M) « élens(lwi)7
i=1 i=1

//where () concatenates an ordered collection of sequences
9: else if M = — (Mj,...,M,,) then
10: return n 1Lm (M) n
[Lon (M) — [TILm (M) lens(M) — (&) < D lens(M;)[er,i] >
i=1 k=1 i=1
//where ¢ is a bijection ¢:{1,...,| Ly (M)|} = X7 {1,...,|lens(M;)|} and
//tk,i =mi(L(k)) selects the ith element of v(k) = (l1,...,ln).
11: else if M = A(Mq,...,M,,) then

12: return n
M7y 12 (M)

my
|0 (M) = 7
” 2 (o, e
//where (<L1 m ln>) = l1'*m7'ln' is the multinomial coefficient with m=3"_,1; and
//uis a bijection ¢:{1,..,] [} [Lom (M)} = X7, {1,...,|lens(M;)[}
T2 [£m (M) n < n mi)
lens(M) — ® < Z lens(M;)[er,:] > Oy ens(Mi) g 11>
k=1 i=1

The semantics £(M) neither provide the number of traces |£(M)| nor the size
|L£(M)| generated for arbitrary process trees M in C.. An existing algorithm £/, for
computing the number of traces |[£(M)| in [9] is limited compared to our proposed
ntl (number of traces and their lengths) in for two reasons. First, ntl’ does
not generate the sequence of lengths {|o1|,...,|o%|)=1ens(L,,(M)) of the k=|L,,(M)|
traces o1,...,0% € Ly (M) required to compute the log size. Second, £! is limited to

A-nodes with fixed lengths of traces in the language of its children such that x-nodes

Synchronizing Process Model and Event Abstraction 19

that result in varying lengths cannot be arbitrarily nested with A-nodes. Although
[9] fix this limitation by transforming the process tree, the resulting process tree
duplicates labels such that it violates the restrictions of C, and C, increases the size,
and is not isomorphic rediscoverable.

We illustrate £,,(M) and ntl with M, of the running example (cf. [Fig. 2). Both
recur until either a leaf (line 2 and 4) or a self-loop O (x,7) (line 6) is reached.
Hence, for each of the six leaves M’ with activities RBP, RP, ..., £,,(M) and ntl
reach line 4, e.g., for M; =RBP, we have L,,(M1) = [(RBP)], |L,(M1)| = 1, and
lens(M;) = (1). For the self-loop M7 =(C)(FDD,7), we have L,,(M7) = [(FDD, FDD>]
|Lm (M7)| =1, and lens(M7) =(2). Next, for Mg = A(AC,M7), we have L, (Mg) =
[<Ac FDD,FDD),(FDD,AC FDD> (FDD,FDD,AC)], |,c (Mg)| =

Zk 1(<lens(M1)[7r1(1 1)],lens(Ma)[m2(1, 1)]>) 112' =3, and lens(Ms) = (3,3,3). For Mo =

— (AB, Ms,SC), we have L,,(My) = [(AB,AC,FDD,FDD,SC),...], |Lm(My)| = 3, and
lens(My) = ¢(5,5,5). Next, for Mjy = x(RP,My), we have L,,(Mio) = [(RP),...],
| Ly (Mio)| = 4, and lens(Myg) = (1,5,5,5). Finally, £,,, and ntl return £,,(M,) =
[(RBP,RP,AP),...], |L,(M,)| = 4, and lens(M,) =¢3,7,7,7) (cf. Sect. 4.2| for the full
event log).

Since we know the number of traces |L,,(M,)| and the lengths lens(M,,), we can
compute the size |L£,,(M,)| by summing the trace lengths to yield |L,,(M,)|=24.

In we prove the correctness of ntl.

Lemma 5 (Number of traces and size of L£,,(M).log). If M is in C., then
Lon(M).tr = |L(M).lens| and Em()log = L,,(M) with |L,,(M)| = ntl(M).tr
traces and size | L, (M)| = ntl ntl(M) Jens[k].

The proof strategy is to sketch the reasoning for the induction step of a structural
induction on process tree M in C,. The reasoning for the trace lengths of a —-
node is that the lengths of concatenated traces from children is the sum of the
respective children’s trace lengths as indexed by ¢. The reasoning for the number
of traces of a A-node is to characterize interleaving [;" ntl(M;).tr different trace
combinations of varying trace lengths that are indexed by ¢ as shuffling of n card
decks [2]. Shuffling the first two traces and then iteratively shuffling the next trace
into each existing interleaving results in as many interleavings as the multinomial
coefficient computes. Similar to —-nodes, trace lengths are computed except that each
individual trace length is repeated as often as there are interleavings corresponding
to the kth combination of trace lengths.

Tt follows that we can compute the number of traces and the size of L,,(M,)
for any abstracted process tree M,. Given how the number of traces and the size of
L (M) are computed, we order @-nodes with respect to both their number of traces
and sizes.

Lemma 6 (Operator ordering wrt. their mdf-complete log). Let M =

@ (My,...,M,) with @€ {A,—,x} be three process trees in C.. If all children M; of
M have at least two traces, i.e., |Lop(M;)|=2,i€ {1,...,n} then: |Ly| <|L_|<|L.|
and |L|| < ||L| < ||LA| with Lg = Lo (D(Mn,...,M,)). If all children M; of M
have between one and two traces, i.e., |Ly(M;)|€{1,2},i€{1,....,n}, then |Ly|<|L .|,
(Lol <L, and | L] <|Lo]<ILA].

20 J.-V. Benzin et al.

Proof. (Sketch) Let ky,...,k, be the number of traces in the Mj,...,M,, children, i.e.,
ki = |£m(Mz)‘ For ki = 2, it holds that Z:L:lkz < H:L:lk1 <

Zl,;[:?k‘ (o, <1€I::‘(];V[11)[Lk,i]>)7 because multiplication grows “faster” than summation
and the sum of [[, k; multinomial coefficients “faster” than [[, k; itself. Hence,
|Lx|<|L-|<|L|- Because the children M; are the same for L ,L_,, and L,, their
trace lengths lens(M;) are the same such that |Ly | <||L_ | <|L| follows.

For k;€{1,2}, the sum can grow “faster” than the product: Y- k;>[["_ ki, e.g., if
all k; are equal to 1. Still, | L« | <|L-]|, because even if the number of traces is larger
for Ly, all the events in e€ Ly at least occur once in L_, in fewer traces instead of in
their individual traces. The sum of [[}"_, k; multinomial coefficients can be equal to
the Z?Zlki, e.g., if all k; are equal to 1. Nevertheless, the sum Z?Zlki does not exceed

. . . Lxn [Ti ki n
the sum of multinomial coefficients: > ;k; <>, 7" ((DL) <1en7:(’3\4,-,)[bk,i]>)' [Tk
only “grows”, if k; =2 occurs “often”. Yet, k; =2 occurring “often” results in a large

factorial in the multinomial coefficient. Hence, [[/, k; < anf?ki (o, <1en7:(k}\/1¢)[bk,i]>)'
To sum up, |L«|<|LA|and |L_,|<|L,|. From |L_,|<|L,| and the observation that
the trace lengths in L_, and L, are equal except for their multiplicities in ntl(M).lens
(cf. Algorithm 3 line 10 and line 12 in the main paper), it follows that |L_, | <||L .|
Even if |Ly|=|L,|, still |[L«||<|L|, because the lens(A(Mj,...,M,) in line 12 of
Algorithm 3 in our main paper (cf. ntl Algorithm 3) adds the children’s trace lengths
o lens(M;)[ur,i] before repeating them as often as there are interleavings.

The @-node ordering is important for synchronizability. Any non-order-preserving
MA must ensure that abstract activities in M, are not children of a greater &-
node than the @-node of M in which the corresponding abstracted activities are
children of to avoid that the mdf-complete event log L£,,(M,) becomes larger than
the mdf-complete event log L,,,(M). Hence, if a MA technique fails to consider the
@-node ordering, there does not exist a EA technique that synchronizes. In the next
section, we present the restrictions necessary to ensure that the mdf-complete event
log L, (M,) of M, =may,,(M) is smaller than the mdf-complete event log L, (M)
of M.

5.3 Event Log Restrictions

For our EA technique to be well-defined, the df-complete event log L, for the
abstracted process model must not be larger than what the concrete event log L can
support.

Definition 5 (Restricted event log). Event log L is restricted iff pd;,, discovers
a process tree M =pd;,,(L) such that:

1. Fall throughs: pd;,; has only executed the “Strict Tau Loop” to discover a
self-loop O(v,7) for ve Ar, and the “Empty Traces’ﬂ
2. Cuts: pdy;, has only executed choice, parallel, and sequence cutﬂ

8 Hence, no nested tau loops (3(My,7),M; #v are discovered by “Strict Tau Loop” and no
fall throughs “Activity Once Per Trace”, “Activity Concurrent”, “Tau Loop”, and “Flower
Model” are executed.

9 Hence, no loop cut is found.

Synchronizing Process Model and Event Abstraction 21

3. Base cases: pd;,; has executed any number of base cases, and

4. Model structure: If ®(M,...,M,) is a node in M with at least one child being
an activity or a self-loop, i.e., M;=v or M;=C(v,r) for ve Ay, and i€{l,....,n},
then @=x or D= A.

We motivate and illustrate each restriction imposed on a event log L by giving
relaxed restrictions and counterexamples.
Fall throughs
“Activity Once Per Trace” The syn (cf. step 3 Section 3.2 in our main paper and
Algorithm 3.2 in [37]) of process trees from an abstracted behavioral profile pys, can
be the reason for larger mdf-complete event logs L, = L,,(M,). The “Activity Once
Per Trace” can discover process trees M whose mdf-complete event logs significantly
exceed the number of traces and size of the original event log L. Therefore, the IM
must not execute this fall through during discovery of the abstracted process tree
M, from an abstracted event log L.
Counterexample: L= {(a,by,{e,c,dy(d,e,c)}, pd;p (L) =M = x(— (a,b),A(e,A(c,d)))
Obtain may,,(M) = M, = x(z,(c,d,e)) for agg(x) = {a,b} and w, < 0.5 with
L, = {{z),{c,d,e)c,e,d),.... e,d,c)}. The number of traces |L,| =7 and the size is
|La| = ZZ:1<1,3,3,3,3,3,3>[/€] =19 and, thus, both the number of traces and the
size of L, exceed that of L respectively. Hence, no ea exists that can synchronize to
mMappg,-
“Activity Concurrent”: The following counterexamples exploits the property of mag,, to
change the behavior of the process tree M even for activities that are not abstracted:
Counterexample: L = {{a,b),{f,c,d,e),{c,d,e, [,), {c,d,e,f)} and pd;y,(L) =M =
x (= (a,b), A(x(O(f,7),7),— (c,d,e))). Set agg(z) = {a,b} and w; < 0.5 to obtain
M, = x(x,A(O(b,7),— (¢,d,g)) with L, = {{x),{b,b,c,d,g),{(b,c,b,d,g),...,{g,d,c,b,b)}.
Both the number of traces and the size of L, exceeds that of L respectively, as
|La|=11>4=|L| and |La| =33, {1,5,....50[k] =51 > 15=||L].
Fall throughs, Cuts (Loop)
“Strict Tau Loop”, “Tau Loop”, “Flower Model’, “Loop Cut”: In|[Lemma 4] we have
established that any M, is in class Cj, i.e., does not contain any (J-node other than
a self-loop due to the indistinguishability of a (J-node and a A-node in the BP pyy, .
The same property of BPs implies that any (-node My in M is replaced by a A-node,
if all of the activities ve Axs, are not abstracted by mag,q (A M S Ac in Definition
2 in the main paper). Through two counterexamples, we show that if M contains a
node My that is not a self-loop node O(v,7) for ve Ay, it is neither guaranteed that
Mayy, is @ MA nor is the mdf-complete event log L, necessarily smaller than L such
that synchronizability becomes impossible. To discover a self-loop both for M and
for M,, either the “Strict Tau Loop” or the “Tau Loop” with a restriction on only
discovering a self-loop are suitable. Since “Strict Tau Loop” exactly matches the (v,v)
directly-follows pattern in an event log, we opt for the “Strict Tau Loop” in
Tau Loop Counterexample: L= {{a,c,ay<b,ay{d,e)} and M =pd;;(L)
= x(O (x(b,— (a,x(c,7))),7),— (d,€)). Apply Mappa for agg(z) = {d7e} and w; <
0.5 to obtain the abstracted model M, = x(A(O(a,7), O (b,7), O(e,7)),x) with
Lo = {{a,a,c,c,b,b),... {c,c,b,b,a,a),(x)}. Hence, |Lq| = (,,5,)+1=91>3=|L| and
|Zall =301 1CL6....0)[K] =541> 7= |L].

22 J.-V. Benzin et al.

Flower Model Counterexample: L ={{a,b),{a,b,c),(c,a),(d,e)} and pd;y,(L)=M =
x (O(x(a,b,c),m),— (d,e)ﬂ Apply may,, for agg(x)={d,e} and w; <0.5 to obtain
the abstracted model M, = x (A (O(a,7),O(b,7),0(e,7)),x) with |M,|=12>10=|M]|,
i.e., mayp, is not a MA for process trees M that contain a flower model.

Loop Cut Counterexample: L={{a,b,a),{c,d,e)} and M =pd;;,(L)=

x (O(a,b),— (d,e,f)). Apply may,, for agg(x) = {c,d} and w; < 0.5 to obtain the
abstracted model M, = x(A(a,b),— (x,f)) with L, = {{a,b),{b,a),{z, f>}. Hence,
|La|=3>2=|L| and || La| =6= | La-

Model structure

The dvy,, age (cf. Algorithm 3.1 in [37]) has a static order of returning ordering relations
for abstracted activities and y: First, a choice order z+)y, y is returned (line 12),
then the inverse strict order x w»]T/[la y (line 15 and line 19) followed by the strict
order x>z, y (line 17) and, finally, the parallel order z ||z, y is returned (line 21),
as soon as the threshold wy is below the respective relative frequency and an “earlier”
order relation is not returned already ((©). As long as a node M’ =— (M,...,M,,) in
M has only children M; whose number of traces in the corresponding mdf-complete
event log £,,,(M;) are all at least 2, the static order in dv,,, age aligns with the order
of operators in a process tree as shown in However, if M’ has a child M;
whose number of traces is below 2, returning a choice order £+ 5, y can increase the
number of traces in L,, as the order of operators with respect to a sequence node
and a choice node depends on the children Mj,...,M,, (cf. . As dvy, age
does not dynamically depend on the children Mj,...,M,, of a node M’ in the process
tree M, we must exclude M’ that has a child M; with less than two traces.
Counterexample: L = {{a,b,c)} and M = pd;,;(L) =— (a,b,c). Apply may,, for
agg(z) = {a,c} and w; <0.5 to obtain M, = x(v,b) with L, = {{v),{b)}. Although
|Lao||=2<3=| L], the number of traces increases |L,|=2>1=|L|.

For example, the model structure restriction prohibits that L, has more traces
than £,,(M): |La| > |£(M)]. Because the process tree M =pd;,,(L) discovered
from restricted event log L is in class C, (cf. , we can generate mdf-complete
event logs for MEI Since may,y, can change the order of sequentially-ordered activities
(vw>ar) to choice-ordered activities (+as,) given that dvagg ., (@,y) prioritizes + over
> (cf. [Sect. 4.1)), the number of traces in L, can become larger than the number of
traces in L: |Lq|>|L| (compare line 8 and line 10 in [Alg. 4). The model structure
restriction could be avoided, if we allow an EA ea to split traces of the concrete event
log L. Nevertheless, an abstraction should intuitively maintain the semantics of the
event log while reducing its complexity (in terms of discovered model size). Splitting
traces, however, means that during abstraction new process instances can be created,
which is clearly not desired during abstraction. Thus, we can either prohibit the
model structure or restrict what activities can be aggregated, i.e., restrict agg, to
avoid more traces in L.

For example, M in violates the model structure restriction, but agg as
depicted constitutes a case for which |L,| <|L|. Yet, a different function agg’ that

10 «Strict Tau Loop” is already restricted to only discover a self-loop and “Tau Loop” excluded
entirely

1 We prove that M is in C, in

Synchronizing Process Model and Event Abstraction 23

only abstracts the start RBP and end activity AT would result in |Ly|>|L|. We opt
to prohibit the model structure, because we aim to synchronize may,, with an EA
technique and not apply further modifications to mayy,,. Through the restrictions on
an event log, we prove that L can always support the mdf-complete event log L,
required for well-definedness of eay, in the next section.

5.4 Well-definedness

In this section, we prove the necessary condition for synchronization: Event log L
can never become smaller than L. If the opposite would hold, we could not define
an EA technique, because the EA technique would need to either insert new traces
and or events or both into L for df-completeness.

To prove the necessary condition, we must consider under what parametrization
agg and wy the Lo = L,,(M,) with M, = may,q(M) becomes maximal. Hence, we
prove for what parameters L,,,(M,) becomes maximal.

Lemma 7 (Maximal L,,(M,)). If L is restricted and mayy, applicable to M =
pd; (L), W = Wiminmaz, agg(x) = {v,u}, and agg(z) = {z} with z € A\{v,u}, i.e.,
may,, aggregates exactly two activities into x, then My, = mayp, (M) has the most
traces and maximal size of all L,,(M!) generated for other M! with Al ~{v,u}=

and Uyeq,,. 288 W) > Uyea, ., 288wl (cf. [Def 3.

The main idea of the proof is to compare the behavioral profile pys, with all
behavioral profiles pas, as the respective process trees M, and M are similarly
synthesized given the BP. Because pys, can only contain less concrete activities ge A,
than pys, and both v and u must also be abstracted in pas, the only cause for more
traces or events in £,,(M}) can be due to different order relations in pys . Yet, the
restricted event log L aligns the priorization of dvagg ., to return order relations from
+ to || (cf. [Sect. 4.1)) with the operator ordering in Hence, pps; can only
contain order relations that imply less traces and events in L,,(M).

Given the restrictions on event log L, we show that L, for the parameters that
maximize it, is always smaller than L.

Lemma 1 (£,,(M,) is smaller). If L is restricted and mayy, is applicable to
M =pd;p (L), then Ly =Ly, (M) has fewer traces and is smaller than L: |L,| <|L|
and | Lo|| <|L].

The proof strategy is to apply induction on the size of M =pd(L) and compare the
mdf-complete event log £,,,(M) with the maximal mdf-complete event log £,,(M,)
for M, abstracted through parameters agg(z) = {v,u} and w; = Wminmaz- Only
abstracting two concrete activities and setting wy =wminma, maximizes L,,(M,) (cf.
Lemma 7). Hence, we take the smallest representative on the larger side L and the
largest representative on the smaller side L,. For the induction step we apply a case
distinction on the operator in M =@(...) with @e{x,—,A}. In all cases, if v and u
both occur in the same child of M, the statement follows by the induction hypothesis
(TH). We exploit the semantical indifference of M’s children order for x- and A-nodes
and the symmetry of the + and || order relations to decompose M, = x(...) into

24 J.-V. Benzin et al.

children that are not abstracted and the two children that are abstracted. Through
the (IH) and the language-preserving reduction of process trees into their normal
form [15], we prove the statement for decomposed x- and A-nodes. In case of a
—-node, we derive two different tree structures for M, that are shown to have fewer
traces and events through a combinatorial proof given the respective equations in

On the grounds of we establish the correctness of the synchronized EA
technique in Hence, we prove the main synchronization result by correctness

of the EA technique in

6 Synchronization Proof

We prove the main synchronization result in by showing that our EA
technique produces df-complete logs that enable correct model rediscovery in
For full proofs, we refer to the respective lemma in the appendix

6.1 Correctness of the EA Technique

In we have established that the mdf-complete event log L, = L,,(M,) has
strictly less traces and is strictly smaller than any event log L. Thus, a well-defined
EA technique exists. As eayp, consists of two steps eaépa and eagpa, we show that
these two steps are correctly specified, i.e., that eay,q is a well-defined EA technique
that returns df-complete event logs L, = eayp, (L) for the abstracted process tree
M, =maye(pd;a(L)): Ly S L, To that end, we define the transposition equivalence,
because eaipa is specified on the grounds of this equivalence relation.

Definition 6 (Transposition equivalence). Let 01,02 € A* be two traces and
Okendall [4] be the minimum number of transpositions required to be applied to oy
yielding o such that o} = o9, if both o1 and o9 are permutations of the multiset
of activities bag(cy) = bag(oq) with bag(o) = [o[i] | i € {1,...,|0|}], and undefined
Orendall = L otherwise. The transposition relation ~€ A* x A* is defined by

g1 ~02 Z.f]‘lakendall (0'130-2) #* L.

Trivially, ~ is an equivalence relation. Because ea?)pa searches for a matching be-
tween equivalence classes of Ly, =ea,§p .(L)’s quotient set modulo ~ and equivalence
classes of L,’s quotient set modulo ~, we formalize what the matching is.

Definition 7 (Matching). Let L1,Ly be two event logs. Given the transposition
equivalence ~, a matching between the two quotient sets L1/~ and Lo/~ is a bijective
function matching: L1/ ~— Lo/~ such that:

— for every equivalence class L§%* € L/~ and corresponding equivalence class
matching(L§2%) = L9 it holds: Ioy € L§%% 09 € L§* with a1 ~ 09, i.e., the
respective traces in matched equivalence classes are not distinguishable modulo ~,
i.e., not distinguishable modulo transposition.

Synchronizing Process Model and Event Abstraction 25

It does not matter whether we define the equivalence of traces in matched pairs
of equivalence classes by existence or by universal quantification, as from existence
and equivalence the universal quantification directly follows. We use the existence
in to emphasize that we only need to check equivalence once for two traces
to decide equivalence. Observe that the condition for pairs of equivalence classes in
the matching is checked in the if-condition of eafpa (line 7. In the following,
we prove that a matching between the two quotient sets Lyy,,/~ and L,/~ exists
and that the even split of traces from equivalence classes in the former can always be
assigned to traces from equivalence classes in the latter quotient set.

Lemma 8 (Matching of quotient sets). If L is restricted and may,, applicable
to M =pd; (L), there exists a matching between the quotient set Lip,/~ of event
log Ly = ea;pa(L,deM,mabpa) and the quotient set Lo/~ of Lo = Ly (M,) for
M, =may,e(pd;a (L)), i.e., matching: Ly /~— Lo/~ exists. Also, for every matched
pair of equivalence classes L5 € Lypy/~ and LY =matching(L§iess) it holds that

L§kass has equal to or more traces than LG : | LS| <|Lgkass| (ii).

The proof strategy is to establish (i) the existence of a matching between the
quotient set L,/ ~ of Ly, and the quotient set L,/ ~ of the reference event log L,
modulo transposition, and (i) that for any matched pair of equivalence classes L¢4%
and Lss from Lg/~ and Lyyy/~ respectively it holds: |Lg**| <|Lss|. We prove
(i) by contradiction through the restrictions on an event log (cf. , structural
properties on abstracted process trees M, (e.g., no loops other than the self-loop),
and by code inspection of eallypa. Hence, the search for a matching in line 5-7 of
is correctly specified. We prove (ii) by (i), the minimality of L,, and

Tt follows that the transposition with even splits (line 8-13) returns L, such that
L,cL,:

Lemma 2 (eap, returns df-complete logs). If L is restricted and may,, applicable
to M =pd; (L), the event log L, =eaypq (L,pd;ar,mapp,) is a df-complete event log
for Mg =mapp, (pd;p(L)).

Proof. From|[Lemma §land the applied transpositions in line 12 to satisfy every directly-
follows relation in L, by matched sets of traces from their respective equivalence class
(line 10 and line 7), it follows that for every trace o€ L, there exists a trace oaps € Ly
such that o=o04,.

Hence, we can prove the synchronizability as required by our approach.

6.2 Main Synchronization Theorem

Given the correctness of the EA technique eas,, and the isomorphic rediscoverability
of abstracted process trees M,, we prove the main synchronization result.

Theorem 1 (IM and may,, are synchronizable).
If L is restricted and may,, applicable to M =pd;,;(L), then pdy(Le) discovered
from Lg = eappa(L,pd;ymap,,) s isomorphic to mayy, (pd(L)).

26 J.-V. Benzin et al.

Proof. From it follows that event log L, is a df-complete event log for
M, = mayp,(pd;y,(L)). Since M, is isomorphic rediscoverable (cf. [Lemma 4), it
follows that: pd;, (L) = M,.

Therefore, we can abstract discovered process model M through non-order-
preserving mag,, and synchronously abstract L through eag,, such that both M, and
L, are available for further process intelligence tasks. In the next section, we revisit
the illustrative example in to show what impact the main synchronization
theorem has.

7 Demonstration on the Illustrative Example

To put the theoretical results of synchronization into perspective, we demonstrate
their impact on the illustrative scenario that we have introduced in [Sect. 1| and [Fig. 1}
To that end, we show how the event log L (cf. (D) that contains traces of the
bank’s trading process for two different products (derivative and fixed income) is
abstracted by eapp, in Recall that the bank already applied the BPA model
abstraction mag,, on the discovered process model M, as it expects the result M, to
have a more suitable granularity for analyzing the common trading process than M.
Subsequently, we delineate how the abstracted event log L, =eappq (L) and M, help
the bank in analyzing the common trading process through process intelligence in

Bect. 7.2

7.1 Abstracting the Event Log

To begin with, BPA may,, with A,y = {RQ,0T,N,CT}, w; = Wiinmaz = 5/9, and
agg as depicted in @ is applicable to M. We illustrate eaj,,, (cf. [Alg. 2)
with the illustrative example. Let L be an event log such that IM discovers M as
depicted. For simplicity, we assume that L is a minimal df-complete event log. Due to
irrelevance of further event attributes for proofs (cf. , we only represent
activities in traces, but discuss how further attributes can be added. For example
o1 =(0LS,TLS,T0S,C,T,T,C,TCS) as denoted by “Ir.” in @ is a trace. To start,
we have L={o1,09,...,09], |L|=9, and ||L| =6+8+5+2#2=>57. Because in a minimal
df-complete event log each activity in a self-loop is repeated once, L contains the
six interleavings of (T,T) and (C,C) in 01,03,...,07 plus o2 and plus the two traces
0s=(GO,R0) and o9 ={0LS,0DS). Given Aje,, = Aps, (cf. |Fig. 1| ® and |Def. 3[), eal%pa
always computes A, ={o[1],...,0[|c|]}, i-e., all events are abstracted (Iine 4). Thus,
o1[1] is the first event abstracted by RQ€ A,y (line 8) and the condition in line 9 is
always true, because there exists no concrete event v.

Next, for the two events OLS and TLS, the single abstract event 0T is added
due to the first appearance condition in line 8. The abstract event N for the four
events C,T,T,C is repeated, because N ||ps, N holds and triggers adding a self-loop
(cf. that can be rediscovered by repeating N once. Altogether, we have
Oapst = (RQ,0T,NN,CTye L, (cf. [Fig. 1| @) and analogously for the remaining eight
traces resulting in Ly, =[07, .02 -

Synchronizing Process Model and Event Abstraction 27

Before we proceed with line 16, we point out how further attributes can be
added. In line 10, new abstract events = are created. Here, any attribute of the
current event e or any aggregation function over the set of x’s concrete events
Ama(z)={ecc|ecagg(x)} can be copied or computed. For instance, we have applied
a last attribute aggregation with even time split for repeated x on every attribute
in @: Because Apa(N) = {T,C}, the four corresponding events e’s attributes
in o7 are taken together, evenly spliﬂ by respecting time, and the respective last
attribute is assigned to N. The result shows that the event with ID “a3” @
has timestamp t5 and the “Terms” value of the event with ID “5” in @D. Yet,
proposing and evaluating different attribute aggregations goes beyond the scope of
this paper. Still, we advocate adding the “concrete” event attribute to every abstract
event for storing the respective Ay, (z) and, thus, maintaining flexibility.

Because DQ+ s, y€pas, (cf. the initial XOR-gateway in ®) for any other
activity ye C:= Apr, \{RQ}, it holds that Ay ={C} in line 17, i.e., module C is the
only XOR-complete module in M DT(G). Nevertheless, the corresponding concrete
events RO and DCS never occur together with any concrete event e€ A, (y) of other
abstract activities y € C' in any trace o € L, because they were in choice relation
already. To illustrate, for o9, we have y =0T, A, (y) ={0W} and OW never occurs with
RO or ODS (cf. @). Hence, no events are deleted in line 17 and eaipa returns
Limp=07,.1,0%.s] that contains 9 traces.

To continue the illustration, £, computes L, =[0aps1,0abs8] With oapss =(RQ,DQ)
(line 1) such that L,/ ~={[oaps1],[cabss]} is the quotient set of L, by gendan (line
3). Likewise, Liynp/~={[07,]:[0%.s]} is the quotient set of Ly, (line 4). Next, we
iterate over equivalence classes of both quotient sets (line 5-6). First, L&%* = [04p51]
and Lff,‘iff = [07,,,] share traces that are permutations of the same multiset of
activities, ie., the condition in line 7 is true. Because |L{ias*|/|LE***|=7/1=T is an
integer quotient, no remainder is left to be evenly spread across the ny,...,n, Letass|
sizes of splits, i.e., n; =7 (line 8). Given the split sizes, the jth trace o e L& is
the reference for the n; closest traces in Lfﬁ;s in terms of number of transpositions
(Okendanr) (line 10).

Due to n; =7 and the single trace in L% the closestTraces operator assigns
all seven traces in Lfﬁ,‘:;s with a distance of 0 transpositions to Lj,,,. Consequently,

Lffg;s is empty afterwards (line 11), no transpositions must be applied to traces

Li:ffg sposed _ pm - (line 12), and the seven traces in Ly, are added to the result L,
(line 13): L, =0/}]- In @), the first two traces of the 0,351 trace variant are
depicted. Analogously, the second for-loop iteration (line 5) yields L, = [agbsl,ogbsg],

i.e., no transpositions were necessary overall.

To sum up, the abstracted event log L, maintains the multiplicities of the concrete
event log L and the respective distributions of values in the additional event attributes.
In particular, the abstracted event log L, is equivalently related to M, as the concrete
L was related to M. In the next section, we demonstrate the impact of having both
L, and M, for subsequent process intelligence.

12 Ties can be decided towards the first abstract event.

28 J.-V. Benzin et al.

7.2 Impact on Process Intelligence

Coming back to the bank scenario in [Fig. 1] correct synchronized abstraction of
both M and L into M, (cf. |[Fig. 1|®) and L, (cf. |[Fig. 1/@) allows the bank to
analyze the common trading process of both products simultaneously with, e.g.,
process enhancement (cf. ®). To that end, L, allows to enhance M, with
the frequency information that seven trades negotiated the terms in particular wrt.
the “spread” as recorded in basis points (bp). Here, the bank is most interested in
the question: “Does the client and requested product affect the final terms after
renegotiation?”. To answer the question, the bank must define a classification problem
that relates the 0T’s event attribute value for attributes “Client” and “Product” to
the last event attribute value of the second N event in each trace that has the CT
event as the end event. Because the synchronized EA technique eay,, enables to
automatically compute the abstracted L, that contains the seven trades corresponding
to the abstracted process model M,, the bank can define the classification problem
given L, and M,.

Having only the abstracted process model M, the bank is neither able to enhance
the abstracted process model with further perspectives for, e.g., presenting different
aspects of the process to different stakeholders in the bank, nor is it able to define
the classification problem, as it would lack the abstracted event log L. Moreover, it
can start predicting and simulating the common trading process by learning both a
simulation and prediction model through L, and M,. To sum up, the bank is able
to flexibly apply a similar set of process intelligence tasks on an abstracted process
model and abstracted event log as it was used to on the concrete event log and
process model.

8 Conclusion

We propose a novel synchronization approach that closes the gap between MA and
EA techniques. Consequently, we can apply MA technique ma on discovered process
models M and compute the corresponding abstracted event log L, through the
synchronized EA technique eay,,. The proposed approach is the first to formalize
the impact of EA techniques on the discovered process model and the first to enable
process intelligence tasks grounded in the real-world behavior contained in L,. So far,
our approach is limited to the IM and its relatively simple event log conceptualization.
Furthermore, our approach focuses on size as an indicator of complexity and only
briefly discusses event attribute abstractions that go beyond the control-flow, but are
driven by the data flow. In future work, we will investigate extended conceptualization
of event logs. Second, we will extend the set of process discovery techniques and
integrate optimization frameworks for MA that capture further complexity metrics.
Third, we will parametrize synchronized EA techniques to allow for even more faithful
abstraction of event logs.

Synchronizing Process Model and Event Abstraction 29

Appendix

The appendix includes [Lemma I and [Lemma 2| from the main paper with full proofs.
Moreover, the appendix includes the additional [Lemma 3| [Lemma 4l [Lemma 5|
[Lemma 7] and [Lemma §| from this extended version with full proofs. In addition, we
report a simple helper lemma in

A Lemmata With Full Proofs

Lemma 3 (Process trees in C, are isomorphic rediscoverable). Let M be a
process tree and L be an event log. If M is in class Cy and M and L are df-complete,
i.e., M ~q L, then pd;,, discovers a process tree M’ from L that is isomorphic to
M.

Proof. M meets all model restrictions for the class of language-rediscoverable process
trees in [16] except for the self-loop ((v,7) with ve A that can occur as a (sub-)tree
in M. The self-loop violates both the restriction on disjoint start and end activities
for the first branch of the loop (cf. restriction 2 in [I6]) and the restriction that no
7’s are allowed in M (cf. restriction 3 in [I16]). Hence, we distinguish whether M
contains a self-loop. For both cases, we build on the proof of Theorem 14 [16], because
Theorem 14 is proven through showing isomorphic rediscoverability by induction on
the size of M.

Case no self-loop: Because M meets all model restrictions for the class of language-
rediscoverable process trees, the conditions of Theorem 14 in [I6] are met and M
isomorphic rediscoverable.

Case self-loop: Because the self-loop does not contain nested subtrees, it suffices to
extend Theorem 14’s induction on the size of M by an additional base case: O(v,7)
with ve A. The additional base case holds, because the “Strict Tau Loop” fall through
rediscovers the self-loop from any splitted log L, € [{v,0)™ {(v,v,0)",...] that occurs
during recursion of IM.

Lemma 4 (may,, abstracted process trees are in C,). If may,, is applicable to
process tree M, then My, =map,, (M) is in class C,.

Proof. The abstracted process tree M, does not contain duplicate activities, because
M does not contain duplicate activities (condition 1 in and new activities
X € Apew (cf. condition 4) are only added once to the process tree M, during synthesis
(cf. Algorithm 3.2 in [37]).

A Ornode My=0(Ma,...,M,,) and a A-node M, = An(M,...,M],) in a process tree
M are indistinguishable through the BP pas (i.e., @; || y; € pas for all zy,y; € Ang,
where z; is an activity in child M; of My and y; is an activity from another child
Mj, i#j of Mcy and similarly z; ||y; €pas for two activities from different children of
M), because the order relations in the BP pj; are defined through the eventually-
follows relation. For mayy,, there exists a choice in the synthesis step of may,q: Either
construct a loop node for an AND-complete module in the modular decomposition
tree or construct a parallel node, since there is no information in the abstracted BP

30 J.-V. Benzin et al.

pu, that allows to differentiate these two nodes. mag,, chooses the parallel node and
always constructs a parallel node for AND-complete modules with the exception of
singleton modules x || z€pyy, in which case it constructs the self-loop O(x,7) (cf. line
7-8 and 15-16 in Algorithm 3.2 in [37]).

Modules of the modular decomposition tree M DT(G) of the graph G(pas,) can by
definition [37] only contain activities.

Lemma 5 (Number of traces and size of ntl(M).log). If M is in C., then
|L (M)] is computed by ntl, |L,,(M)| = |lens(M)|, and the size is |Lp(M)| =
Sy M lens(M)[K].

Proof. We sketch the structural induction proof for the number of traces and size by
case distinction on the process tree’s node operator.

M = x(My,...,M,): The union of logs L =], £,,,(M;) constructs a log L whose
number of traces equals the sum of trace numbers and whose trace lengths equal the
concatenation of all children’s M; sequence of trace lengths lens(M;). The length of
concatenating n sequences of length lens(M;) equals the sum of n lengths |lens(M)|=
[(M)

M =— (M,...,M,,): The set of all sequential concatenations L ={o1-02-...c0,, | Vi€
{1..n}:0;€ L, (M;)} constructs a log L whose number of traces equal the number of
ordered pairs in the cartesian product X_;{1,...,

|L,n(M;)|}. Hence, | Ly, (M) =]T"_,|Lm(M;)]. The bijection ¢ enumerates the ordered
pairs for summation.

M = ~(My,...,M,): Interleaving of multiple event logs £,,(M;) through a A-node
requires interleaving of [[}, |L,, (M;)| different ordered pairs of traces we refer to as
combinations. As each of these trace combinations can have traces of varying lengths,
the function ntl enumerates the respective combinations of traces lengths through the
bijection ¢ and sums the respective number of interleaving the trace combinations.
Each combination of traces (01,...00,) € L (M7) X ... X Ly, (M,,) to be interleaved is
enumerated by index k in the domain of ¢: ke dom(¢). Hence, the kth enumerated trace
combination has its corresponding sequence of trace lengths (), (lens(M;)[er.i])
(line 12 in Algorithm 3 of the main paper). The number of interleavings of two traces
o1 and oo is (<l1”flz>) = (llljllj)! with |o1]| =11 and |og| =12, because interleaving two
sequences without changing their respective order is equivalent to shuffling two card
decks without changing the card order of the two decks [2]. As the number of riffle

shuffle permutations equals (’; qu!)! for p the number of cards in the first deck and ¢ the
number of cards in the second deck [2], the number of traces o €0y 003 equals %

with |o1| = k1 and |o2| = k. Generalizing the number of two trace interleavings
. . M, _
to the number of n traces interleaved yields (<lTl12>) * (<l1f;227 13>) sk () li,ln>) =
(Li4l2)! | (h+la+ls)! | (Litla+lz+ls)!)t () m
A 5;1(112+123)! LTty ln!(zi—llli)g = rf;:lzjl = (<zl,...,zn>)v because after
two traces have been interleaved, we can take the already interleaved trace as a
new trace for the next trace to be interleaved with. Hence, the number of n traces
interleaved equals the multinomial coefficient for the n different trace lengths [y,...,0,.
Consequently, for each kth combination of traces in the ntl function at line 12, the
multinomial coefficient is computed for the corresponding sequence of trace lengths

Synchronizing Process Model and Event Abstraction 31

15 by = Ol dens(M;)[ur;]). Each of these interleaved traces are summed
together to yield the number of traces.

Since there are [[7_, L., (M;)| different trace combinations to be interleaved, there
can only be H?Zl |£,, (M;)] different lengths of traces as a result of interleaving. The in-
terleaved trace length for the kth trace combination equals my, =Y. lens(M;)[vg ;] =
> i lk,i» which has to be repeated in lens(M) for the number of interleavings:

(mi) ®3:1<1en2§4i>[:«k,,-]>).

Lemma 7 (Maximal L,,(M,)). If L is restricted and mayy, applicable to M =
deM(L): Wt = Wminmaz s agg(x) = {v,u}, and agg(z) = {Z} with z € A\{'U,U}, i e,
may,, aggregates exactly two activities into x, then My, = mayy, (M) has the most
traces and maximal size of all L,,(M!) generated for other M with A.~{v,u}=2

and |Uye aagg(y)|> |Uye A,,..,288Y)| (cf. Definition 2 in our main paper).

Proof. Let M, be the abstracted process model for w; =wminmaz,2gg(x) ={v,u} and
M be the abstracted process model for w; < Wminmaz and an aggregate function
that abstracts more than two concrete activities, i.e., |A, N Ap| <|Ap|—2. From
condition (4) Definition 2 in our main paper, it follows that |A; | <[Anz, |, because
either are at least three concrete activities abstracted into a single abstract activity
in M/ or m abstract activities aggregate at least m+1 concrete activities. Thus, M/,
cannot have more traces and events in £,,(M.) than L£,,(M,) as a result of more
activities. Hence, M/ must have a “different” tree structure in terms of node operators
and their children.

The abstract process tree is constructed given the modular decomposition (MDT) of
the ordering relations graph G(pas) and G(pay,) such that structural tree differences
must be caused by differences in the the behavioral profiles pys, and ppy,. The two
behavioral profiles are different

1. with respect to their sizes |pas | <|pas, |,

2. with respect to order relations that involve activities g€ A, i.e., activities ¢ are
not abstracted in M, but are abstracted in M,

3. with respect to order relations of abstract activities y' € A, _,, to ¢ € Al (cf.
condition 3 Definition 2 in our main paper) and y€ A,y t0 g€ A,.

The first two differences imply more traces and events in £,,(M,). Hence, a larger
number of traces and events in L,,(M]) can only be the result of different order
relations between abstract activities ¢ to ¢’ and y to g. From more traces
and events can only occur, if order relations of abstract activities 3’ to a ¢’ are less
restrictive than from y to q.

By definition, L is restricted and w; = Wpminmaz- Hence, M is in C, and meets the
requirement on the model structure that excludes children of less than two traces
for any node — (...) in M. From [Lemma 6] it follows that the order of returning
order relations in , i.e., first +pz,, then vy, then vy, then ||, (cf. , aligns
with the order of process tree operators for a node Mg whose children remain the
same, but whose root node changes. By code inspection of Algorithm 3.1 in [37]
(that corresponds to dvagg ., In our main paper), an order relation xops, ¢ is only

32 J.-V. Benzin et al.

returned, if voprq for veagg(x) and g€ Aps occurs either relatively more often in the
behavioral profile py; or, in case of equal relative frequencies, the more restrictive
relation according to the order [0) is selected.

In any case, xonr, ¢ is only returned, if the respective order relation is either already
the most prevalent in M, i.e., the most prevalent in the behavioral profile py; of M,
or, in case of conflicts between order relation frequencies, it is the more “restrictive”
according to Hence, Algorithm 3.1 in [37] chooses an order relation between two
activities that corresponds to fewer traces and fewer events in £,,, (M) over an order
relation between two activities that corresponds to more traces and more events.
Therefore, order relations between abstract activities ¥’ and ¢’ cannot result in more
traces and events in L, (M}). Also, setting w; <Wminmaz can only further decrease
the number of traces and events in L,,(M)).

Altogether, all three differences between pas, and pyy, imply that L, (M) < L, (M,).

Lemma 1 (£,,(M,) is smaller). If L is restricted and may,, applicable to M =
pdyas (L), then Ly =Ly, (M,) has fewer traces and is smaller than L: |L,|<|L| and
[Lol <IL]-

Proof. From it follows that we can generate mdf-complete event logs
L (M) for M. From it follows that £, (M) is the smallest event log for
which IM discovers the same process tree M, i.e., it is the smallest representative of
all restricted event logs: |L,,,(M)|<|L'| and || L,,,(M)| <||(L')|| for every L'e[L]p =
{L'<&* | pdyp (L) = M A L'is restricted}. Additionally, from it follows
that it suffices to only consider magp,q With Wi =wminmas that abstracts two concrete
activities: agg(x) = {v,u} and agg(z) = {z} for v,u€ Ay and z € Ap/\{v,u}. Thus,
L, is generated for M, =may, (M) in which two concrete activities are abstracted
with w; = Wminmaz - Consequently, the following induction on the size |M| proves
(Lol <|Lon (M)] and Lo < | £(M)].

Base Cases:

— M = A(a,b): agg(x) = {a,b} and wiminmas = 0.5 results in M, = O (x,7) with
L,={{z,x)}. Hence, |L,|=1<|L,,(M)|=2 and |L,||=2<4=|L,,,(M)].

— M =x(a,b): agg(z) ={a,b} and winmas =1 results in M, =z with L, = {{x)}.
Hence, |Ly|=1<|L,(M)|=2 and |L,||=1<2=|L,,(M)].

— M = A(a,O(b,7)): agg(z) = {a,b} and wminmaz = 0.75 results in M, =z with
L,={{z)}. Hence, |Ly|=1<|Ly,(M)|=3 and |Ly|=1<9=||Ln(M)].

— M = x(a,0(b,7)): agg(x) = {a,b} and Winmaz = 0.75 results in M, = O(x,7)
with L, = {{z,z)}. Hence, |Lq|=1<|L,(M)|=2 and |L,|=2<3=| L (M)].

Induction hypothesis (IH): For any process tree M’ of smaller size than M that
is discovered from restricted event log L’ such that M/ =may,,(M’) is applicable to
M’ for wi=w,,;.maes the mdf-complete log L/ has fewer traces and is smaller than
Lon(MY: |L | <[Lpn(MY] and | L, <[£ (MY

Induction step: Let M =®(Mj,...,M,,). The loop operator cannot occur as the
root node, as it can only occur in a self-loop ((v,7) with ve A, in a process tree
M discovered from restricted event log L (cf. , i.e., it is either covered in
base cases or part of M as a subtree in one of the M;’s. Thus, apply case distinction
on the operator node @€ {x,—,A}:

Synchronizing Process Model and Event Abstraction 33

— Case ®= x:

There exist two cases of how agg(z) = {v,u},agg(z) = {z} for z€ Ap/\{v,u} can be
defined on M:

— Case v,ue M;,ie{l,...,n}: Hence, both concrete activities occur in the same child
M; of M. By (IH), the inequalities hold.

— Case ve M;,ue Mj,i,je{l,...,n},i #j: Hence, the two concrete activities v and
u occur in two different children M; and M; of M. Because the choice order
relation + is symmetric and the children Mj,...,M,, of M can be reordered
without changing the language L£,,(M), the abstracted process tree can be
decomposed: M/ = x(mabpa(x(Mi,Mj)),Mrl,...,MTm) with m =n — 2 and

71y Tm € {1,e.;n\{7,5}. M., may not always be in normal form as the process

tree mabpa(x (M;,M.])) may have a choice operator as a root node. Nevertheless,
reducing M, to a normal form with the reduction rules in Definition 5.1 [15] yields
the abstracted process tree M, and the reduction rules preserve the language

(@), ie., Lyn(M]) = L, (M,) such that the number of traces and sizes are

equal. Hence, M, = mayy, (M) is decomposable as specified by M/ such that

the abstracted process tree only differs to M in the abstraction of M; and M;.

Because | x (M;,M;)| <|M]|, the inequalities follow from (IH).

— Case ®=—:

There exist two cases of how agg(z) = {v,u},agg(z) = {z} for z€ Ap\{v,u} can be
defined on M:

— Case v,ue M;,ie{l,...n}: Analogous to case ®= x.

— Case ve M;,ue M;i,je{l,...,n}i+#j: Hence, the two concrete activities v and u
occur in two different children M; and M; of M. Without loss of generality, we
assume ¢ <j. If >1 or j<n, abstraction of M can be decomposed into M, =—
(M1,...,Mi_l,mabpa(Misrsj),MjH,...,Mn) with Misrsj =—> (]\/[iaM'L+17---an)7
because the behavioral profile py;, differs to the behavioral profile pys only for
ordering relations of activities y € Axy,_, _,. Since (1) and [Mi<,<;| < |[M], the
inequalities hold by (IH).

Ifi=1 and j=n, then M;<,<; =M, i.e., mayy, abstracts the whole process tree
M. For any qure{z...m—l}AMw it holds that vv);q and uvvw];[l q- Thus, all
relative frequencies of ordering relations (line 7-10 in Algorithm 3.1 in [37]) are
equal to 0.5 such that +p;, is always returned: wp,qq(2,q9) = w(x +ar, ¢) =0.5.
On the one hand, for any ¢; € Apg, \{v}, it holds uwj_wl q1- Thus, if v+, or
v s qr, then Wi (2,q1) =w(z 4+, 1) =0.5. If v W\»X/[l q1 or v ||ar g1, then
Winaz (2,q1) =w(z W\»X/}a ¢1) =0.5. On the other hand, for any ¢, € Ay, \{u}, it
holds v+~ ps gy, Thus, if w47 G OF U3 G, then Winas (7,¢n) =w (T 401, ¢n) =
0.5. If o pp @ OF U g Gy then Wiy (2,0) =w (@~ py, @) =0.5. Additionally,
Winag (T,2) =w(xz+pr, ©) =0.5, ie., x is not added as a self-loop O(x,7) to M,
during the synthesis step of magq.

Altogether, the abstract activity z is in choice relation v+, z to any activity
q of Ms,...,M,,_1, x is either in choice x+xs, g1 or inverse strict order relation

34

J.-V. Benzin et al.

J;vvx»ﬁa g1 to any activity ¢; of M;, and x is either in choice x+ay, ¢, Or strict
order relation x v~y g, to any activity g, of M,. If = is in choice relation to
all activities ¢; and ¢, in My and M,, respectively, then

M, = x(z,— (Mj,Ma,....M)) (D)

Although M, ..., M,_1 may, in fact, change through may,, if they contain
an optional node x(...,7,...), we do not consider optional nodes for simplicity.
Optional nodes are always abstracted by removing the 7 (if the node has more
than two children) or by “moving up” the other activity q€A (.. r,..) as a direct
child to the parent node. In both cases, the number of traces and events of the
mdf-complete log L,,(M,.) for re{2,...,n—1} decreases, so the L, we consider in
the following by ignoring optional nodes is at least as large as the L/, that would
result from also considering abstraction of optional nodes.

Let M, and M, be the nodes of M; and M,, in which v and u« occur as children
respectively. If M, =®(v,M, 2) or M, =®(u,M, 2), then the other node M, o
and M, o respectively “move up” as children to the parent node of M, and
M, respectively. If M, or M, has more than two children, child v and w is
eliminated from M, and M, respectively. For all four cases of how M; and M,
are changed into M| and M) through changing M, and M, respectively, it holds
[Lm (M7 < |Lm(M)| and L (M])| < [Lm (M) as well as similarly for M,
and M. Thus, for (I), it follows that:

Lol =1+ |Lon M) %L M) [1w (M) <[Lm(M)]

because from line 9 of Algorithm 3 in our main paper, we can compute the
number of traces of a sequence as the product of its children’s number of traces
and two children with less traces always outweigh the new trace (v)e L.

The size of L,,,(M) is:

Lo (M)
[Lm(M)] = lens(M)][j]

j=1
|Lm (M)] L (M) n

= 2 (O <X lens(My)[ui]>)lj]
j=1 k

=1 i=1

Break the trace lengths sequence up and rewrite:

n |[Lm (M)

:Z Z lens(M;) (v.)

=1 k=1

Synchronizing Process Model and Event Abstraction 35

Holding 7 constant for ¢ to separate each M;:

[Lo (M)

Z Z lens(Mp)[K])+ [1£m(M))])
P Jelln (i)

ZHE e T 1ew))

Je{l,...,n\{3}

<(Zl\llm(Mi)H)*\ﬁm(M)l:I/Sm(M)IZHﬁm(Mi)H (Eq. 2)

For the size of L, it holds:

| Lol <1+[Lal* (|£m (M) +] L (M)
D L))
re{2,...,n—1}

<T+|La| D 1Lm(M)]) <[Lm(M)]

refl.n}

because due to (Eq. 2) we can bound the size of L, by the number of traces
times the sum of each children’s log size and since |Ly| < |L£,(M)| proves the
inequality even for the upper bound of unchanged M; and M; children in M.

If v is also in inverse strict order relation to some activities ¢; in My, then M; is
split into two process trees M; ...,-: that contains the activities ¢; in inverse strict
order relation to v and M; « that contains the activities ¢; in choice relation to v.
Analogously, if u is also in strict order relation to some activities ¢, in M, then M,
is split into two process trees M, ..., that contains the activities g, in strict order
relation to u and M,, « that contains the activities g, in choice relation to u. Taken
together:

Ma = (Ml,wv)—l , X (LU,—> (MI,X 7M27-~-7MnflaMn,><)7Mn,v~r\») (II)

The mdf-complete log L, is largest both in terms of number of traces and size, if M,
and M,, only contain either parallel A(...) or sequence — (...) nodes (cf. Lemma G).
It follows that all activities ¢; in M; are in inverse strict order relation to v, i.e.,
vwo"lg, and all activities g, in M,, are in strict order relation to v, i.e., v~ gy,.
Hence, the M, with the largest L, for (II) is:

M, =— (M],x(z,— (Ms,...,.M;_1),M}) (11T)

J

36 J.-V. Benzin et al.
For (ITI), it follows that:
‘La‘=|£m(M{)|*|‘Cm(Mr/L>|*(1+ H |‘Cm(Mr)|)

= Lo (M) | Lon (M) (New)

LML)l [T 1Ln(M)) (Abs.)
re{2,...,n—1}

*

<|Lm(M)]

because M] and M both have parallel root nodeﬁ and the factorials in the
multinomial coefficients of |£,,,(M7)| and |L,,,(M],)| decrease “faster” through mul-
tiplication in (Abs.) than |L,| gains traces through adding |L,, (M7)|#|Lm (M)
in (New). For the size of the log L, it holds:

n

|Lall < |Lal# (L4 LMD+ LMD+ YT 1£m (L))

re{2,...,n—1}

<|Lm (M)

because we can bound the size of L, by the number of traces times the sum of
each children’s log size (Eq. 2) and two times a smaller log £,,,(M7) and L, (M3)
outweighs the additional event.

— Case @= A: Analogous to case ®= x.

Lemma 8 (Matching of quotient sets). If L is restricted and may,, applicable
to M =pd; (L), there exists a matching between the quotient set Lyy,/~ of event
log Ly = eaipa(L,de w-Mayp,) and the quotient set L,/ ~ of Ly = L,(M,) for
M, =maye(pd;a (L)), i.e., matching: Ly /~— Lo/~ exists. Also, for every matched
pair of equivalence classes L{Ks* € Lyyy/~ and Llass =matching(L§s®) it holds that

class class . | class class i
Lins® has equal to or more traces than Lg% : | LG | <|Lgns®| (id).

Proof. We prove the statement in four steps (I-IV). First, we prove that Ly, and
L, share the same activities Az, =Ar,. Second, we prove that the quotient sets
have the same size: |Lyy,p/ ~|=|La/~|. Third, we prove that for every equivalence
class L§l455 € Lypy/ ~, there exists exactly one equivalence class L§***€ L,/ ~ such
that their traces are indistinguishable modulo transposition: Vo, € {550 € g :
Okendail(0a,0) # L. From the three steps I-III, the existence of a matching follows.
Fourth, we prove the inequality (ii).

L. By code inspection of eay,,, it follows that Ay, = Ar,, because the parameter

agg is equally applied to L for abstraction of concrete events into their abstract

13 pd;,, discovers process trees in normal form [15] such that for M =— (Mj,...,M,) no
children of M can have the sequence as a root node.

Synchronizing Process Model and Event Abstraction 37

counterparts as it is applied to M for abstraction of concrete activities into their
abstract counterparts.

I1. Second, we establish that there are as many equivalence classes in L,/ ~
as there are in L,/ ~: |Lynp/ ~ | = |Lo/ ~ |. Towards contradiction, we assume
|Limp/ ~ | # |La/ ~ |- Given the model structure of M, (cf. [Lemma 4] and [Def. 4,
the x-node is the only process tree operator that affects the number of equivalence
classes in L,, because (J-nodes other than the self-loop as a leaf do not occur and
traces in both the language of —-node and A-node are indistinguishable modulo
transposition. Likewise, the restricted event log L in is similarly constrained. By
code inspection of eal{pa it follows that the resulting Ly, satisfies the requirements
of Hence, Ly, is also a restricted event log. Let My, =pdias(Limp) be the
process tree that the IM discovers from Lyp,,. From |Lyyn,/~|#|Le/~|, from the
respective restrictions on both Ly, and M,, and from it follows that My,
and M, must have a different number of x-nodes. Hence, it follows that | Ly, # |La,
i.e., the two event logs have different numbers of traces (cf. and line 8
. Considering that |Ly| < Ly, (M) (cf. [Lemma 1)) and that eay,, does not add
or delete traces from L, it can only be that [Lsm,[>[Lg|. Consequently, the number
of x-nodes in M;y,, must be larger than in M,.

From the last two statements, it follows that there exist two traces 01,02€ Lty
and two events in these traces dr € o1,y € o2 such that x +yy,,,, ¥ holds in the
behavioral profile pay,,,, of Mim,. Let x and y be activities that are children of one
of the additional x-nodes in My, ie., x€ Ay, and ye Ay, for two children M,
and M> of the additional x-node. From 1., it follows that x,ye Ay, . Additionally,
A,y with A€ {1} in the behavioral profile pyy, of M,, as otherwise
z and y would not be in children of the additional x-node in My,,,. There are two
alternative reasons for x+ps,,,,,y. First, z+y,,,,y holds, because eaipa removed one
of the two activities through the deleteChoiceActivities operator in line 16 If
deleteChoiceActivities does not remove the two activities, they must have been in
choice relation already. In both cases, however, the activities x and y are in choice
relation in the behavioral profile pys, of M,, i.e., a contradiction. Second, +y,,,,,y
holds, because either = or y is a concrete activity v such that one of the two was not
added to an abstracted trace ogps (cf. line 9 . Again, this can only happen, if
the two activities are in choice relation in pyy, .

III. Third, we establish that for every equivalence class L,?f,‘;;s € Lypp/ ~, there

exists exactly one equivalence class Lglass € Lo/ ~ such that: Vogs € Lffffffaa €

Lglass :Okendall(Oabs,0a) # L. Towards contradiction, we assume that there exists an

equivalence class Lffﬁ;s € Liymp/ ~ for which no equivalence class L€ L,/ ~ exists

that can be matched. Let Lgﬁg;s be the equivalence class for which no matching

equivalence class L' € Lo/~ exists. For every trace oqps € L{iis® and for every
oq ELgl“SS it follows that xengany = L. Either the traces have all a different length
|0abs| # |0a| or have different activities bag(oaps) # bag(oq) (cf. .

(Different lengths) By code inspection of eaipa it follows that a trace ogs can only
change its length relative to its concrete o by (1) deletion (line 8), (2) deletion (line
9), (3) insertion (line 12), or (4) deletion (line 17). The first deletion corresponds

to abstraction of concrete events agg(r) < A, of activities occurring in ¢ into their

38 J.-V. Benzin et al.

abstract events x. The second deletion corresponds to choice relations (cf. II). The
third deletion corresponds to self-loops. The fourth deletion corresponds to choice
relations (cf. IT). As the same abstraction operation was applied to corresponding
concrete activities in M to yield abstract activities x in M,, both choice relations are
similar for L, and Ly, (cf. II), and self-loops in M, corresponds to {...,z,...,2,...0€ L
(cf. , the corresponding trace length of 0,455 must occur for some trace o/, in
some equivalence class L€ L,/ ~.

(Different multiset of activities) From (I), the different multisets of activities bag(caps) #
bag(o,) cannot be due to activities that are only in one of the two event logs Ly,
and L,. Thus, either is an activity z€ Ag,,,, only in one of the two multisets, i.e.,
x € bag(oaps) and x ¢ bag(o,) without loss of generality, or the multiplicity of an
activity « is unequal in the two multisets, i.e, bag(coas) (z) #bag(o,) (x). If an activity
x is only in one of the two multisets, the only reason can be a corresponding choice
relation x + s, y that prevented the x activity to occur in trace o445 due to y occurring
in o4ps. However, from (II), the choice relation occurs also in M,, and by correctness
of [Alg. 4] (cf. [Lemma b)), also in L,. Hence, the trace o4ps without the x activity
must have a matching trace o’ € L%** with the same multiset of activities. If the
multiplicity of an activity x is unequal in the two multisets of activities, the only
reason can, again, be a corresponding choice relation, as the loop is restricted to a
self-loop both in L and in M,. Thus, there must be a matching trace o’ € L&4%* with
the same multiset of activities.

Overall, it follows that for every equivalence class Lfﬁ;s € Lymp/ ~, there exists
exactly one equivalence class Lglass € L,/ ~ such that: VYo € Lff,‘f;saa € Lglass :
Okendall (O'absﬂ'a) #1.

IV. Lastly, we prove (ii). From|Lemma 1] it follows that | L, | < |L|. Hence, | Lq| <|Ltmp|,
i.e., the event log L, has fewer traces than the preliminary abstracted event log Ly,
because eaé ., does not delete traces from L. Consequently, the statement follows

from (II), (IIT), |Ly| < |Ltmp|, and the minimality of L, (cf. Lemma 5)).

Lemma 2 (eapp, returns mdf-complete logs). If L is restricted and mayy, ap-
plicable to M =pd;,; (L), the event log L, = eappq (L,pd ;s ,mappg) is a mdf-complete
event log for My =mapp, (pd;y,(L)).

Proof. From line 1 of Algorithm 2 in our main paper it follows that L, is a mdf-
complete event log for M, (cf. . Hence, we must show L], =L,.

The first step ea})pa (Algorithm 1 in the main paper) abstracts the events e€ o whose
concrete activities e€ Ap,, are abstracted by may,, into their respective new abstract
activities € Ao = Anr, \Anr (cf. condition 4 Definition 2 in the main paper). Hence,
encountering an event e€o (line 7) with e€ A,,, must trigger the construction of
a new, abstract event z (line 10). A new abstract activity x € A,.,, abstracts two
or more concrete activities agg(z). Thus, all events ¢’ € o that have an activity to
be abstracted by z, i.e., ¢ €agg(x) must be abstracted into a single abstract event
x in trace o. The condition in line 8 ensures that the first occurrence of an event
e to be abstracted into x is the only e that triggers the construction of x. Because
agg(x) nagg(y) # & with z,y € Apey is allowed, line 8 captures all new abstract
activities z,y,... that abstract a concrete activity ve Ay, equal to the event e. Since

Synchronizing Process Model and Event Abstraction 39

concrete activities u€ A, must not be changed in o, a choice relation between u
and an abstract activity z, i.e., u+ar, € €par,, prohibits adding the corresponding
abstract event « to the preliminary abstracted Ly, (line 9). Since abstract activities
can be in parallel relation to themselves x ||5r, x €pps, , the corresponding abstract
event z is added twice to inject the pattern for the self-loop (cf. Section 5.2 in the
main paper). Lastly, events e that are not abstracted, i.e., e€ A_p,a, are added to the
abstracted trace ogps.

Lastly, eaépa computes a set of abstract activity sets Ay (line 16) such that for each
two activities z,y € A,Ae A, it holds that = +a7, y € par,. If a trace oaps € Limp
contains at least two activities x,y that are both in the same A of Ay, we must
eliminate all but one of the activities x,y. The function eliminateChoiceActivities
ensures elimination of the respective abstract activities per trace o.s as specified in
line 17.

The second step eagpa (Algorithm 2 in the main paper) identifies with L_ all traces
o€ L, that are already contained in Ly, (line 2) and adds them to the abstracted
event log L/, (line 3). While there are traces 0 € Lopen,, L, does not contain all required
traces o€ L,. As the only difference between a trace o€ L, and a trace ogps € Limp\ L),
is the order of events, the minimal number of transpositions required to transform
trace oqps into trace o is computed by the Kendall Tau Sequence Distance [4] denoted
by Okendati- As the distance gendan does not only compute the distance metric, but
also the required transpositions, we apply the transpositions on o4, as specified in
line 7. From it follows that |L,| <|Limp| such that the while loop in line 5
always terminates. After termination of the while loop, it follows that L = L,.
Overall, it follows that L/, = L,. Since |Lg| <|Lymp| and |Ly| <||L| (cf. [Lemma 1)),
the EA ea is well-defined.

Lemma 11 (Restricted discovery). If L is restricted, M =pd;;(L) is a process
tree in C.,.

Proof. IM does not discover duplicate activities (cf. Definition 5.7 property C'.2 and
Lemma 6.2 in [I5]), i.e., M meets requirement 1 of C,. Because IM does not discover
a loop operator through a loop cut, does not execute fall through “Flower Model” as
well as “Tau Loop”, and executes fall through “Strict Tau Loop” only to discover a
self-loop O(x,7) for x€ Ar,, M meets requirement 2 of C..

References

1. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE TKDE 16(9), 1128-1142 (2004)

2. Aldous, D., Diaconis, P.: Shuffling Cards and Stopping Times. The American Mathe-
matical Monthly 93(5), 333-348 (1986)

3. Angelastro, S., Ferilli, S.: Process Model Modularization by Subprocess Discovery. In:
2020 International Joint Conference on Neural Networks (IJCNN). pp. 1-8. IEEE (2020)

4. Cicirello, V.A.: Kendall tau sequence distance: Extending kendall tau from ranks to
sequences. INIS 7(23) (4 2020)

5. De San Pedro, J., Carmona, J., Cortadella, J.: Log-Based Simplification of Process
Models. In: BPM. pp. 457-474. Springer (2015)

40

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J.-V. Benzin et al.

Fahland, D., van der Aalst, W.M.P.: Simplifying Mined Process Models: An Approach
Based on Unfoldings. In: BPM. pp. 362-378. Springer (2011)

Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled
manner. Information Systems 38(4), 585-605 (2013)

Ferilli, S.: WoMan: Logic-Based Workflow Learning and Management. IEEE Transactions
on Systems, Man, and Cybernetics: Systems 44(6), 744-756 (2014)

Janssenswillen, G., Depaire, B., Jouck, T.: Calculating the Number of Unique Paths in
a Block-Structured Process Model. In: ATAED. pp. 138-152. CEUR (2016)
Kammerer, K., Kolb, J., Reichert, M.: PQL - A Descriptive Language for Querying,
Abstracting and Changing Process Models. In: BPMDS, vol. 214, pp. 135-150. Springer
(2015)

Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for User-Centered
Adaption of Large Process Models. In: Service-Oriented Computing. pp. 484-498.
Springer (2012)

Kolb, J., Reichert, M.: Data flow abstractions and adaptations through updatable
process views. pp. 1447-1453. SAC ’13, ACM (2013)

Kolb, J., Reichert, M.: A flexible approach for abstracting and personalizing large
business process models. ACM SIGAPP Applied Computing Review 13(1), 6-18 (2013)
Kopke, J., Eder, J., Kiinstner, M.: Projections of Abstract Interorganizational Business
Processes. In: Database and Expert Systems Applications. pp. 472-479. Springer (2014)
Leemans, S.J.J.: Robust Process Mining with Guarantees: Process Discovery, Confor-
mance Checking and Enhancement, LNBIP, vol. 440 (2022)

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Event Logs - A Constructive Approach. Tech. rep., Eindhoven
University of Technology (2013), no. BPM-13-06

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Event Logs - A Constructive Approach. In: Colom, J.M.,; Desel,
J. (eds.) Application and Theory of Petri Nets and Concurrency. pp. 311-329. LNCS,
Springer (2013)

Lim, J., Song, M.: A framework for understanding event abstraction problem solving:
Current states of event abstraction studies. DKE 154, 102352 (2024)

Loépez-Pintado, O., Murashko, S., Dumas, M.: Discovery and Simulation of Data-Aware
Business Processes. In: 2024 6th International Conference on Process Mining (ICPM).
pp. 105-112 (Oct 2024).

Mafazi, S., Grossmann, G., Mayer, W., Schrefl, M., Stumptner, M.: Consistent Ab-
straction of Business Processes Based on Constraints. J. Data Semant. 4(1), 59-78
(2015)

Mafazi, S., Mayer, W., Grossmann, G., Stumptner, M.: A Knowledge-based Approach
to the Configuration of Business Process Model Abstractions. In: KiBP@ KR. pp. 60-74
(2012)

McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed
graphs. Discrete Applied Mathematics 145(2), 198-209 (Jan 2005)

Meyer, A., Weske, M.: Data Support in Process Model Abstraction. In: Conceptual
Modeling. pp. 292-306. Springer (2012)

Milner, R.: The space and motion of communicating agents. Cambridge University Press
(2009)

Ordoni, E., Miille, J., Bohm, K.: Reduction of data-value-aware process models: A
relevance-based approach. Information Systems 114, 102157 (2023)

Polyvyanyy, A., Smirnov, S., Weske, M.: On application of structural decomposition for
process model abstraction. In: BPSC, pp. 110-122 (2009)

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Synchronizing Process Model and Event Abstraction 41

Pérez-Castillo, R., Fernandez-Ropero, M., Guzman, I.G.R.d., Piattini, M.: MARBLE.
A business process archeology tool. In: 2011 27th IEEE International Conference on
Software Maintenance (ICSM). pp. 578-581 (Sep 2011)

Pérez-Castillo, R., Fernandez-Ropero, M., Piattini, M.: Business process model refactor-
ing applying IBUPROFEN. An industrial evaluation. Journal of Systems and Software
147, 86-103 (2019)

Reichert, M.: Visualizing Large Business Process Models: Challenges, Techniques, Ap-
plications. In: BPM Workshops, vol. 132, pp. 725-736. Springer (2013)

Reichert, M., Kolb, J., Bobrik, R., Bauer, T.: Enabling personalized visualization of
large business processes through parameterizable views. pp. 1653-1660. SAC '12, ACM
(2012)

Senderovich, A., Shleyfman, A., Weidlich, M., Gal et al., A.: P"~3-Folder: Optimal Model
Simplification for Improving Accuracy in Process Performance Prediction. In: BPM. pp.
418-436. Springer (2016)

Senderovich, A., Shleyfman, A., Weidlich, M., Gal, A., Mandelbaum, A.: To aggregate or
to eliminate? Optimal model simplification for improved process performance prediction.
Information Systems 78, 96-111 (Nov 2018)

Smirnov, S., Dijkman, R., Mendling, J., Weske, M.: Meronymy-Based Aggregation of
Activities in Business Process Models. In: ER. pp. 1-14. Springer (2010)

Smirnov, S., Reijers, H.A., Weske, M.: From fine-grained to abstract process models: A
semantic approach. Information Systems 37(8), 784-797 (2012)

Smirnov, S., Reijers, H.A., Weske, M., Nugteren, T.: Business process model abstraction:
a definition, catalog, and survey. Distrib. Parallel Databases 30(1), 6399 (2012)
Smirnov, S., Weidlich, M., Mendling, J.: Business Process Model Abstraction Based on
Behavioral Profiles. In: Service-Oriented Computing. pp. 1-16. Springer (2010)
Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based on
synthesis from well-structured behavioral profiles. Int. J. Coop. Inf. Syst. 21(01), 55-83
(2012)

Tsagkani, C., Tsalgatidou, A.: Abstracting BPMN models. In: Proceedings of the 19th
Panhellenic Conference on Informatics. pp. 243-244. PCI ’15, Association for Computing
Machinery (2015)

Tsagkani, C., Tsalgatidou, A.: Process model abstraction for rapid comprehension of
complex business processes. Information Systems 103, 101818 (Jan 2022)

Tsalgatidou, A., Tsagkani, C.: Rule-based Business Process Abstraction Framework:. In:
BMSD. pp. 173-178. SCITEPRESS (2016)

Van Houdt, G., de Leoni, M., Martin, N., Depaire, B.: An empirical evaluation of
unsupervised event log abstraction techniques in process mining. Inf. Syst. 121, 102320
(2024)

Vanhatalo, J., Volzer, H., Koehler, J.: The refined process structure tree. Data &
Knowledge Engineering 68(9), 793-818 (Sep 2009)

Volker, M., Weske, M.: Ontology-Based Abstraction of Bot Models in Robotic Process
Automation. In: ER. pp. 239-256 (2023)

Wang, N., Sun, S., Liu, Y., Zhang, S.: Business Process Model Abstraction Based on
Fuzzy Clustering Analysis. International Journal of Cooperative Information Systems
28(03), 1950007 (2019)

Wang, N., Sun, S., OuYang, D.: Business Process Modeling Abstraction Based on
Semi-Supervised Clustering Analysis. Business & Information Systems Engineering
60(6), 525-542 (2018)

Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model
repositories. Computers in Industry 62(5), 467486 (2011)

42

47.

48.

49.

50.

J.-V. Benzin et al.

van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process
Discovery Using Integer Linear Programming. In: PETRI NETS. pp. 368-387 (2008)
Xue, G., Zhang, K., Yang, J., Yao, S.: Plain abstraction of business process model. In:
ICCIT. pp. 338-341 (2011)

Ye, J., Zhang, S., Lin, Y.: Log Optimization Simplification Method for Predicting
Remaining Time (2025), arXiv:2503.07683 [cs]|

van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction in
process mining: literature review and taxonomy. Gran. Comp. 6(3), 719-736 (2021)

	Synchronizing Process Model and Event Abstraction for Grounded Process Intelligence (Extended Version)

