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Abstract. Model abstraction (MA) and event abstraction (EA) are means
to reduce complexity of (discovered) models and event data. Imagine a process
intelligence project that aims to analyze a model discovered from event data
which is further abstracted, possibly multiple times, to reach optimality goals,
e.g., reducing model size. So far, after discovering the model, there is no
technique that enables the synchronized abstraction of the underlying event
log. This results in loosing the grounding in the real-world behavior contained
in the log and, in turn, restricts analysis insights. Hence, in this work, we
provide the formal basis for synchronized model and event abstraction, i.e.,
we prove that abstracting a process model by MA and discovering a process
model from an abstracted event log yields an equivalent process model. We
prove the feasibility of our approach based on behavioral profile abstraction
as non-order preserving MA technique, resulting in a novel EA technique.

Keywords: Event Abstraction · Model Abstraction · Complexity · Synchro-
nization

1 Introduction

Discovering a process model M from an event log L is a key step in analyzing the
actual process behavior recorded by information systems [15]. However, events are
often logged at a low granularity level, leading to the discovery of complex and
uninterpretable process models that do not match stakeholders’ expectations. Event
abstraction (EA) techniques [18,50] have been proposed to address this challenge by
lifting the granularity of events to satisfy an abstraction goal that formalizes stake-
holder’s expectations. While empirical studies have evaluated whether EA techniques
can satisfy abstraction goals like model complexity reduction [41], existing EA tech-
niques neither provide formal guarantees on the reduction of model complexity nor on
satisfying any other goal. Hence, current EA techniques cannot be applied to find the
optimal abstraction. Without optimality, downstream process intelligence tasks such
as process enhancement [15], business process simulation (BPS) [19], and predictive
process monitoring (PPM) [49] are uncertain to meet the stakeholder’s expectations.

Model abstraction (MA) techniques [37,20,32], by contrast, ensure satisfying an
abstraction goal such as reducing model complexity through solving an optimization
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problem [20,32]. Specifically, the optimization objective is the abstraction goal and
decision variables are the application sequence of abstraction operations and their
parameters. Hence, the question arises how the optimality guarantees of MA
can be utilized for EA and, in turn, the knowledge of real-world process
behavior stored in the logs can be exploited for process intelligence tasks
on abstracted models, i.e., how to synchronize MA and EA (RQ).

For illustrating RQ and its effects on process intelligence, consider the scenario
depicted in Fig. 1: A bank runs trading processes for i) derivative and ii) fixed income
products logged by two information systems. The bank wants to understand the
common business process underlying the trading of i) and ii) through simulation and
prediction tasks.

The bank starts with discovering a process model M (cf. Fig. 1 3 ) from log L

merged from the two information systems (cf. Fig. 1 1 ), i.e., L pd
ÝÑM using data-aware

discovery, e.g., [19] after [16], as in this case also data objects are of interest. Assume
now that in order to reduce the obvious complexity ofM , behavioral profile abstraction
(BPA) mabpa [37] abstracts M into Ma (cf. Fig. 1 5 ) and subsequently, in order to gen-
eralize data objects to streamline the underlying processes, abstracts Ma into Maa (cf.
Fig. 1 7 ). WhileMa andMaa fulfill the optimization goals, they have lost their ground-
ing in an event log. Thus, the bank cannot proceed due to missing abstracted event
logs La (cf. Fig. 1 4 ) and Laa (cf. Fig. 1 6 ) that match the granularity of Ma and
Maa respectively and contain the actual observed behavior with rich event attributes.

One solution would be to generate logs by playing out the abstracted models. How-
ever, this cannot reproduce the actual behavior stored in the log w.r.t., e.g., number
of traces, frequency of paths, or data values. To overcome this information loss and to
maintain flexibility of process intelligence tasks, we propose synchronizing MA with EA
techniques to mirror the abstraction applied to M on L. The core idea of synchroniza-
tion is to prove that abstracting a model via ma and discovering a model from an log
abstracted by ea yields equivalent models Ma (annotated by question mark in Fig. 1).

MA techniques can be distinguished into order-preserving and non-order-preserving
techniques. In this work, we opt to study non-order-preserving techniques such as [37]
as they pose the more general, harder problem. Moreover, MA techniques like [37]
enable both, unrestricted abstraction of control flow with data flow abstraction by
clustering activities according to similar data flow or semantical control flow abstrac-
tion by clustering activities that are semantically-related according to domain-specific
part-of relations between activities [33]. Overall, the contributions of this work include
conditions under which MA and EA can be synchronized for non-order-preserving
MA and an EA technique that maintains observed distributions in the abstracted
log. As these contributions are conceptual and formal, the evaluation is the formal
synchronization proof.

Section 2 introduces background and related work. Sect. 3 establishes the theo-
retical foundation for synchronization by formalizing the problem and presenting our
general approach. Sect. 4 presents our concrete BPA-based synchronization method,
including the adaptation of the BPA technique and the design of the corresponding
synchronized EA technique. Sect. 5 lays the theoretical foundations needed for proving
synchronization correctness, and Sect. 6 proves synchronization correctness to estab-
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Fig. 1: Process Intelligence in the Financial Domain (Example)

lish the equivalence of MA’s and EA’s resulting process model. Sect. 7 demonstrates
the impact of synchronization on the illustrative example from the financial domain.
Sect. 8 concludes the paper.

2 Background and Related Work

Model representation, abstraction, and existing techniques: As logical repre-
sentation of process models, we opt for process trees due to their block-structuredness,
often advocated in MA literature [26,37,20] and due to its favorable properties like
soundness [16]. Let A be the set of all possible activity names and the silent activity
τ RA. Then process trees are recursively defined by

– M “v for vPA or M “τ are process trees (referred to as leaves), and
– M “‘pM1,...,Mnq with n process trees M1,...,Mn and operators ‘Ptˆ,Ñ,^,öu

is a process tree referred to as a ‘-node.

Let M be the set of all models. Then, a model abstraction (MA) is a partial
function ma:MÛM that maps a process model M to another (abstracted) process
model Ma where it is assumed that the complexity of Ma is reduced compared to M .
We call ma is applicable to M when M Pdompmaq. The most common complexity
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metric used in MA techniques is the size of the process model [35,20] (cf. Tab. 1).
In Fig. 1, size |M |“28ă|Maa|“12 if we count all nodes in the models. For process
trees, the size of |M | is defined as the sum of ‘-nodes and leaves. We refer to the
activities in a process tree M with AM , e.g., AMaa “tRQ,OT,N,CTu in Fig. 1 7 .

In Tab. 1, we report the 19 MA techniques that are not covered by the MA
survey [37] from 2012. In addition to the year of publication, we report the following
nine properties for each technique. The abstraction goal (goal in Tab. 1) specifies the
target of the MA technique. The type specifies whether the abstraction operators
are only order-preserving (OP), only non-order-preserving (NOP), or both. The
model reports the modeling language in which process models are represented. The
process perspective (Persp.) reports what perspective is represented in the model and,
subsequently, abstracted by the technique. For the perspective, we abbreviate the
control-flow persp. by C, the data persp. by D, and the organizational persp. by O.

Ref. Year Goal Type Model Persp. Op. Abs. Obj. Optim. pd ea

[25] 2023 Efficient verification OP BPMN C,D E SESE, data objects ✓ ✗ ✗

[43] 2023 Quick overview OP BPMN C A,E SESE ✗ ✗ ✗

[39,40]
[38] 2022 Quick overview OP BPMN Collab. C,D,O A,E,G

SESE, data objects,
lanes, messages ✗ ✗ ✗

[3] 2020 Quick overview OP WoMan [8] C A SESE ✗ WIND [8] ✗

[44] 2019 Quick overview OP BPMN C A SESE ✗ ✗ ✗

[28] 2019 Quick overview OP BPMN C,D A,G SESE, data objects ✓ MARBLE [27] ✗

[45] 2018 Quick overview OP BPMN C A SESE ✗ ✗ ✗

[32,31] 2018 Efficient prediction OP GSPN C,P A SESE ✓ IM [17] ✗

[5] 2015 Quick overview,
balanced discovery NOP PN C E P,F ✗ ILP [47] ✗

[10] 2015 Configurable (N)OP BPMN C A,E SESE, Flows ✗ ✗ ✗

[20,21] 2015 Configurable OP BPMN C,D,O A,E,G
SESE, data objects,

resources ✓ ✗ ✗

[14] 2014 Privacy concerns OP PT C E SESE ✗ ✗ ✗

[7,6] 2013 Balanced discovery OP PN C E P,F ✗ All ✗

[13,29]
[30] 2013 Custom views (N)OP BPMN C,D,O A,E,G

SESE, data objects,
activities, resources ✗ ✗ ✗

[12,11] 2013 Change propagation (N)OP BPMN C,D,O A,E,G
SESE, data objects,
activities, resources ✗ ✗ ✗

[37,34]
[36,33] 2012 Large repository NOP BPMN C,D A Activities ✗ ✗ ✗

[23] 2012 Quick overview OP BPMN C,D A SESE, data object ✗ ✗ ✗

[46] 2011 Large repository,
quick overview (N)OP BPMN C A,E SESE, flows ✗ ✗ ✗

[48] 2011 Quick overview OP CCS C A,E SESE ✗ ✗ ✗

Table 1: Model Abstraction Techniques

Next, the abstraction operators (Op.) show whether the technique applies elim-
ination (E), aggregation (A), generalisation (G), or a combination of the three.
The abstraction objects (Abs. Obj.) report what model elements in the domain of
the abstraction operators, i.e., what model elements can be deleted, aggregated,
or generalised. Obviously, the serialization of arbitrary BPMN process models into
their refined process tree structure [42] with single-entry single-exit (SESE) process
fragments is prevalent among MA techniques.



Synchronizing Process Model and Event Abstraction 5

For the last three properties, we report whether the MA technique has the property
or not. A MA technique applies optimization (Optim.) iff the abstraction goal is
translated into an optimization objective and a solver is proposed that finds an optimal
operator sequence and each operator’s respective parameters that must be applied on
a model to satisfy the abstraction goal. A MA techniques is formulated on discovered
process models (pd) iff it takes an event log L as input, discovers a process model
M through process discovery technique pd, and then abstracts M . Additionally, we
report the process discovery technique that is considered in the MA technique. Lastly,
a MA technique synchronizes its abstraction operators (ea) iff for each operator a
corresponding EA technique is defined that also abstracts the event log.

Roughly half of MA techniques focus solely on the “quick overview” abstraction
goal, i.e., aim to reduce the model size. Further selected goals in descending order
are as follows. The goal “large repository” (2 times) is at par with ”configurable” and
“balanced discovery”. While the former aims to manage a large repository of process
models by only storing the fine-grained models and generating the coarse-grained
models through MA, the latter two depend on the user through parametrization and
the process discovery quality dimensions respectively. For example, [10] proposes a
process querying language that is capable of abstracting behavior before returning the
result. The remaining five abstraction goals are each only once targeted. Interestingly,
only two MA techniques target a goal, “efficient verification” and “efficient prediction”,
that considers process intelligence tasks beyond understanding and visualisation.

The majority of 19 techniques propose order-preserving abstraction operators
with 6/19 MA techniques considering operators that are non-order-preserving. MA
techniques are commonly proposed for BPMN models with 7 exceptions: One tech-
nique is proposed for the declarative model language of the workflow management
(WoMan) framework [8], one technique is proposed for generalised stochastic Petri
nets (GSPN), two techniques are proposed for Petri nets (PN), and one technique
each for process trees (PT) and models in the calculus for communication systems
[24]. Clearly, the control-flow perspective is always represented and the main target
of any abstraction operator (cf. abstraction objects). 15/19 MA techniques

In the following, we discuss the five MA techniques that consider an event log L in
more detail. MA technique [7] abstracts the discovered process model M by filtering
arcs in the unfolding of M and by applying three structural simplifications on the
refolded M. Likewise, MA technique [5] abstract the discovered process model M
by either projecting M into less complex model classes like series-parallel Petri nets
or by removing infrequently-enabled arcs detected through replay from M . In both
techniques, the mapping between activities in the model and events in the event log
does not change, because both techniques neither abstract activities, nor events. MA
technique [32] optimizes the application sequence of five order-preserving abstraction
operators towards reducing the model size while controlling the information loss for
efficiently predicting process performance. MA technique [28] applies a sequence of
abstraction operators on a discovered process model M; MA technique [3] applies
pattern mining to find order-preserving clusters of activities in M to be abstracted.
All three techniques [32,28,3] face the challenges of MA without abstracted event logs
(cf. Sect. 1): little grounding in actual behaviors and lack of flexibility for applying
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downstream process intelligence tasks. Besides, none of the three MA techniques
considers non-order-preserving abstraction.

Log representation and abstraction: An event log L is a multiset of traces, i.e.,
L“rσ1,...sPBpA˚q. We denote the set of activities that occur in an event log with AL

and write ePσ iff e occurs in σ, i.e., DiPt1,...,|σ|u :σris“e with σris retrieving the ith
event. There are 10 distinct activities (Act.) in AL for L in Fig. 1 1 . We omit further
rich event attributes like the “Terms” in L in our trace conceptualization, because
they are irrelevant for the proof of synchronization. Event abstraction (EA) is
defined as a partial function ea:BpA˚qÛBpA˚q such that the number of traces and
events do not increase, i.e., |eapLq|ď|L| and }eapLq}ď}L} with }L}“

ř

σPL|σ| [50].

We refer to [50,18] for a detailed discussion and taxonomy on EA techniques and
to [41] for an empirical evaluation of EA techniques published through 2024. EA
technique [49] aim to improve the accuracy of remaining time predictions that are
learned from low-level event logs by applying three EA operators on the log. The
three EA operators are designed to mirror the three MA operators sequence, self-loop,
and choice. Yet, no theory is developed to prove the correctness of the designed EA
operators. Moreover, the proposal is specific to remaining time prediction and does
not show how to extend the EA technique with additional operators.

Process tree discovery and formal definitions: The semantics of a process
tree LpMq is the language represented by M [16]. Given an event log L, a process dis-
covery technique pd discovers a process tree M that represents L, i.e., pd:BpA˚qÑM
with M the set of all process trees. For example, a process discovery technique, IM [15],
leverages the directly-follows graph (DFG) GpLq“pALYtŹ,Ÿu,ÞÑLq with Ź,ŸRAL

3

and ÞÑL the directly-follows relation to discover M. An event log L and a process
tree M can be related based on the notion of directly-follows completeness [15], i.e., L
and M are directly-follows complete (df-complete), denoted by L„df M , iff the DFGs
GpLq and GpMq “ GpLpMqq are equal: GpLq “ GpMq. Df-completeness captures
the behavior in L and M as equivalent to the abstract representation of a DFG.
Df-completeness is a condition for the Inductive Miner (IM) to rediscover a process
tree M from L that is isomorphic to M 1 that was executed for recording the event
log L and, as such, is integral to the EA techniques presented in Sect. 4.2 and Sect. 6.

Two process trees M1,M2 are isomorphic, formally M1–M2, iff they are syntac-
tically equivalent up to reordering of children for ^- and ˆ-nodes and the non-first
children of ö-nodes. A process tree M is isomorphic rediscoverable by pd from event
log L with LĎLpMq iff pd discovers a process tree M 1“pdpLq that is isomorphic to
M [16]. Isomorphic rediscoverability has been proven for the IM through assuming
a restriction QpMq that must hold for process tree M and a restriction RpL,Mq that
must hold for L and M. QpMq requires a process tree without silent activities τ ,
duplicate activities, and joint start and end activities of a ö-nodes first child and
RpL,Mq requires df-completeness [16].

3
Ź is used to denote the start activity σ“xv,...y as a directly-follows pair pŹ,vqPÞÑL and
Ÿ analogously for the end activity of a trace.
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3 Synchronization Framework

In this section, we establish the theoretical foundation for synchronizing MA and EA
techniques. We first formalize the synchronization problem and requirements, then
present our general synchronization approach.
Synchronization problem and requirements. For synchronization to be possible,
we must be able to design an EA technique eama that transforms the event log such
that process discovery yields an abstracted model isomorphic to what we would
obtain through direct model abstraction.

Definition 1 (Synchronizability). Let L be an event log and M “ pdpLq the
discovered process tree such that model abstraction ma is applicable to M, i.e., Ma“

mapMq. L, ma, and pd are synchronizable iff there exists event abstraction eama s.t.
pdpeamapLqq–Ma.

Synchronization approach. We follow a two-step approach for synchronizing MA
and EA: first discovering a complex process tree M “pdpLq followed by applying
ma to yield Ma “ mapMq, and abstracting La “ eamapLq followed by discovering
M 1

a “ pdpLaq should result in isomorphic abstract process trees, i.e., Ma – M 1
a.

Therefore, our approach requires two key components:
– MA Technique Adaptation: Not all MA techniques are immediately suitable

for synchronization. We need to ensure the MA technique is well-defined and
provides sufficient structure for designing a corresponding EA technique.

– Synchronized EA Design: The EA technique must be designed to mirror the
abstractions applied by the MA technique while preserving the behavioral rela-
tionships needed for correct process discovery.

We demonstrate this approach using the behavioral profile abstraction (BPA)
technique [37] for the following reasons. First, synchronizing BPA constitutes a sig-
nificant challenge because it allows abstracting arbitrary sets of activities to allow
abstractions wrt. the data flow (cf. Fig. 1). Hence, the corresponding EA technique
must abstract the event log while guaranteeing the correct order of activities in the
abstracted event log. Second, BPA aims to reduce model size, which aligns well with
the size characteristics of event logs.

We select the Inductive Miner (IM) including fall-throughs for process discovery
[15] to balance practical relevance with proof complexity, as isomorphic rediscover-
ability is already established for IM. Because our synchronization approach requires
the novel EA technique eabpa to result in abstracted event logs La for which the IM
discovers Ma to maintain the relation between log and model, La enables further
process intelligence tasks that are grounded in the real-world behavior of La and that
were not possible before (cf. Sect. 1).

4 BPA-Based Synchronization Method

In this section, we present our concrete synchronization method based on BPA. We
first adapt the BPA technique to ensure it meets our synchronization requirements
(Sect. 4.1), then design the corresponding synchronized event abstraction technique
(Sect. 4.2).
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4.1 Adapting BPA for Synchronization

This section introduces the non-order-preserving BPA technique mabpa and adapts
it for synchronization. To illustrate the three steps of mabpa, we introduce a running
example. In addition to the illustrative example in Fig. 1, we present the running
example that is more detailed to demonstrate the full behavior of both mabpa in the
following, our synchronized EA technique eabpa in Sect. 4.2, and our algorithm to
generate minimal df-complete event logs in Sect. 5.2. Hence, the running example
is used to demonstrate the algorithms step-by-step, whereas the illustrative example
motivates our approach in Sect. 1 and is revisited in Sect. 7.

→

receive buy proposal

check buying party website

notify client

×

archive transaction

reject proposal

→

^

sign contract

→

→

brief client

process NDA

request further
information from client

^

↺

provide due
diligences

tau

check
documents

→

receive buy proposal

×

archive transaction

reject proposal

→

^

sign contract

audit buyer

attend client

↺

tau

facilitate due diligence

agg(audit buyer)= {check buying party website, check documents}

agg(attend client)= {notify client, 
request further information from client, brief client}

agg(facilitate due diligence)= {process NDA,
provide due diligences, check documents}

Process tree M

Abstracted process tree M = mabs    (M)bpaa

Fig. 2: Running example: Process tree M and abstracted process tree mabpapMq [37]
for threshold wt“0.5.

ref trace

σex1 xRBP,CBW,NC,RP,ATy

σex2 xRBP,CBW,NC,RFI,BC,PN,CD,CD,PDD,SC,ATy

σex3 xRBP,CBW,NC,RFI,PN,BC,CD,CD,PDD,SC,ATy

σex4 xRBP,CBW,NC,PN,RFI,BC,CD,CD,PDD,SC,ATy

Table 2: Excerpt of event log L2.

Running example: Figure 2 shows pro-
cess tree M which describes a transac-
tion process by a mergers & acquisi-
tions advisor that sells companies for
its clients. The advisor receives buy pro-
posals, checks their websites, and notifies
the client about the new proposal. If the
proposal is convincing, further informa-
tion for the buyer is requested from the client and the client is briefed while the advisor
processes the non-disclosure agreement (NDA), followed by providing the buyer with
confidential documents (due diligence) and checking the documents received from the
buyer (multiple times). In the end, an acquisition contract is signed and the proposal
is archived. If the proposal is not convincing, it is rejected. Lastly, Table 2 shows four
traces σex1,... of an event log L2 that is recorded from executing M (activity names
are abbreviated by their acronym).

BPA aims to enable unrestricted abstraction of concrete activities into abstract
activities. Consequently, we can cluster activities according to their data flow (cf.
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Fig. 1 3 ) and apply mabpa to abstract accordingly. At the core of mabpa lies the
behavioral profile of a process tree M . It is equivalent to the footprint [1] of a process
model and constitutes an abstract representation of the behavior allowed by the
model similar to the DFG (cf. Sect. 2), but more coarse-grained. Hence, a behavioral
profile contains less detailed information on the behavior of the model than the DFG,
e.g., a loop öpa,bq leaves a distinct graph pattern in the DFG, but is indistinguishable
from ^pa,bq in a behavioral profile. The behavioral profile is defined as follows:

Definition 2 (Behavioral profile, adapted from [37]). Let M be a process
tree, A“ΣpMq its activities, and LpMq its language. Let ą ĎAˆA be the weak-
order relation that contains all activity pairs px,yqPą for which there exists a trace
σ“xα1,...,αnyPLpMq with jPt1,...,m´1u and jăkďm such that αj “x and αk “y.
Given the weak-order relation, an activity pair px,yq is either:

– in a strict order relation ùM : xąy and yčx,
– in an choice order relation `M : xčy and yčx,
– or in a parallel order relation ∥M : xąy and yąx.

The set of all three relations ùM ,`M , and ∥M is the behavioral profile pM of M.
The set of all behavioral profiles over activities A is denoted by BPA.

As aforementioned, we acronym the activity names. For example, we have
RBP ùM RP, RP`M SC, and CD ∥M CD in the behavioral profile pM of the con-
crete process tree M in Fig. 2. Given the behavioral profile notion, we can introduce
mabpapMq“Ma as three subsequent steps:

S1 The behavioral profile is computed: prpMq“pM PBPA.
S2 Given a behavioral profile, the abstract behavioral profile pMa

is derived from
pM by a parametrized function: dvagg,wtppMq “ pMa. The first parameter is a
function agg :Aa Ñ2A with Aa the activities of Ma without the silent activity
and A“ΣpMq. agg specifies which abstract activities correspond to which sets
of concrete activities. The second parameter 0ăwt ď1 controls what ordering
relation frequencies are selected for pMa

from pM .
S3 Given an abstract behavioral profile, an abstracted process tree Ma is synthesized

whose behavioral profile equals pMa, i.e., syppMaq“Ma. To uniquely construct
a process tree Ma from profile pMa, the profile is encoded as a graph GppMaq

and the graph’s unique modular decomposition tree MDTpGq [22] is computed.
If each module m in MDTpGq is either linear, AND-, or XOR-complete [37],
then process tree Ma is constructed by adding a tree node for each module. As
a module can be primitive, i.e., contains “conflicting” ordering relations, not all
profiles pMa have a corresponding process tree Ma such that this step may fail:
syppMaq“K.

To illustrate mabpa, we refer to Fig. 2. The process tree M, the abstracted
process tree Ma, and the parameter agg are depicted. First, the behavioral profile
pM of M is computed (S1). Given pM , the second step dvagg,wt

ppMq is computed
(S2). The parameter agg is denoted in Fig. 2 by three different colors. For instance,
aggpABq “ tCBW,CDu. For presentation purposes, the mappings aggpyq “ tyu for



10 J.-V. Benzin et al.

Algorithm 1 Derivation of an ordering relation (adapted from [37])
1: deriveOrderingRelationagg,wt

pActivityx,Activityyq

2: wpxąMa yq“|t@pv,uqPaggpxqˆaggpyq :vùM u_v∥M uu|

3: wpyąMa xq“|t@pv,uqPaggpxqˆaggpyq :vù
´1
M u_v∥M uu|

4: wpxčMa yq“|t@pv,uqPaggpxqˆaggpyq :vù
´1
M u_v`Muu|

5: wpyčMa xq“|t@pv,uqPaggpxqˆaggpyq :vùM u_v`Muu|
6: wprod“|aggpxq|¨|aggpyq|
7: wpx`Ma yq“minpwpxčMa yq,wpyčMa xqq¨ 1

wprod

8: wpxùMa yq“minpwpxąMa yq,wpyčMa xqq¨ 1
wprod

9: wpxù
´1
Ma

yq“minpwpyąMa xq,wpxčMa yqq¨ 1
wprod

10: wpx∥Ma yq“minpwpxąMa yq,wpyąMa xqq¨ 1
wprod

11: if wpx`Ma yqěwt then
12: return x`Ma y
13: else if wpxùMa yqěwt then
14: if wpxù

´1
Ma

yqąwpxùMa yq then
15: return xù

´1
Ma

y

16: else
17: return xùMa y

18: else if wpxù
´1
Ma

yqěwt then
19: return xù

´1
Ma

y

20: else if wpx∥Ma yqěwt then
21: return x∥Ma y
22: else
23: return x∥Ma y

y P tRBP,RP,SC,APu are not visualized in Fig. 2. Note that at this stage, the order
of abstract activities in the abstracted process tree Ma is unknown and cannot be
derived intuitively, because their mappings of agg may overlap (e.g., AB and FDD)
or the order of their concrete activities is in conflict (e.g., NC and BC in aggpACq vs.
CD in aggpFDDq are in strict and interleaving order respectively). mabpa computes
the ordering relations between two abstract activities x,yPMa by selecting the most
restrictive ordering relation among those that occur relatively more frequent than
or equally frequent to the threshold wt. To that end, dvagg,wt applies Alg. 1 to each
abstract activity pair x and y.

Alg. 1 consists of three blocks: Counting frequencies of weak order relations
between the respective concrete activities (line 2-5), deriving relative frequencies
for ordering relations from weak order relations (line 6-10), and selecting the most
restrictive ordering relation (` > ù´1 > ù > ∥) that is equal to or greater than
threshold wt. For example, Alg. 1 applied to AB and AC for wt“0.5 computes the
relative weak order frequency wpABąMa

ACq“5{6, because CBWąNC,CBWąRFI,CBWą

BC,CBW ą NC,CD ą RFI, and CD ą BC. Analogously, we have wpAC ąMa
ABq “ 3{6,

wpAB čMa
ACq “ 1{6, and wpAC čMa

ABq “ 3{6. The weak order frequencies are
transformed to order relation frequencies by taking the minimum of the respective
two weak order relations. Thus, wpAB`Ma ACq “1{6, because 1{6 is the minimum
of wpAB čMa ACq and wpAC čMa ABq. Analogously, we have wpAB ùMa ACq “ 3{6,
wpABù

´1
Ma

ACq “ 1{6, and wpAB ∥Ma
ACq “ 3{6 such that ABùMa

AC is the most
restrictive ordering relations whose relative frequency is equal to wt. Overall, the
result is ABùMa

AC.
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As the third step (S3), mabpa attempts synthesizing the abstracted process tree
Ma from the abstract behavioral profile pMa

(cf. Algorithm 3.2 in [37]). To construct
the different nodes of the process tree Ma, an order relations graph GppMaq“pV,Eq

for a given behavioral profile pMa is constructed. The nodes are the activities V “Aa.
Edges correspond to the strict order relation and the choice relation without the
identity, i.e., E “ ùMa

Y `Ma
z idAa

. For example, Fig. 3 (a) depicts the order
relations graph GppMa

q for the abstracted behavioral profile pMa
that is derived in

step 2 for the running example in Fig. 2.

RBP

RP

AB

AC

FDD C1

C1 C1

C2

C2 C2

w = 0.5t

G(p   )Ma

wt0.5 0.66

SC

AT

RBP

RP

AB

AC

FDDSC

AT

RBP

RP

AB

AC

FDD C1

C2

C3

C3

C4

SC

AT

RBP

RP

(a) Order relations graph              (b) Modules       and        
are discovered

(c) Modular decomposition tree
 MDT(G)

(d) Order relations graph                   G'(p   )M'a
(f) Primitive module        

is discovered

AB

AC

FDDSC

AT

RBP

RP

AB

AC

FDDSC

AT

RBP

RP

AB

AC

FDDSC

AT

C1 C2

(e) Modules       and        
are discovered

C1 C2 C3

Fig. 3: Modular decomposition of two order relation graphs GppMa
q and GppM1

a
q

that are derived by mabpa from the running example M for two different parameters
wt. For wt“0.5 (a-c), AND-complete module C1, linear module C2, XOR-complete
module C3 and linear module C4 are discovered. For 0.5ăwt ď 0.66 (d-e), AND-
complete module C1, linear module C2, and primitive module C3 are discovered.

To derive a unique tree structure from GppMa
q, the modular decomposition

tree MDTpGq [22] is computed. The tree contains a hierarchy of non-overlapping4

modules C Ď V that have uniform ordering relations with activities V zM, i.e.,
they “agree” on their ordering relations to other activities. Additionally, modules are
classified through the ordering relations between their activities xPC: AND-complete
and XOR-complete modules have only activities that are in interleaving order (i.e.,
they are not connected in GppMa

q) and in choice order (i.e., they are completely
connected) respectively, while linear modules have only activities that can be linearly

4 Two modules overlap iff they intersect and neither is a subset of the other.
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ordered such that their edges do not violate the direction of the linear order. Any
other module is primitive.

As depicted in Fig. 3 (a-c), the modular decomposition of GppMa
q discovers

four modules that each correspond to a node of Ma (cf. Fig. 2): Linear module C4

corresponds to the Ñp...q root node in Ma, XOR-complete module C3 corresponds to
the ˆp...q node in Ma, linear module C2 to the second Ñp...q node, and AND-complete
module C1 to the ^p...q node. Because the modular decomposition MDTpGq (c) does
not contain any primitive module, the abstracted process tree Ma with behavioral
profile pMa

can be synthesized. Additionally, step 3 includes a special case for activities
xPAa that are in parallel order with themselves: x∥xPpMa

. sy constructs a self-loop
node öpx,τq, e.g., the self-loop of activity FDD in Fig. 2.

In general, parameter agg is assumed to be set (i.e., computed by clustering cf.
Sect. 1), as the actual value has no impact on our results. We explicitly add three
restrictions (3-5) on mabpa to guarantee that mabpa always satisfies its abstraction
goal (cf. Fig. 1 3 ):

Definition 3 (Behavioral Profile Abstraction (adapted from [37])). The
behavioral profile abstraction mabpapMq“Ma, Ma“syppMa

q,
pMa

“dvagg,wt
ppMq, pM “prpMq is applicable to M iff5:

1. M has no duplicate activities,
2. the modular decomposition tree MDTpGq of the abstract behavioral profile’s graph

GppMaq contains no primitive module,
3. (Anew :“AazA‰H) ^ (Ac :“AazAnew ĎA) ^ (AnewXAc“H),
4. (@xPAnew: |aggpxq| ą1q^ (|

Ť

yPAnew
aggpyq| ą |Anew|`1) ^(@y PAc: aggpyq “

tyu),
5. wt is restricted to 0ăwtďwminmax with wminmax“minx,yPAawmaxpx,yq and

wmaxpx,yq“max
`

wpx`Ma
yq,wpxùMa

yq,

wpxù
´1
Ma

yq,wpx∥Ma
yq

˘

.

Conditions (1-2) are required for the applicability of mabpa by the original proposal
in [37]. Conditions (3-5) are added to guarantee that the resulting process tree Ma is
smaller and to prohibit renaming of activities during abstraction.
Conditions (1-2): The original mabpa [37] additionally required both the process
tree M to be of the form M “Ñps,M 1,eq for start and end activities s and e and
the abstracted process tree Ma to be of the form Ma “Ñ psa,M

1
a,eaq. In Ma, the

activities sa and ea are either equal to their concrete counterparts s and e or are
added in step 3 as artificial start and end activities, if Ma would otherwise not have a
start and end activity. Both restrictions are not required for our purpose and, in the
case of adding artificial start and end activities, results in a non-synchronizable model
abstraction. Moreover, the abstracted process tree Ma may not be smaller than the
process tree M , i.e., mabpa may not be a model abstraction anymore. Consequently,
we adapted mabpa by removing both restrictions.

5 We denote AM by A and AMa by Ma, because the context is clear.
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Conditions (3-5): Restrictions (3), (4), and (5) guarantee that the resulting process
tree Ma is smaller and prohibit renaming of activities during abstraction, e.g.,
|M |“|mabpapMq| for any agg that only renames activities in Fig. 2. BPA mabpa with
Anew “tAB,AC,FCCu, wt“wminmax“0.5, and agg as depicted in Fig. 2 is applicable
to M. To illustrate restriction (5), consider the running example. By setting the
parameter wt to a value between 0.5 and 0.66, the order relations graph misses the
choice edge between RP and AB (denoted in red in Fig. 3 (a)), because the default
case (line 22) of Alg. 1 is reached for these two activities. Hence, order relations
graph GppM1

a
q is derived in step 2 as depicted in Fig. 3 (d). Due to the missing edge,

a primitive module C3 is discovered by the modular decomposition (cf. Fig. 3 f).
Consequently, no abstracted process tree Ma exists that has the same behavioral
profile pM1

a
. To avoid the default case (line 22) and subsequent discovery of primitive

modules, we restrict wt in restriction (5).
Importantly, these restrictions have not been stated for mabpa in [37]. Thus,

adding (3), (4), and (5) constitutes an adaptation of mabpa. Our adapted mabpa is
well-defined (cf. Sect. 2). Next, we present our design for eama.

4.2 Synchronized Event Abstraction Design

To ensure synchronization for our novel EA technique eabpa, we design eabpa to
transform L into an abstracted event log La such that La and Ma are df-complete.
We aim for a df-complete La, because df-completeness is required for IM’s isomorphic
rediscoverability (cf. Sect. 2). eabpa is composed of two steps.
Preliminarily Abstracting The Event Log. First, ea1bpa constructs a preliminary
abstracted event log Ltmp by abstracting occurrences of concrete events ePAma (i.e.,
e is abstracted by mabpa) into new abstract events x trace by trace. Next, ea1bpa
deletes abstract activities x that are in choice relation to another abstract activity y
from traces σabs PLtmp in which both x and y occur. We illustrate ea1bpa with the
running example (cf. Fig. 2). Let L be an event log such that IM discovers M as
depicted. For simplicity, we assume that L is a minimal df-complete event log (cf.
Sect. 5.2).

To start, we have L2 “ rσex1,σex2,σex3,σex4, ...s (cf. Tab. 2), |L2| “ 46, and
}L2}“4556. For σex1, eamabs computes Ama“tCBW,NCu such that σex1r2s is the first
event abstracted by ABPAnew “tAB,AC,FDDu (line 8). However, the condition in line
9 is not true, because RP`Ma AB P pMa. Also, for σex1r3s the abstract activity NC
is in choice relation to RP. Thus, σabs,1 “ xRBP,RP,ATy. For σex2, eamabs computes
Ama“tCBW,NC,RFI,BC,PN,CD,PDDu such that the condition in line 7 becomes true for
any σ1ex2r2s,...,σ1ex2r8s. However, only σ1ex2r2s,σ1ex2r3s, and σ1ex2r6s for AB,AC, and FDD
respectively satisfy the condition in line 8. Since no concrete activity u PA␣ma “

tRBP,SC,ATu is in choice relation to an abstract activity xPAnew, three new abstract
events AB,AC, and FDD are added to σabs,2 in line 11. Also, abstract activity FDD is
in parallel relation to itself, so that FDD is added a second time to σabs2. Overall,
σabs2 “ xRBP,AB,AC,FDD,FDD,SC,ATy. Since in every trace the activity CBW always
occurs before NC and both always occur before PN (cf. Fig. 2), the next 44 iterations

6 Minimal df-complete event logs are computed by Alg. 4 in Sect. 5.2
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Algorithm 2 First step to synchronize mabpa: ea1bpa
Require: : Event log L, process discovery technique pdIM , MA technique mabpa with corresponding

pMa ,Aa,Anew, and agg (cf. Def. 3)
Ensure: : Preliminary abstracted event log Ltmp, abstracted process tree Ma

1: LtmpÐtu,MÐpdIMpLq,MaÐmabpapMq,
2: for all traces σPL do
3: σabsÐxy

4: AmaÐtePσ |DxPAnew :ePaggpxqu
5: A␣maÐtePσuzAma

6: for all ePσ in the order of σ do
7: if ePAma then
8: for all xPAnew with ePaggpxq first appearing in σ do
9: if vPA␣ma does not exist s.t. v`MaxPpMa then
10: σabsÐσabs ¨xxy
11: if x∥Ma xPpMa then
12: σabsÐσabs ¨xx

1
y

13: else if ePA␣ma then
14: σabsÐσabs ¨xey

15: LtmpÐLtmp`tσabsu // standard multiset addition
16: AˆÐtAĎAnew |DCPMDTpGppMaqq,@xPA :x belongs to XOR-complete module Cu
17: LtmpÐdeleteChoiceActivitiespLtmp,Aˆq
18: return Ltmp, Ma

of the for-loop (line 2) always results in the same abstract trace: σabs2“ ...“σabs46.
and Ltmp “ rσabs1,σabs2, ... ,σabs46s. Consequently, Ltmp “ rσabs1,σ

45
abs2s when the

for-loop terminates.
Because no abstract activities x,y PAnew are in choice relation x`Ma y P pMa

(cf. no XOR-complete module in Fig. 3 (c)), it holds that Aˆ “ H in line 17
such that no abstract activities are deleted in line 18. Hence, eabpa returns Ltmp

without further changes. In general, Aˆ contains sets of activities that are in choice
relation to each other, i.e., for any A P Aˆ, all abstract activities x,y P A are in
choice relation. Abstract activities that are in choice relation must not both occur
in a trace σabs PLtmp. Also, the frequencies of traces in which they occur should
be “similar”7. While it is important that not always the same abstract activity is
deleted from a trace for proving correctness in Sect. 6, similar frequencies ensure
that distributions like trace frequencies are maintained as faithfully as possible. The
function deleteChoiceActivities ensures that the aforementioned requirements on
abstract activities in choice relation are met. For the result Ltmp of ea1bpa, the order of
events in Ltmp may not adhere to the order of activities in Ma, which is guaranteed
through the second step.
Transposing Events To Ensure Correct Orders. The second step ea2bpa es-
tablishes the correct order of events in Ltmp with respect to the order of events
in the reference minimal df-complete event log La of Ma (cf. Alg. 4). The correct
order is established through the Kendall Tau Sequence Distance δkendall [4] that
computes the minimal number of transpositions needed to transform one trace σ1
into the other σ2. As δkendall requires that both traces are permutations of the same
multiset of activities, it is undefined otherwise (δkendall “K). Put succinctly, ea2bpa
finds a matching between equivalence classes of traces in the reference La (line 3) and

7 Same frequency means @σabs P Ltmp,A P Aˆ : |Aσabs XA| ď 1 and @x,y P A,A P Aˆ :
|freqxpLtmpq´freqypLtmpq|ď|A| with freqxpLq“|tσabs PL |xPσabsu|
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Algorithm 3 Second step to synchronize mabpa: ea2bpa
Require: : Preliminary abstracted event log Ltmp, Abstracted process tree Ma

Ensure: : Abstracted, df-complete event log Lr

1: LaÐLmpMaq // take the minimal df-complete log as reference (cf. Alg. 4)
2: LrÐrs // initialize empty log for the result
3: La{„ÐtL

1
ĎLa |@σ1,σ2PL

1 :δkendallpσ1,σ2q‰Ku

4: Ltmp{„ÐtL
1
ĎLtmp |@σ1,σ2PL

1 :δkendallpσ1,σ2q‰Ku

5: for all Lclass
a PLa{„ do

6: for all Lclass
tmp PLtmp{„ do

7: if DσPLclass
a ,σabsPL

class
tmp :δkendallpσ,σabsq‰K then

8: n1,...,n|Lclass
a |

ÐevenSplitSizesp|Lclass
tmp |,|L

class
a |q

9: for all j,σPenumeratepLclass
a q do

10: L
nj
tmpÐclosestTracesδkendall

pnj,L
class
tmp ,σq

11: Lclass
tmp ÐLclass

tmp ´L
nj
tmp

12: Ltransposed
tmp ÐtransposeAllδkendall

pL
nj
tmp,σq

13: LrÐLr`Ltransposed
tmp

14: return Lr

equivalence classes of traces in the input Ltmp (line 4) where equivalence is defined
modulo transposition (cf. Sect. 6.1). To maintain relative trace multiplicities within
an equivalence class of the reference (line 8-9), the traces in the matched equivalence
class of the input are evenly split (line 10-11) and transposed (line 12) to exhibit the
same order of events as the reference traces (line 13).

To continue the illustration, Lm computes La“rσ1,...,σ4s with σ1“xRBP,RP,APy,
σ2 “ xRBP, AB, AC, FDD, FDD, SC, APy, σ3 “ xRBP, AB, FDD, AC, FDD, SC, APy and σ4 “

xRBP,AB,FDD,FDD,AC,SC,APy. Hence, Ltmp{„“ trσabs1s,rσ45
abs2su (line 3) and La{„“

trσ1s,rσ2,σ3,σ4su (line 4) are the two quotient sets modulo transposition. In the
first iteration of the for-loop in line 5, the equivalence class Lclass

a “ rσ1s and the
equivalence class Lclass

tmp “rσabs1s satisfy the condition in line 7. Therefore, the one
trace of Lclass

tmp is evenly split to the one trace of Lclass
a , i.e., n|Lclass

a |“n1 “1. Next,
the single closest trace σabs1 of Lclass

tmp is assigned to Ln1
tmp (line 10), removed from

the equivalence class Lclass
tmp (line 11), transposed according to the zero distance of

δkendall between σabs1 and σ1 (i.e., no transposition is applied), and assigned to the
result: Lr “rσabs1s.

In the second iteration of the for-loop in line 5, the equivalence class Lclass
a “

rσ2,σ3,σ4s is matched with the equivalence class Lclass
tmp “ rσ45

abs2s by satisfying the
condition in line 7. The 45 traces in Lclass

tmp are evenly split across the 3 traces of
Lclass
a in line 8: n1 “ 15,n2 “ 15, and n3 “ 15. Because 45 can be divided without

remainder, each split size n1,... is of equal size and the remainder does not have to
be spread across the splits. The enumeration in line 9 of Lclass

a results in jPt1,2,3u.
Hence, closestTraces finds the 15 closest traces σ1PLclass

tmp (j“1, n1“15, σ“σ2) that
have the smallest distance δkendallpσ

1,σ2q to the current trace σ2 of Lclass
a (line 10).

Because all traces in Lclass
tmp have the same distance of 0 to σ2, 15 traces of Lclass

tmp are
assigned to Ln1

tmp “rσ15
abss. Subsequently, Ln1

tmp is removed from Lclass
tmp (line 11), no

transpositions are applied (line 12), and Lr “rσ1,σ
15
2 s.
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For the second iteration of the for-loop in line 9 (j “ 2, n2 “ 15, σ “ σ3),
closestTraces finds the next 15 closest traces σ1PLclass

tmp that have the smallest distance
δkendallpσ

1,σ3q “1 to the current trace σ3 of Lclass
a (line 10). Because all 30 traces

in Lclass
tmp have the same smallest distance of 1 to σ3, another 15 traces are assigned

to Ln2
tmp (line 10) and removed from Lclass

tmp (line 11). As the distance greater than
zero, the respective transposition to transform each σ1PLn2

tmp into σ2, i.e., transposing
the AC with the directly-following FDD, are applied in line 12. Hence, Ltransposed

tmp “

rxRBP,AB,FDD,AC,FDD,SC,APy15s and Lr “rσabs1,σ
15
abs2,xRBP,AB,FDD,AC,FDD,SC,APy15s in

line 13. Analogously, the third iteration applies the two transpositions to transform
each σabs2 of the 15 remaining traces in Lclass

tmp into trace σ4, resulting in Lr “

rσabs1,σ
15
abs2,xRBP,AB,FDD,AC,FDD,SC,APy15,xRBP,AB,FDD,FDD,AC,SC,APy15s. Obviously,

the resulting abstracted event log Lr is df-complete wrt. Ma: LaĎLr.
Importantly, only the transpose edit operation on traces for swapping the order

of two directly-following events in a trace is allowed, i.e., any other distance metric
on traces cannot be applied here. Since ea1bpa substitutes and deletes concrete events
of abstract activities, inserts abstract activities for self-loops, and deletes events that
are in choice order, it already applies the substitute, delete, and insert edit operations
in a controlled manner. Consequently, the perfect matching of equivalence classes
between La{„ and Ltmp{„ uniquely exists, because the determinants for the number
of equivalence classes in both quotient sets are aligned by ea1bpa.

First, choice relations are satisfied in the previous step and no loops other than
the self-loop can occur and are included in Ltmp (cf. Def. 5). Second, Ltmp and La

share exactly the same activities. Third, La has fewer traces and is smaller than
any concrete event log L from which Ltmp was abstracted (cf. Lemma 1), so no
equivalence class of La can have more traces than the corresponding equivalence class
in Ltmp. Finally, we point out that transpositions render the timestamp attribute
incorrect. To heal the timestamp after transposition, we can either find a timestamp
that adheres to the new ordering of events among the concrete events in the “concrete”
event attribute (cf. last step) or we must interpolate it and flag it as artificially-created
accordingly to avoid confusion during process intelligence.

To sum up, we define eabpa“ea2bpa˝ea1bpa. In the next section, we prove that eabpa
composed of ea1bpa and ea2bpa synchronizes mabpa under restrictions. To that end, we
prove the correctness of our design: eabpa returns df-complete event logs LaĎLr, i.e.,
both have the same DFG.

5 Theoretical Foundations

This section establishes the theoretical foundations needed to prove synchronization
correctness. We define process tree classes that support isomorphic rediscoverability
(Sect. 5.1), propose an algorithm ntl to generate minimal df-complete event logs
with size metrics (Sect. 5.2), establish conditions under which our approach produces
well-defined results in (Sect. 5.3), and prove that these conditions actually establish
well-defined results (Sect. 5.4). For full proofs, we refer to the respective lemma in
the appendix Sect. A.
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5.1 Process Tree Classes and Rediscoverability

The first step for proving synchronizability is to connect the levels of model abstraction
and event logs based on isomorphic rediscoverability. As stated in Sect. 2, process tree
M is isomorphic rediscoverable by a process discovery algorithm pd (in this work IM)
from event log L iff M 1“pdpLq is isomorphic to M. In the following, we will show
that any abstracted process tree Ma“mabpapMq is isomorphic rediscoverable under
certain model restrictions. These restrictions are summarized by classes of process
trees, i.e., Cc and Ca in Def. 4 such that Ma always satisfies the model restrictions of
class Ca.

Definition 4 (Class Cc,Ca). ‘pM1, ... ,Mnq denotes a node at any position in
process tree M. M is in class Cc iff restrictions 1. and 2. are met and in class Ca iff
restrictions 1.–3. are met:

1. M has no duplicate activities, i.e., @i‰j :AMi XAMj “H,
2. If ‘“ö, then the node is a self-loop, i.e., öpv,τq for some activity vPAM (i.e.,

any other loop öpM1,...Mnq is prohibited),
3. No τ’s outside of the self-loops are allowed: If ‘‰ö, then @iďn :Mi‰τ.

Ma in the running example is in class Ca. These classes differ from standard IM
restrictions regarding loop and τ handling, requiring separate rediscoverability proofs.
Note that we number the lemmata in this extended version according to our main
paper, i.e., lemma 1 and 2 of the main paper are similarly numbered in the extended
version.

Lemma 3 (Process trees in Ca are isomorphic rediscoverable). Let M be a
process tree and L be an event log. If M is in class Ca and M and L are df-complete
(cf. Sect. 2), i.e., M „df L, then pdIM discovers a process tree M 1 from L that is
isomorphic to M.

The proof strategy is to distinguish whether M in Ca contains a self-loop or not.
If M does not contain a self-loop, M adheres to the restrictions in [16]. If M contains
a self-loop, we extend the base case of the induction in Theorem 14 [16] to also hold
for any splitted log Lv Ď rxv,vym,xv,v,vyn,...s for which the “Strict Tau Loop” fall
through discovers the self-loop. Since any M in Ca is isomorphic rediscoverable, what
is left to prove is that Ma“mabpapMq is in class Ca.

Lemma 4 (mabpa abstracted process trees are in Ca). If mabpa is applicable to
process tree M, then Ma“mabpapMq is in class Ca.

The main idea of the proof lies in the inability of a behavioral profile pMa
to

distinguish whether activities are in a ^-node or in a ö-node. mabpa handles the
inability by always synthesizing a ^-node for AND-complete modules in the MDTpGq.
The only τ in Ma can occur due to the additional step that adds a self-loop node
to Ma (cf. step 3 in Sect. 4.1). Overall, Lemma 3 and Lemma 4 together imply
isomorphic rediscoverability of Ma. Because the isomorphic rediscoverability of Ma

is conditioned on df-complete event logs La, we generate La given Ma using the
semantics LpMaq in the next section.
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5.2 Minimal, Directly-follows Complete Event Logs

Given a process tree M either in Cc or in Ca, there exist countably infinite many
df-complete event logs L due to the self-loop node. However, an EA eabpa must
reduce the size of the event log. Therefore, we generate the minimal, df-complete
(mdf-complete) event log LmpMaq of the countably infinite set of df-complete event
logs as a target for our EA technique. Because there are no further ö-nodes in M
other than self-loop nodes, minimality of |LmpMaq| is equivalent to minimality of
}LmpMaq}. Hence, LmpMaq can be easily computed using the recursive definition
of M’s language LpMq for ‘-nodes with ‘Ptˆ,Ñ,^u and leaves M “τ or M “v.
The only difference of LmpMaq compared to LpMq is the case for the self-loop node
öpv,τq that simply assigns the trace xv,vy.

Algorithm 4 Computing trace number and lengths of LmpMq: ntl
Require: Process tree M in Cc

Ensure: Number of traces |LmpMq| and sequence of trace lengths lenspMq“ lenspLmpMqq
1: if M = τ then
2: return |LmpMq| Ð 1, lenspMqÐ x0y
3: else if M = v then
4: return |LmpMq| Ð 1, lenspMqÐ x1y
5: else if M = öpv,τq for some vPAM then
6: return |LmpMq| Ð 1, lenspMqÐ x2y
7: else if M = ˆpM1,...,Mnq then
8: return

|LmpMq|Ð
n
ÿ

i“1

|LmpMiq|, lenspMqÐ
n

ä

i“1

lenspMiq,

//where
Ä

concatenates an ordered collection of sequences
9: else if M = ÑpM1,...,Mnq then
10: return

|LmpMq|Ð
n

ź

i“1

|LmpMiq|, lenspMqÐ
|LmpMq|

ä

k“1

ă

n
ÿ

i“1

lenspMiqrιk,isą

//where ι is a bijection ι :t1,...,|LmpMq|uÑ
Śn

i“1t1,...,|lenspMiq|u and
//ιk,i“πipιpkqq selects the ith element of ιpkq“pl1,...,lnq.

11: else if M = ^pM1,...,Mnq then
12: return

|LmpMq|Ð

śn
i“1|LmpMiq|

ÿ

k“1

´ mk
Än

i“1xlenspMiqrιk,isy

¯

,

//where
` m
xl1,...,lny

˘

“ m!
l1!˚...ln! is the multinomial coefficient with m“

řn
i“1li and

//ι is a bijection ι :t1,...,
śn

i“1|LmpMiq|uÑ
Śn

i“1t1,...,|lenspMiq|u

lenspMqÐ

śn
i“1|LmpMiq|

ä

k“1

ă

n
ÿ

i“1

lenspMiqrιk,isą

´ mk
Än

i“1
xlenspMiqrιk,isy

¯

The semantics LpMq neither provide the number of traces |LpMq| nor the size
}LpMq} generated for arbitrary process trees M in Cc. An existing algorithm L1m for
computing the number of traces |LpMq| in [9] is limited compared to our proposed
ntl (number of traces and their lengths) in Alg. 4 for two reasons. First, ntl1 does
not generate the sequence of lengths x|σ1|,...,|σk|y“ lenspLmpMqq of the k“|LmpMq|

traces σ1,...,σk PLmpMq required to compute the log size. Second, L1m is limited to
^-nodes with fixed lengths of traces in the language of its children such that ˆ-nodes
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that result in varying lengths cannot be arbitrarily nested with ^-nodes. Although
[9] fix this limitation by transforming the process tree, the resulting process tree
duplicates labels such that it violates the restrictions of Cc and Ca, increases the size,
and is not isomorphic rediscoverable.

We illustrate LmpMq and ntl with Ma of the running example (cf. Fig. 2). Both
recur until either a leaf (line 2 and 4) or a self-loop ö px,τq (line 6) is reached.
Hence, for each of the six leaves M 1 with activities RBP, RP, ..., LmpMq and ntl
reach line 4, e.g., for M1 “ RBP, we have LmpM1q = rxRBPys, |LmpM1q| = 1, and
lenspM1q “ x1y. For the self-loop M7 “ öpFDD,τq, we have LmpM7q “ rxFDD,FDDys,
|LmpM7q| “ 1, and lenspM7q “ x2y. Next, for M8 “ ^pAC,M7q, we have LmpM8q “

rxAC,FDD,FDDy,xFDD,AC,FDDy,xFDD,FDD,ACys, |LmpM8q| =
ř1

k“1

`

3
xlenspM1qrπ1p1,1qs,lenspM2qrπ2p1,1qsy

˘

“ 3!
1!2! “3, and lenspM8q “ x3,3,3y. For M9 “

Ñ pAB,M8,SCq, we have LmpM9q “ rxAB,AC,FDD,FDD,SCy, ...s, |LmpM9q| = 3, and
lenspM9q “ x5,5,5y. Next, for M10 “ ˆpRP,M9q, we have LmpM10q “ rxRPy, ...s,
|LmpM10q| = 4, and lenspM10q “ x1,5,5,5y. Finally, Lm and ntl return LmpMaq “

rxRBP,RP,APy,...s, |LmpMaq| = 4, and lenspMaq “ x3,7,7,7y (cf. Sect. 4.2 for the full
event log).

Since we know the number of traces |LmpMaq| and the lengths lenspMaq, we can
compute the size }LmpMaq} by summing the trace lengths to yield }LmpMaq}“24.
In Lemma 5, we prove the correctness of ntl.

Lemma 5 (Number of traces and size of LmpMq.log). If M is in Cc, then
LmpMq.tr “ |LmpMq.lens| and LmpMq.log “ LmpMq with |LmpMq| “ ntlpMq.tr
traces and size }LmpMq}“

řntlpMq.tr
k“1 ntlpMq.lensrks.

The proof strategy is to sketch the reasoning for the induction step of a structural
induction on process tree M in Cc. The reasoning for the trace lengths of a Ñ-
node is that the lengths of concatenated traces from children is the sum of the
respective children’s trace lengths as indexed by ι. The reasoning for the number
of traces of a ^-node is to characterize interleaving

śn
i“1ntlpMiq.tr different trace

combinations of varying trace lengths that are indexed by ι as shuffling of n card
decks [2]. Shuffling the first two traces and then iteratively shuffling the next trace
into each existing interleaving results in as many interleavings as the multinomial
coefficient computes. Similar to Ñ-nodes, trace lengths are computed except that each
individual trace length is repeated as often as there are interleavings corresponding
to the kth combination of trace lengths.

It follows that we can compute the number of traces and the size of LmpMaq

for any abstracted process tree Ma. Given how the number of traces and the size of
LmpMq are computed, we order ‘-nodes with respect to both their number of traces
and sizes.

Lemma 6 (Operator ordering wrt. their mdf-complete log). Let M “

‘pM1,...,Mnq with ‘ P t^,Ñ,ˆu be three process trees in Cc. If all children Mi of
M have at least two traces, i.e., |LmpMiq| ě2,iP t1,...,nu then: |Lˆ| ă |LÑ| ă |L^|

and }Lˆ} ă }LÑ} ă }L^} with L‘ “ Lmp‘pM1,...,Mnqq. If all children Mi of M
have between one and two traces, i.e., |LmpMiq|Pt1,2u,iPt1,...,nu, then |Lˆ|ď|L^|,
|LÑ|ă|L^|, and }Lˆ}ď}LÑ}ă}L^}.
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Proof. (Sketch) Let k1,...,kn be the number of traces in the M1,...,Mn children, i.e.,
ki“|LmpMiq|. For kiě2, it holds that

řn
i“1kiă

śn
i“1kiă

ř

śn
i“1ki

k“1

`

mk
Än

i“1xlenspMiqrιk,isy

˘

, because multiplication grows “faster” than summation
and the sum of

śn
i“1ki multinomial coefficients “faster” than

śn
i“1ki itself. Hence,

|Lˆ|ă|LÑ|ă|L^|. Because the children Mi are the same for Lˆ,LÑ, and L^, their
trace lengths lenspMiq are the same such that }Lˆ}ă}LÑ}ă}L^} follows.
For kiPt1,2u, the sum can grow “faster” than the product:

řn
i“1kią

śn
i“1ki, e.g., if

all ki are equal to 1. Still, }Lˆ}ď}LÑ}, because even if the number of traces is larger
for Lˆ, all the events in ePLˆ at least occur once in LÑ in fewer traces instead of in
their individual traces. The sum of

śn
i“1ki multinomial coefficients can be equal to

the
řn

i“1ki, e.g., if all ki are equal to 1. Nevertheless, the sum
řn

i“1ki does not exceed
the sum of multinomial coefficients:

řn
i“1ki ď

ř

śn
i“1ki

k“1

`

mk
Än

i“1xlenspMiqrιk,isy

˘

.
śn

i“1ki
only “grows”, if ki“2 occurs “often”. Yet, ki“2 occurring “often” results in a large
factorial in the multinomial coefficient. Hence,

śn
i“1kiă

ř

śn
i“1ki

k“1

`

mk
Än

i“1xlenspMiqrιk,isy

˘

.
To sum up, |Lˆ|ď|L^| and |LÑ|ă|L^|. From |LÑ|ă|L^| and the observation that
the trace lengths in LÑ and L^ are equal except for their multiplicities in ntlpMq.lens
(cf. Algorithm 3 line 10 and line 12 in the main paper), it follows that }LÑ}ă}L^}.
Even if |Lˆ| “ |L^|, still }Lˆ} ă }L^}, because the lensp^pM1,...,Mnq in line 12 of
Algorithm 3 in our main paper (cf. ntl Algorithm 3) adds the children’s trace lengths
řn

i“1lenspMiqrιk,is before repeating them as often as there are interleavings.

The ‘-node ordering is important for synchronizability. Any non-order-preserving
MA must ensure that abstract activities in Ma are not children of a greater ‘-
node than the ‘1-node of M in which the corresponding abstracted activities are
children of to avoid that the mdf-complete event log LmpMaq becomes larger than
the mdf-complete event log LmpMq. Hence, if a MA technique fails to consider the
‘-node ordering, there does not exist a EA technique that synchronizes. In the next
section, we present the restrictions necessary to ensure that the mdf-complete event
log LmpMaq of Ma“mabpapMq is smaller than the mdf-complete event log LmpMq

of M .

5.3 Event Log Restrictions

For our EA technique to be well-defined, the df-complete event log La for the
abstracted process model must not be larger than what the concrete event log L can
support.

Definition 5 (Restricted event log). Event log L is restricted iff pdIM discovers
a process tree M “pdIMpLq such that:
1. Fall throughs: pdIM has only executed the “Strict Tau Loop” to discover a

self-loop öpv,τq for vPAL and the “Empty Traces”8,
2. Cuts: pdIM has only executed choice, parallel, and sequence cuts9,
8 Hence, no nested tau loops öpM1,τq,M1 ‰v are discovered by “Strict Tau Loop” and no

fall throughs “Activity Once Per Trace”, “Activity Concurrent”, “Tau Loop”, and “Flower
Model” are executed.

9 Hence, no loop cut is found.



Synchronizing Process Model and Event Abstraction 21

3. Base cases: pdIM has executed any number of base cases, and
4. Model structure: If ‘pM1,...,Mnq is a node in M with at least one child being

an activity or a self-loop, i.e., Mi“v or Mi“öpv,τq for vPAL and iPt1,...,nu,
then ‘“ˆ or ‘“^.

We motivate and illustrate each restriction imposed on a event log L by giving
relaxed restrictions and counterexamples.
Fall throughs
“Activity Once Per Trace”: The syn (cf. step 3 Section 3.2 in our main paper and
Algorithm 3.2 in [37]) of process trees from an abstracted behavioral profile pMa can
be the reason for larger mdf-complete event logs La“LmpMaq. The “Activity Once
Per Trace” can discover process trees M whose mdf-complete event logs significantly
exceed the number of traces and size of the original event log L. Therefore, the IM
must not execute this fall through during discovery of the abstracted process tree
Ma from an abstracted event log La.
Counterexample: L“txa,by,xe,c,dy,xd,e,cyu, pdIMpLq“M “ˆpÑpa,bq,^pe,^pc,dqqq

Obtain mabpapMq “ Ma “ ˆpx,^pc,d,eqq for aggpxq “ ta,bu and wt ď 0.5 with
La “ txxy,xc,d,ey,xc,e,dy,...,xe,d,cyu. The number of traces |La| “ 7 and the size is
}La} “

ř7
k“1x1,3,3,3,3,3,3yrks “ 19 and, thus, both the number of traces and the

size of La exceed that of L respectively. Hence, no ea exists that can synchronize to
mabpa.
“Activity Concurrent”: The following counterexamples exploits the property ofmabpa to
change the behavior of the process tree M even for activities that are not abstracted:
Counterexample: L “ txa,by,xf,c,d,ey,xc,d,e,f,fy,xc,d,e,fyu and pdIMpLq “ M “

ˆpÑ pa,bq,^pˆp öpf,τq,τq,Ñ pc,d,eqqq. Set aggpxq “ ta,bu and wt ď 0.5 to obtain
Ma “ ˆpx,^pöpb,τq,Ñ pc,d,gqq with La “ txxy,xb,b,c,d,gy,xb,c,b,d,gy,...,xg,d,c,b,byu.
Both the number of traces and the size of La exceeds that of L respectively, as
|La|“11ą4“|L| and }La}“

ř11
k“1x1,5,...,5yrks“51ą15“}L}.

Fall throughs, Cuts (Loop)
“Strict Tau Loop”, “Tau Loop”, “Flower Model”, “Loop Cut”: In Lemma 4, we have
established that any Ma is in class Ca, i.e., does not contain any ö-node other than
a self-loop due to the indistinguishability of a ö-node and a ^-node in the BP pMa

.
The same property of BPs implies that any ö-node Mö in M is replaced by a ^-node,
if all of the activities vPAMö

are not abstracted by mabpa (AMö
ĎAc in Definition

2 in the main paper). Through two counterexamples, we show that if M contains a
node Mö that is not a self-loop node öpv,τq for vPAL, it is neither guaranteed that
mabpa is a MA nor is the mdf-complete event log La necessarily smaller than L such
that synchronizability becomes impossible. To discover a self-loop both for M and
for Ma, either the “Strict Tau Loop” or the “Tau Loop” with a restriction on only
discovering a self-loop are suitable. Since “Strict Tau Loop” exactly matches the xv,vy

directly-follows pattern in an event log, we opt for the “Strict Tau Loop” in Def. 5.
Tau Loop Counterexample: L“txa,c,ay,xb,ay,xd,eyu and M “pdIMpLq

“ ˆpö pˆpb,Ñ pa,ˆpc,τqqq,τq,Ñ pd,eqq. Apply mabpa for aggpxq “ td,eu and wt ď

0.5 to obtain the abstracted model Ma “ ˆp^p ö pa,τq, ö pb,τq, ö pc,τqq,xq with
La “ txa,a,c,c,b,by,...,xc,c,b,b,a,ay,xxyu. Hence, |La| “ p 6

x2,2,2yq`1“ 91ą 3“ |L| and
}La}“

ř91
k“1x1,6,...,6yrks“541ą7“}L}.
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Flower Model Counterexample: L“ txa,by,xa,b,cy,xc,ay,xd,eyu and pdIMpLq “M “

ˆpöpˆpa,b,cq,τq,Ñpd,eqq10. Apply mabpa for aggpxq“td,eu and wt ď0.5 to obtain
the abstracted model Ma“ˆp^pöpa,τq,öpb,τq,öpc,τqq,xq with |Ma|“12ą10“|M |,
i.e., mabpa is not a MA for process trees M that contain a flower model.
Loop Cut Counterexample: L“txa,b,ay,xc,d,eyu and M “pdIMpLq“

ˆpöpa,bq,Ñ pd,e,fqq. Apply mabpa for aggpxq “ tc,du and wt ď 0.5 to obtain the
abstracted model Ma “ ˆp^pa,bq,Ñ px,fqq with La “ txa,by,xb,ay,xx,fyu. Hence,
|La|“3ą2“|L| and }La}“6“}La}.
Model structure
The dvwt,agg (cf. Algorithm 3.1 in [37]) has a static order of returning ordering relations
for abstracted activities x and y: First, a choice order x`May is returned (line 12),
then the inverse strict order xù

´1
Ma

y (line 15 and line 19) followed by the strict
order xùMa

y (line 17) and, finally, the parallel order x∥Ma
y is returned (line 21),

as soon as the threshold wt is below the respective relative frequency and an “earlier”
order relation is not returned already ( o ). As long as a node M 1“ÑpM1,...,Mnq in
M has only children Mi whose number of traces in the corresponding mdf-complete
event log LmpMiq are all at least 2, the static order in dvwt,agg aligns with the order
of operators in a process tree as shown in Lemma 6. However, if M 1 has a child Mi

whose number of traces is below 2, returning a choice order x`Ma
y can increase the

number of traces in La, as the order of operators with respect to a sequence node
and a choice node depends on the children M1,...,Mn (cf. Lemma 6). As dvwt,agg

does not dynamically depend on the children M1,...,Mn of a node M 1 in the process
tree M , we must exclude M 1 that has a child Mi with less than two traces.
Counterexample: L “ txa,b,cyu and M “ pdIMpLq “ Ñ pa,b,cq. Apply mabpa for
aggpxq “ ta,cu and wt ď 0.5 to obtain Ma “ ˆpv,bq with La “ txvy,xbyu. Although
}La}“2ă3“}L}, the number of traces increases |La|“2ą1“|L|.

For example, the model structure restriction prohibits that La has more traces
than LmpMq: |La| ą |LmpMq|. Because the process tree M “ pdIMpLq discovered
from restricted event log L is in class Cc (cf. Def. 4), we can generate mdf-complete
event logs for M11. Since mabpa can change the order of sequentially-ordered activities
(ùM) to choice-ordered activities (`Ma

) given that dvagg,wt
px,yq prioritizes ` over

ù (cf. Sect. 4.1), the number of traces in La can become larger than the number of
traces in L: |La|ą|L| (compare line 8 and line 10 in Alg. 4). The model structure
restriction could be avoided, if we allow an EA ea to split traces of the concrete event
log L. Nevertheless, an abstraction should intuitively maintain the semantics of the
event log while reducing its complexity (in terms of discovered model size). Splitting
traces, however, means that during abstraction new process instances can be created,
which is clearly not desired during abstraction. Thus, we can either prohibit the
model structure or restrict what activities can be aggregated, i.e., restrict agg, to
avoid more traces in La.

For example, M in Fig. 2 violates the model structure restriction, but agg as
depicted constitutes a case for which |La|ă |L|. Yet, a different function agg1 that

10 “Strict Tau Loop” is already restricted to only discover a self-loop and “Tau Loop” excluded
entirely

11 We prove that M is in Cc in Lemma 11.
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only abstracts the start RBP and end activity AT would result in |La|ą|L|. We opt
to prohibit the model structure, because we aim to synchronize mabpa with an EA
technique and not apply further modifications to mabpa. Through the restrictions on
an event log, we prove that L can always support the mdf-complete event log La

required for well-definedness of eabpa in the next section.

5.4 Well-definedness

In this section, we prove the necessary condition for synchronization: Event log L
can never become smaller than La. If the opposite would hold, we could not define
an EA technique, because the EA technique would need to either insert new traces
and or events or both into L for df-completeness.

To prove the necessary condition, we must consider under what parametrization
agg and wt the La “LmpMaq with Ma “mabpapMq becomes maximal. Hence, we
prove for what parameters LmpMaq becomes maximal.

Lemma 7 (Maximal LmpMaq). If L is restricted and mabpa applicable to M “

pdIMpLq, wt “ wminmax, aggpxq “ tv,uu, and aggpzq “ tzu with z P Aztv,uu, i.e.,
mabpa aggregates exactly two activities into x, then Ma “mabpapMq has the most
traces and maximal size of all LmpM 1

aq generated for other M 1
a with A1cXtv,uu“H

and |
Ť

yPA1new
agg1pyq|ą|

Ť

yPAnew
aggpyq| (cf. Def. 3).

The main idea of the proof is to compare the behavioral profile pMa
with all

behavioral profiles pM1
a
, as the respective process trees Ma and M 1

a are similarly
synthesized given the BP. Because pM1

a
can only contain less concrete activities qPAc

than pMa and both v and u must also be abstracted in pM1
a
, the only cause for more

traces or events in LmpM 1
aq can be due to different order relations in pM1

a
. Yet, the

restricted event log L aligns the priorization of dvagg,wt
to return order relations from

` to ∥ (cf. Sect. 4.1) with the operator ordering in Lemma 6. Hence, pM1
a

can only
contain order relations that imply less traces and events in LmpM 1

aq.
Given the restrictions on event log L, we show that La for the parameters that

maximize it, is always smaller than L.

Lemma 1 (LmpMaq is smaller). If L is restricted and mabpa is applicable to
M “pdIMpLq, then La“LmpMaq has fewer traces and is smaller than L: |La|ă|L|

and }La}ă}L}.

The proof strategy is to apply induction on the size of M “pdpLq and compare the
mdf-complete event log LmpMq with the maximal mdf-complete event log LmpMaq

for Ma abstracted through parameters aggpxq “ tv,uu and wt “ wminmax. Only
abstracting two concrete activities and setting wt“wminmax maximizes LmpMaq (cf.
Lemma 7). Hence, we take the smallest representative on the larger side L and the
largest representative on the smaller side La. For the induction step we apply a case
distinction on the operator in M “‘p...q with ‘Ptˆ,Ñ,^u. In all cases, if v and u
both occur in the same child of M , the statement follows by the induction hypothesis
(IH). We exploit the semantical indifference of M ’s children order for ˆ- and ^-nodes
and the symmetry of the ` and ∥ order relations to decompose Ma “ ˆp...q into
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children that are not abstracted and the two children that are abstracted. Through
the (IH) and the language-preserving reduction of process trees into their normal
form [15], we prove the statement for decomposed ˆ- and ^-nodes. In case of a
Ñ-node, we derive two different tree structures for Ma that are shown to have fewer
traces and events through a combinatorial proof given the respective equations in
Alg. 4.

On the grounds of Lemma 1, we establish the correctness of the synchronized EA
technique in Sect. 6.1. Hence, we prove the main synchronization result by correctness
of the EA technique in Sect. 6.2.

6 Synchronization Proof

We prove the main synchronization result in Sect. 6.2 by showing that our EA
technique produces df-complete logs that enable correct model rediscovery in Sect. 6.1.
For full proofs, we refer to the respective lemma in the appendix Sect. A.

6.1 Correctness of the EA Technique

In Sect. 5.4, we have established that the mdf-complete event log La“LmpMaq has
strictly less traces and is strictly smaller than any event log L. Thus, a well-defined
EA technique exists. As eabpa consists of two steps ea1bpa and ea2bpa, we show that
these two steps are correctly specified, i.e., that eabpa is a well-defined EA technique
that returns df-complete event logs Lr “ eabpapLq for the abstracted process tree
Ma“mabpappdIMpLqq: LaĎLr. To that end, we define the transposition equivalence,
because ea2bpa is specified on the grounds of this equivalence relation.

Definition 6 (Transposition equivalence). Let σ1,σ2 P A˚ be two traces and
δkendall [4] be the minimum number of transpositions required to be applied to σ1
yielding σ11 such that σ11 “ σ2, if both σ1 and σ2 are permutations of the multiset
of activities bagpσ1q “ bagpσ2q with bagpσq “ rσris | i P t1,...,|σ|us, and undefined
δkendall“K otherwise. The transposition relation „PA˚ˆA˚ is defined by

σ1„σ2 iff δkendallpσ1,σ2q‰K.

Trivially, „ is an equivalence relation. Because ea2bpa searches for a matching be-
tween equivalence classes of Ltmp“ea1bpapLq’s quotient set modulo „ and equivalence
classes of La’s quotient set modulo „, we formalize what the matching is.

Definition 7 (Matching). Let L1,L2 be two event logs. Given the transposition
equivalence „, a matching between the two quotient sets L1{„ and L2{„ is a bijective
function matching:L1{„Ñ L2{„ such that:

– for every equivalence class Lclass
1 P L1{ „ and corresponding equivalence class

matchingpLclass
1 q“Lclass

2 it holds: Dσ1 PLclass
1 ,σ2 PLclass

2 with σ1 „σ2, i.e., the
respective traces in matched equivalence classes are not distinguishable modulo „,
i.e., not distinguishable modulo transposition.
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It does not matter whether we define the equivalence of traces in matched pairs
of equivalence classes by existence or by universal quantification, as from existence
and equivalence the universal quantification directly follows. We use the existence
in Def. 7 to emphasize that we only need to check equivalence once for two traces
to decide equivalence. Observe that the condition for pairs of equivalence classes in
the matching is checked in the if-condition of ea2bpa (line 7 Alg. 3). In the following,
we prove that a matching between the two quotient sets Ltmp{„ and La{„ exists
and that the even split of traces from equivalence classes in the former can always be
assigned to traces from equivalence classes in the latter quotient set.

Lemma 8 (Matching of quotient sets). If L is restricted and mabpa applicable
to M “pdIMpLq, there exists a matching between the quotient set Ltmp{„ of event
log Ltmp “ ea1bpapL,pdIM ,mabpaq and the quotient set La{ „ of La “ LmpMaq for
Ma“mabpappdIMpLqq, i.e., matching:L1{„Ñ L2{„ exists. Also, for every matched
pair of equivalence classes Lclass

tmp PLtmp{„ and Lclass
a “matchingpLclass

tmp q it holds that
Lclass
tmp has equal to or more traces than Lclass

a : |Lclass
a |ď|Lclass

tmp | (ii).

The proof strategy is to establish (i) the existence of a matching between the
quotient set Ltmp{„ of Ltmp and the quotient set La{„ of the reference event log La

modulo transposition, and (ii) that for any matched pair of equivalence classes Lclass
a

and Lclass
tmp from La{„ and Ltmp{„ respectively it holds: |Lclass

a |ď|Lclass
tmp |. We prove

(i) by contradiction through the restrictions on an event log (cf. Def. 5), structural
properties on abstracted process trees Ma (e.g., no loops other than the self-loop),
and by code inspection of ea1bpa. Hence, the search for a matching in line 5-7 of Alg. 3
is correctly specified. We prove (ii) by (i), the minimality of La, and Lemma 1.

It follows that the transposition with even splits (line 8-13) returns Lr such that
LaĎLr:

Lemma 2 (eabpa returns df-complete logs). If L is restricted and mabpa applicable
to M “pdIMpLq, the event log Lr “eabpapL,pdIM ,mabpaq is a df-complete event log
for Ma“mabpappdIMpLqq.

Proof. From Lemma 8 and the applied transpositions in line 12 to satisfy every directly-
follows relation in La by matched sets of traces from their respective equivalence class
(line 10 and line 7), it follows that for every trace σPLa there exists a trace σabsPLr

such that σ“σabs.

Hence, we can prove the synchronizability as required by our approach.

6.2 Main Synchronization Theorem

Given the correctness of the EA technique eabpa and the isomorphic rediscoverability
of abstracted process trees Ma, we prove the main synchronization result.

Theorem 1 (IM and mabpa are synchronizable).
If L is restricted and mabpa applicable to M “pdIMpLq, then pdIMpLaq discovered
from La“eabpapL,pdIM ,mabpaq is isomorphic to mabpappdpLqq.
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Proof. From Lemma 2, it follows that event log La is a df-complete event log for
Ma “ mabpappdIMpLqq. Since Ma is isomorphic rediscoverable (cf. Lemma 4), it
follows that: pdIMpLaq–Ma.

Therefore, we can abstract discovered process model M through non-order-
preserving mabpa and synchronously abstract L through eabpa such that both Ma and
La are available for further process intelligence tasks. In the next section, we revisit
the illustrative example in Fig. 1 to show what impact the main synchronization
theorem has.

7 Demonstration on the Illustrative Example

To put the theoretical results of synchronization into perspective, we demonstrate
their impact on the illustrative scenario that we have introduced in Sect. 1 and Fig. 1.
To that end, we show how the event log L (cf. Fig. 1 1 ) that contains traces of the
bank’s trading process for two different products (derivative and fixed income) is
abstracted by eabpa in Sect. 7.1. Recall that the bank already applied the BPA model
abstraction mabpa on the discovered process model M , as it expects the result Ma to
have a more suitable granularity for analyzing the common trading process than M .
Subsequently, we delineate how the abstracted event log La“eabpapLq and Ma help
the bank in analyzing the common trading process through process intelligence in
Sect. 7.2.

7.1 Abstracting the Event Log

To begin with, BPA mabpa with Anew “ tRQ,OT,N,CTu, wt “ wminmax “ 5{9, and
agg as depicted in Fig. 1 3 is applicable to M. We illustrate ea1bpa (cf. Alg. 2)
with the illustrative example. Let L be an event log such that IM discovers M as
depicted. For simplicity, we assume that L is a minimal df-complete event log. Due to
irrelevance of further event attributes for proofs (cf. Sect. 5-Sect. 6), we only represent
activities in traces, but discuss how further attributes can be added. For example
σ1 “xOLS,TLS,TOS,C,T,T,C,TCSy as denoted by “Tr.” in Fig. 1 1 is a trace. To start,
we have L“rσ1,σ2,...,σ9s, |L|“9, and }L}“6˚8`5`2˚2“57. Because in a minimal
df-complete event log each activity in a self-loop is repeated once, L contains the
six interleavings of xT,Ty and xC,Cy in σ1,σ3,...,σ7 plus σ2 and plus the two traces
σ8“xGO,ROy and σ9“xOLS,ODSy. Given Anew “AMa

(cf. Fig. 1 5 and Def. 3), ea1bpa
always computes Ama“tσr1s,...,σr|σ|su, i.e., all events are abstracted (line 4). Thus,
σ1r1s is the first event abstracted by RQPAnew (line 8) and the condition in line 9 is
always true, because there exists no concrete event v.

Next, for the two events OLS and TLS, the single abstract event OT is added
due to the first appearance condition in line 8. The abstract event N for the four
events C,T,T,C is repeated, because N ∥Ma N holds and triggers adding a self-loop
(cf. Sect. 4.1) that can be rediscovered by repeating N once. Altogether, we have
σabs1 “ xRQ,OT,N,N,CTy PLa (cf. Fig. 1 4 ) and analogously for the remaining eight
traces resulting in Ltmp“rσ7

abs1,σ
2
abs8s .
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Before we proceed with line 16, we point out how further attributes can be
added. In line 10, new abstract events x are created. Here, any attribute of the
current event e or any aggregation function over the set of x’s concrete events
Amapxq“tePσ |ePaggpxqu can be copied or computed. For instance, we have applied
a last attribute aggregation with even time split for repeated x on every attribute
in Fig. 1 4 : Because AmapNq “ tT,Cu, the four corresponding events e’s attributes
in σ1 are taken together, evenly split12 by respecting time, and the respective last
attribute is assigned to N. The result shows that the event with ID “a3” Fig. 1 4
has timestamp t5 and the “Terms” value of the event with ID “5” in Fig. 1 1 . Yet,
proposing and evaluating different attribute aggregations goes beyond the scope of
this paper. Still, we advocate adding the “concrete” event attribute to every abstract
event for storing the respective Amapxq and, thus, maintaining flexibility.

Because DQ`MayPpMa (cf. the initial XOR-gateway in Fig. 1 5 ) for any other
activity yPC :“AMa

ztRQu, it holds that Aˆ“tCu in line 17, i.e., module C is the
only XOR-complete module in MDTpGq. Nevertheless, the corresponding concrete
events RO and DCS never occur together with any concrete event ePAmapyq of other
abstract activities y P C in any trace σ P L, because they were in choice relation
already. To illustrate, for σ2, we have y“OT,Amapyq“tOWu and OW never occurs with
RO or ODS (cf. Fig. 1 3 ). Hence, no events are deleted in line 17 and ea1bpa returns
Ltmp“rσ7

abs1,σ
2
abs8s that contains 9 traces.

To continue the illustration, Lm computes La“rσabs1,σabs8s with σabs8“xRQ,DQy

(line 1) such that La{„“trσabs1s,rσabs8su is the quotient set of La by δkendall (line
3). Likewise, Ltmp{„“trσ7

abs1s,rσ2
abs8su is the quotient set of Ltmp (line 4). Next, we

iterate over equivalence classes of both quotient sets (line 5-6). First, Lclass
a “rσabs1s

and Lclass
tmp “ rσ7

abs1s share traces that are permutations of the same multiset of
activities, i.e., the condition in line 7 is true. Because |Lclass

tmp |{|Lclass
a |“7{1“7 is an

integer quotient, no remainder is left to be evenly spread across the n1,...,n|Lclass
a |

sizes of splits, i.e., n1 “ 7 (line 8). Given the split sizes, the jth trace σ PLclass
a is

the reference for the nj closest traces in Lclass
tmp in terms of number of transpositions

(δkendall) (line 10).
Due to n1 “7 and the single trace in Lclass

a , the closestTraces operator assigns
all seven traces in Lclass

tmp with a distance of 0 transpositions to Ln1
tmp. Consequently,

Lclass
tmp is empty afterwards (line 11), no transpositions must be applied to traces

Ltransposed
tmp “Ln1

tmp (line 12), and the seven traces in Ln1
tmp are added to the result Lr

(line 13): Lr “rσ7
abs1s. In Fig. 1 4 , the first two traces of the σabs1 trace variant are

depicted. Analogously, the second for-loop iteration (line 5) yields Lr “rσ7
abs1,σ

2
abs8s,

i.e., no transpositions were necessary overall.
To sum up, the abstracted event log Lr maintains the multiplicities of the concrete

event log L and the respective distributions of values in the additional event attributes.
In particular, the abstracted event log Lr is equivalently related to Ma as the concrete
L was related to M . In the next section, we demonstrate the impact of having both
La and Ma for subsequent process intelligence.

12 Ties can be decided towards the first abstract event.
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7.2 Impact on Process Intelligence

Coming back to the bank scenario in Fig. 1, correct synchronized abstraction of
both M and L into Ma (cf. Fig. 1 5 ) and La (cf. Fig. 1 4 ) allows the bank to
analyze the common trading process of both products simultaneously with, e.g.,
process enhancement (cf. Fig. 1 8 ). To that end, La allows to enhance Ma with
the frequency information that seven trades negotiated the terms in particular wrt.
the “spread” as recorded in basis points (bp). Here, the bank is most interested in
the question: “Does the client and requested product affect the final terms after
renegotiation?”. To answer the question, the bank must define a classification problem
that relates the OT’s event attribute value for attributes “Client” and “Product” to
the last event attribute value of the second N event in each trace that has the CT
event as the end event. Because the synchronized EA technique eabpa enables to
automatically compute the abstracted La that contains the seven trades corresponding
to the abstracted process model Ma, the bank can define the classification problem
given La and Ma.

Having only the abstracted process model Ma, the bank is neither able to enhance
the abstracted process model with further perspectives for, e.g., presenting different
aspects of the process to different stakeholders in the bank, nor is it able to define
the classification problem, as it would lack the abstracted event log La. Moreover, it
can start predicting and simulating the common trading process by learning both a
simulation and prediction model through La and Ma. To sum up, the bank is able
to flexibly apply a similar set of process intelligence tasks on an abstracted process
model and abstracted event log as it was used to on the concrete event log and
process model.

8 Conclusion

We propose a novel synchronization approach that closes the gap between MA and
EA techniques. Consequently, we can apply MA technique ma on discovered process
models M and compute the corresponding abstracted event log La through the
synchronized EA technique eama. The proposed approach is the first to formalize
the impact of EA techniques on the discovered process model and the first to enable
process intelligence tasks grounded in the real-world behavior contained in La. So far,
our approach is limited to the IM and its relatively simple event log conceptualization.
Furthermore, our approach focuses on size as an indicator of complexity and only
briefly discusses event attribute abstractions that go beyond the control-flow, but are
driven by the data flow. In future work, we will investigate extended conceptualization
of event logs. Second, we will extend the set of process discovery techniques and
integrate optimization frameworks for MA that capture further complexity metrics.
Third, we will parametrize synchronized EA techniques to allow for even more faithful
abstraction of event logs.
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Appendix

The appendix includes Lemma 1 and Lemma 2 from the main paper with full proofs.
Moreover, the appendix includes the additional Lemma 3, Lemma 4, Lemma 5,
Lemma 7, and Lemma 8 from this extended version with full proofs. In addition, we
report a simple helper lemma in Lemma 11.

A Lemmata With Full Proofs

Lemma 3 (Process trees in Ca are isomorphic rediscoverable). Let M be a
process tree and L be an event log. If M is in class Ca and M and L are df-complete,
i.e., M „df L, then pdIM discovers a process tree M 1 from L that is isomorphic to
M.

Proof. M meets all model restrictions for the class of language-rediscoverable process
trees in [16] except for the self-loop öpv,τq with vPA that can occur as a (sub-)tree
in M . The self-loop violates both the restriction on disjoint start and end activities
for the first branch of the loop (cf. restriction 2 in [16]) and the restriction that no
τ ’s are allowed in M (cf. restriction 3 in [16]). Hence, we distinguish whether M
contains a self-loop. For both cases, we build on the proof of Theorem 14 [16], because
Theorem 14 is proven through showing isomorphic rediscoverability by induction on
the size of M .
Case no self-loop: Because M meets all model restrictions for the class of language-
rediscoverable process trees, the conditions of Theorem 14 in [16] are met and M
isomorphic rediscoverable.
Case self-loop: Because the self-loop does not contain nested subtrees, it suffices to
extend Theorem 14’s induction on the size of M by an additional base case: öpv,τq

with vPA. The additional base case holds, because the “Strict Tau Loop” fall through
rediscovers the self-loop from any splitted log Lv Ďrxv,vym,xv,v,vyn,...s that occurs
during recursion of IM.

Lemma 4 (mabpa abstracted process trees are in Ca). If mabpa is applicable to
process tree M, then Ma“mabpapMq is in class Ca.

Proof. The abstracted process tree Ma does not contain duplicate activities, because
M does not contain duplicate activities (condition 1 in Def. 4) and new activities
xPAnew (cf. condition 4) are only added once to the process tree Ma during synthesis
(cf. Algorithm 3.2 in [37]).
A ö-node Mö “öpM1,...,Mnq and a ^-node M^“^pM 1

1,...,M
1
mq in a process tree

M are indistinguishable through the BP pM (i.e., xi ∥ yj P pM for all xi,yj PAMö

where xi is an activity in child Mi of Mö and yj is an activity from another child
Mj, i‰j of Mö and similarly x1i∥y1j PpM for two activities from different children of
M^), because the order relations in the BP pM are defined through the eventually-
follows relation. For mabpa, there exists a choice in the synthesis step of mabpa: Either
construct a loop node for an AND-complete module in the modular decomposition
tree or construct a parallel node, since there is no information in the abstracted BP
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pMa
that allows to differentiate these two nodes. mabpa chooses the parallel node and

always constructs a parallel node for AND-complete modules with the exception of
singleton modules x∥xPpMa in which case it constructs the self-loop öpx,τq (cf. line
7-8 and 15-16 in Algorithm 3.2 in [37]).
Modules of the modular decomposition tree MDTpGq of the graph GppMa

q can by
definition [37] only contain activities.

Lemma 5 (Number of traces and size of ntlpMq.log). If M is in Cc, then
|LmpMq| is computed by ntl, |LmpMq| “ |lenspMq|, and the size is }LmpMq} “
ř|LmpMq|

k“1 lenspMqrks.

Proof. We sketch the structural induction proof for the number of traces and size by
case distinction on the process tree’s node operator.
M “ ˆpM1,...,Mnq: The union of logs L“

Ťn
i“1LmpMiq constructs a log L whose

number of traces equals the sum of trace numbers and whose trace lengths equal the
concatenation of all children’s Mi sequence of trace lengths lenspMiq. The length of
concatenating n sequences of length lenspMiq equals the sum of n lengths |lenspMq|“

|LmpMq|.
M “ÑpM1,...,Mnq: The set of all sequential concatenations L“tσ1 ¨σ2 ¨...¨σn |@iP

t1...nu :σiPLmpMiqu constructs a log L whose number of traces equal the number of
ordered pairs in the cartesian product

Śn
i“1t1,...,

|LmpMiq|u. Hence, |LmpMq|“
śn

i“1|LmpMiq|. The bijection ι enumerates the ordered
pairs for summation.
M “ ^pM1,...,Mnq: Interleaving of multiple event logs LmpMiq through a ^-node
requires interleaving of

śn
i“1|LmpMiq| different ordered pairs of traces we refer to as

combinations. As each of these trace combinations can have traces of varying lengths,
the function ntl enumerates the respective combinations of traces lengths through the
bijection ι and sums the respective number of interleaving the trace combinations.
Each combination of traces pσ1,...σnq PLmpM1qˆ...ˆLmpMnq to be interleaved is
enumerated by index k in the domain of ι: kPdompιq. Hence, the kth enumerated trace
combination has its corresponding sequence of trace lengths

Än
i“1xlenspMiqrιk,isy

(line 12 in Algorithm 3 of the main paper). The number of interleavings of two traces
σ1 and σ2 is

`

m
xl1,l2y

˘

“
pl1`l2q!
l1!l2!

with |σ1|“ l1 and |σ2|“ l2, because interleaving two
sequences without changing their respective order is equivalent to shuffling two card
decks without changing the card order of the two decks [2]. As the number of riffle
shuffle permutations equals pp`qq!

p!q! for p the number of cards in the first deck and q the

number of cards in the second deck [2], the number of traces σPσ1˛σ2 equals pk1`k2q!
k1!k2!

with |σ1| “ k1 and |σ2| “ k2. Generalizing the number of two trace interleavings
to the number of n traces interleaved yields

`

m1

xl1,l2y

˘

˚
`

m2

xl1`l2,l3y

˘

˚...˚
` mn

x
řn´1

i“1 li,lny

˘

“

pl1`l2q!
l1!l2!

˚
pl1`l2`l3q!
l3!pl1`l2q!

˚
pl1`l2`l3`l4q!
l4!pl1`l2`l3q!

˚...˚
p
řn

i“1liq!

ln!p
řn´1

i“1 liq!
“
p
řn

j“1ljq!
śn

j“1lj!
“

`

m
xl1,...,lny

˘

, because after
two traces have been interleaved, we can take the already interleaved trace as a
new trace for the next trace to be interleaved with. Hence, the number of n traces
interleaved equals the multinomial coefficient for the n different trace lengths l1,...,ln.
Consequently, for each kth combination of traces in the ntl function at line 12, the
multinomial coefficient is computed for the corresponding sequence of trace lengths
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xlk,1,...,lk,ny “
Än

i“1xlenspMiqrιk,isy. Each of these interleaved traces are summed
together to yield the number of traces.
Since there are

śn
j“1|LmpMjq| different trace combinations to be interleaved, there

can only be
śn

j“1|LmpMjq| different lengths of traces as a result of interleaving. The in-
terleaved trace length for the kth trace combination equals mk “

řn
i“1lenspMiqrιk,is“

řn
i“1 lk,i, which has to be repeated in lenspMq for the number of interleavings:

xmky
p

mk
Än

i“1
xlenspMiqrιk,isy

q.

Lemma 7 (Maximal LmpMaq). If L is restricted and mabpa applicable to M “

pdIMpLq, wt “ wminmax, aggpxq “ tv,uu, and aggpzq “ tzu with z P Aztv,uu, i.e.,
mabpa aggregates exactly two activities into x, then Ma “mabpapMq has the most
traces and maximal size of all LmpM 1

aq generated for other M 1
a with A1cXtv,uu“H

and |
Ť

yPA1new
agg1pyq|ą|

Ť

yPAnew
aggpyq| (cf. Definition 2 in our main paper).

Proof. Let Ma be the abstracted process model for wt“wminmax,aggpxq“tv,uu and
M 1

a be the abstracted process model for wt ďwminmax and an aggregate function
that abstracts more than two concrete activities, i.e., |A1aXAM | ă |AM |´2. From
condition (4) Definition 2 in our main paper, it follows that |AM1

a
|ă|AMa

|, because
either are at least three concrete activities abstracted into a single abstract activity
in M 1

a or m abstract activities aggregate at least m`1 concrete activities. Thus, M 1
a

cannot have more traces and events in LmpM 1
aq than LmpMaq as a result of more

activities. Hence, M 1
a must have a “different” tree structure in terms of node operators

and their children.
The abstract process tree is constructed given the modular decomposition (MDT) of
the ordering relations graph GppM1

a
q and GppMaq such that structural tree differences

must be caused by differences in the the behavioral profiles pM1
a

and pMa
. The two

behavioral profiles are different

1. with respect to their sizes |pM1
a
|ă|pMa|,

2. with respect to order relations that involve activities qPAc, i.e., activities q are
not abstracted in Ma but are abstracted in M 1

a,
3. with respect to order relations of abstract activities y1 P A1new to q1 P A1a (cf.

condition 3 Definition 2 in our main paper) and yPAnew to qPAa.

The first two differences imply more traces and events in LmpMaq. Hence, a larger
number of traces and events in LmpM 1

aq can only be the result of different order
relations between abstract activities y1 to q1 and y to q. From Lemma 6, more traces
and events can only occur, if order relations of abstract activities y1 to a q1 are less
restrictive than from y to q.
By definition, L is restricted and wt “wminmax. Hence, M is in Cc and meets the
requirement on the model structure that excludes children of less than two traces
for any node Ñ p...q in M. From Lemma 6, it follows that the order of returning
order relations in , i.e., first `Ma, then ù

´1
Ma

, then ùMa, then ∥Ma (cf. o ), aligns
with the order of process tree operators for a node M‘ whose children remain the
same, but whose root node changes. By code inspection of Algorithm 3.1 in [37]
(that corresponds to dvagg,wt

in our main paper), an order relation x˛Ma
q is only
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returned, if v˛M q for vPaggpxq and qPAM occurs either relatively more often in the
behavioral profile pM or, in case of equal relative frequencies, the more restrictive
relation according to the order o is selected.
In any case, x˛Ma q is only returned, if the respective order relation is either already
the most prevalent in M , i.e., the most prevalent in the behavioral profile pM of M ,
or, in case of conflicts between order relation frequencies, it is the more “restrictive”
according to o . Hence, Algorithm 3.1 in [37] chooses an order relation between two
activities that corresponds to fewer traces and fewer events in LmpM 1

aq over an order
relation between two activities that corresponds to more traces and more events.
Therefore, order relations between abstract activities y1 and q1 cannot result in more
traces and events in LmpM 1

aq. Also, setting wtăwminmax can only further decrease
the number of traces and events in LmpM 1

aq.
Altogether, all three differences between pM1

a
and pMa

imply that LmpM 1
aqďLmpMaq.

Lemma 1 (LmpMaq is smaller). If L is restricted and mabpa applicable to M “

pdIMpLq, then La“LmpMaq has fewer traces and is smaller than L: |La|ă|L| and
}La}ă}L}.

Proof. From Lemma 11 it follows that we can generate mdf-complete event logs
LmpMq for M . From Lemma 5, it follows that LmpMq is the smallest event log for
which IM discovers the same process tree M , i.e., it is the smallest representative of
all restricted event logs: |LmpMq|ď|L1| and }LmpMq}ď}pL1q} for every L1PrLsM “

tL1 Ď E˚ | pdIMpL1q –M ^L1 is restrictedu. Additionally, from Lemma 7 it follows
that it suffices to only consider mabpa with wt“wminmax that abstracts two concrete
activities: aggpxq “ tv,uu and aggpzq “ tzu for v,u P AM and z P AMztv,uu. Thus,
La is generated for Ma“mabpapMq in which two concrete activities are abstracted
with wt “wminmax . Consequently, the following induction on the size |M | proves
|La|ă|LmpMq| and }La}ă}LmpMq}.
Base Cases:

– M “ ^pa,bq: aggpxq “ ta,bu and wminmax “ 0.5 results in Ma “ ö px,τq with
La“txx,xyu. Hence, |La|“1ă|LmpMq|“2 and }La}“2ă4“}LmpMq}.

– M “ˆpa,bq: aggpxq“ta,bu and wminmax “1 results in Ma “x with La “txxyu.
Hence, |La|“1ă|LmpMq|“2 and }La}“1ă2“}LmpMq}.

– M “ ^pa,öpb,τqq: aggpxq “ ta,bu and wminmax “ 0.75 results in Ma “ x with
La“txxyu. Hence, |La|“1ă|LmpMq|“3 and }La}“1ă9“}LmpMq}.

– M “ ˆpa,öpb,τqq: aggpxq “ ta,bu and wminmax “ 0.75 results in Ma “ öpx,τq

with La“txx,xyu. Hence, |La|“1ă|LmpMq|“2 and }La}“2ă3“}LmpMq}.

Induction hypothesis (IH): For any process tree M 1 of smaller size than M that
is discovered from restricted event log L1 such that M 1

a“mabpapM 1q is applicable to
M 1 for w1t“w1minmax, the mdf-complete log L1a has fewer traces and is smaller than
LmpMq1: |L1a|ă|LmpMq1| and }L1a}ă}LmpMq1}.
Induction step: Let M “ ‘pM1,...,Mnq. The loop operator cannot occur as the
root node, as it can only occur in a self-loop öpv,τq with v PAL in a process tree
M discovered from restricted event log L (cf. Lemma 11), i.e., it is either covered in
base cases or part of M as a subtree in one of the Mi’s. Thus, apply case distinction
on the operator node ‘Ptˆ,Ñ,^u:
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– Case ‘“ˆ:

There exist two cases of how aggpxq “ tv,uu,aggpzq “ tzu for z PAMztv,uu can be
defined on M :

– Case v,uPMi,iPt1,...,nu : Hence, both concrete activities occur in the same child
Mi of M . By (IH), the inequalities hold.

– Case vPMi,uPMj,i,j Pt1,...,nu,i‰j : Hence, the two concrete activities v and
u occur in two different children Mi and Mj of M. Because the choice order
relation ` is symmetric and the children M1,...,Mn of M can be reordered
without changing the language LmpMq, the abstracted process tree can be
decomposed: M 1

a “ ˆpmabpa
`

ˆpMi,Mjq
˘

,Mr1, ... ,Mrmq with m “ n ´ 2 and
r1,...,rm Pt1,...,nuzti,ju. M 1

a may not always be in normal form as the process
tree mabpa

`

ˆpMi,Mjq
˘

may have a choice operator as a root node. Nevertheless,
reducing M 1

a to a normal form with the reduction rules in Definition 5.1 [15] yields
the abstracted process tree Ma and the reduction rules preserve the language
( r ), i.e., LmpM 1

aq “ LmpMaq such that the number of traces and sizes are
equal. Hence, Ma “ mabpapMq is decomposable as specified by M 1

a such that
the abstracted process tree only differs to M in the abstraction of Mi and Mj.
Because |ˆpMi,Mjq|ă|M |, the inequalities follow from (IH).

– Case ‘“Ñ:

There exist two cases of how aggpxq “ tv,uu,aggpzq “ tzu for z PAMztv,uu can be
defined on M :

– Case v,uPMi,iPt1,...,nu : Analogous to case ‘“ˆ.
– Case vPMi,uPMj,i,jPt1,...,nu,i‰j : Hence, the two concrete activities v and u

occur in two different children Mi and Mj of M . Without loss of generality, we
assume iăj. If ią1 or jăn, abstraction of M can be decomposed into Ma“Ñ

pM1,...,Mi´1,mabpapMiďrďjq,Mj`1,...,Mnq with Miďrďj “Ñ pMi,Mi`1,...,Mjq,
because the behavioral profile pMa

differs to the behavioral profile pM only for
ordering relations of activities y P AMiďrďj . Since r and |Miďrďj| ă |M |, the
inequalities hold by (IH).
If i“1 and j“n, then Miďrďj “M , i.e., mabpa abstracts the whole process tree
M . For any qP

Ť

rPt2,...,n´1uAMr
, it holds that vùM q and uù

´1
M q. Thus, all

relative frequencies of ordering relations (line 7-10 in Algorithm 3.1 in [37]) are
equal to 0.5 such that `Ma is always returned: wmaxpx,qq “wpx`Ma qq “ 0.5.
On the one hand, for any q1PAM1

ztvu, it holds uù
´1
M q1. Thus, if v`M q1 or

vùM q1, then wmaxpx,q1q “wpx`Ma
q1q “0.5. If vù

´1
M q1 or v ∥M q1, then

wmaxpx,q1q“wpxù
´1
Ma

q1qě0.5. On the other hand, for any qn PAMn
ztuu, it

holds vùM qn. Thus, if u`M qn or uù
´1
M qn, then wmaxpx,qnq“wpx`Ma

qnq“

0.5. If uùM qn or u∥M qn, then wmaxpx,qnq“wpxùMa
qnqě0.5. Additionally,

wmaxpx,xq“wpx`Maxq“0.5, i.e., x is not added as a self-loop öpx,τq to Ma

during the synthesis step of mabpa.
Altogether, the abstract activity x is in choice relation v`Ma

z to any activity
q of M2,...,Mn´1, x is either in choice x`Ma

q1 or inverse strict order relation
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xù
´1
Ma

q1 to any activity q1 of M1, and x is either in choice x`Ma
qn or strict

order relation xùMa
qn to any activity qn of Mn. If x is in choice relation to

all activities q1 and qn in M1 and Mn respectively, then

Ma“ˆpx,ÑpM 1
1,M2,...,M

1
nqq (I)

Although M2, ... ,Mn´1 may, in fact, change through mabpa, if they contain
an optional node ˆp...,τ,...q, we do not consider optional nodes for simplicity.
Optional nodes are always abstracted by removing the τ (if the node has more
than two children) or by “moving up” the other activity qPAˆp...,τ,...q as a direct
child to the parent node. In both cases, the number of traces and events of the
mdf-complete log LmpMrq for rPt2,...,n´1u decreases, so the La we consider in
the following by ignoring optional nodes is at least as large as the L1a that would
result from also considering abstraction of optional nodes.
Let Mv and Mu be the nodes of M1 and Mn in which v and u occur as children
respectively. If Mv “ ‘pv,Mv,2q or Mu “ ‘pu,Mu,2q, then the other node Mv,2

and Mu,2 respectively “move up” as children to the parent node of Mv and
Mu respectively. If Mv or Mu has more than two children, child v and u is
eliminated from Mv and Mu respectively. For all four cases of how M1 and Mn

are changed into M 1
1 and M 1

n through changing Mv and Mu respectively, it holds
|LmpM 1

1q| ă |LmpM1q| and }LmpM 1
1q} ă }LmpM1q} as well as similarly for Mn

and M 1
n. Thus, for (I), it follows that:

|La|“1`|LmpM 1
1q|˚|LmpM 1

nq|˚
ź

rPt2,...,n´1u

|LmpMrq|ă|LmpMq|

because from line 9 of Algorithm 3 in our main paper, we can compute the
number of traces of a sequence as the product of its children’s number of traces
and two children with less traces always outweigh the new trace xvyPLa.
The size of LmpMq is:

}LmpMq}“

|LmpMq|
ÿ

j“1

lenspMqrjs

“

|LmpMq|
ÿ

j“1

p

|LmpMq|
ä

k“1

ă

n
ÿ

i“1

lenspMiqrιk,isąqrjs

Break the trace lengths sequence up and rewrite:

“

n
ÿ

i“1

|LmpMq|
ÿ

k“1

lenspMiqpιk,iq
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Holding i constant for ι to separate each Mi:

“

n
ÿ

i“1

`

|LmpMiq|
ÿ

k“1

lenspMiqrks
˘

˚
ź

jPt1,...,nuztiu

|LmpMjq|
˘

“

n
ÿ

i“1

`

}LmpMiq}˚
ź

jPt1,...,nuztiu

|LmpMjq|
˘

ă
`

n
ÿ

i“1

}LmpMiq}
˘

˚|LmpMq|“|LmpMq|

n
ÿ

i“1

}LmpMiq} (Eq. 2)

For the size of La it holds:

}La}ă1`|La|˚
`

}LmpM 1
1q}`}LmpM 1

nq}

` `

n
ÿ

rPt2,...,n´1u

}LmpMrq}
˘

ă1`|La|

n
ÿ

rPt1,...,nu

}LmpMrq}qă}LmpMq}

because due to (Eq. 2) we can bound the size of La by the number of traces
times the sum of each children’s log size and since |La| ă |LmpMq| proves the
inequality even for the upper bound of unchanged Mi and Mj children in Ma.

If v is also in inverse strict order relation to some activities q1 in M1, then M1 is
split into two process trees M1,ù´1 that contains the activities q1 in inverse strict
order relation to v and M1,ˆ that contains the activities q1 in choice relation to v.
Analogously, if u is also in strict order relation to some activities qn in Mn, then Mn

is split into two process trees Mn,ù that contains the activities qn in strict order
relation to u and Mn,ˆ that contains the activities qn in choice relation to u. Taken
together:

Ma“ÑpM1,ù´1,ˆpx,ÑpM1,ˆ,M2,...,Mn´1,Mn,ˆq,Mn,ùq (II)

The mdf-complete log La is largest both in terms of number of traces and size, if M1

and Mn only contain either parallel ^p...q or sequence Ñp...q nodes (cf. Lemma 6).
It follows that all activities q1 in M1 are in inverse strict order relation to v, i.e.,
vù´1 q1, and all activities qn in Mn are in strict order relation to v, i.e., vùqn.
Hence, the Ma with the largest La for (II) is:

Ma“ÑpM 1
i,ˆpx,ÑpM2,...,Mj´1q,M 1

jq (III)
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For (III), it follows that:

|La|“|LmpM 1
1q|˚|LmpM 1

nq|˚p1`
ź

rPt2,...,n´1u

|LmpMrq|q

“|LmpM 1
1q|˚|LmpM 1

nq| (New)

“ `|LmpM 1
1q|˚|LmpM 1

nq|˚
ź

rPt2,...,n´1u

|LmpMrq|q (Abs.)

ă|LmpMq|

because M 1
1 and M 1

n both have parallel root nodes13 and the factorials in the
multinomial coefficients of |LmpM 1

1q| and |LmpM 1
nq| decrease “faster” through mul-

tiplication in (Abs.) than |La| gains traces through adding |LmpM 1
1q|˚|LmpM 1

nq|

in (New). For the size of the log La it holds:

}La}ă|La|˚p1`}LmpM 1
1q}`}LmpM 1

nq}`

n
ÿ

rPt2,...,n´1u

}LmpMrq}q

ă}LmpMq}

because we can bound the size of La by the number of traces times the sum of
each children’s log size (Eq. 2) and two times a smaller log LmpM 1

1q and LmpM 1
2q

outweighs the additional event.

– Case ‘“ ^: Analogous to case ‘“ˆ.

Lemma 8 (Matching of quotient sets). If L is restricted and mabpa applicable
to M “pdIMpLq, there exists a matching between the quotient set Ltmp{„ of event
log Ltmp “ ea1bpapL,pdIM ,mabpaq and the quotient set La{ „ of La “ LmpMaq for
Ma“mabpappdIMpLqq, i.e., matching:L1{„Ñ L2{„ exists. Also, for every matched
pair of equivalence classes Lclass

tmp PLtmp{„ and Lclass
a “matchingpLclass

tmp q it holds that
Lclass
tmp has equal to or more traces than Lclass

a : |Lclass
a |ď|Lclass

tmp | (ii).

Proof. We prove the statement in four steps (I-IV). First, we prove that Ltmp and
La share the same activities ALtmp “ALa. Second, we prove that the quotient sets
have the same size: |Ltmp{„|“|La{„|. Third, we prove that for every equivalence
class Lclass

tmp PLtmp{„, there exists exactly one equivalence class Lclass
a PLa{„ such

that their traces are indistinguishable modulo transposition: @σa PLclass
tmp σ PLclass

a :
δkendallpσa,σq ‰ K. From the three steps I-III, the existence of a matching follows.
Fourth, we prove the inequality (ii).
I. By code inspection of ea1bpa it follows that ALtmp “ALa, because the parameter
agg is equally applied to L for abstraction of concrete events into their abstract

13 pdIM discovers process trees in normal form [15] such that for M “ÑpM1,...,Mnq no
children of M can have the sequence as a root node.
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counterparts as it is applied to M for abstraction of concrete activities into their
abstract counterparts.
II. Second, we establish that there are as many equivalence classes in Ltmp{ „

as there are in La{ „: |Ltmp{ „ | “ |La{ „ |. Towards contradiction, we assume
|Ltmp{„ | ‰ |La{„ |. Given the model structure of Ma (cf. Lemma 4 and Def. 4),
the ˆ-node is the only process tree operator that affects the number of equivalence
classes in La, because ö-nodes other than the self-loop as a leaf do not occur and
traces in both the language of Ñ-node and ^-node are indistinguishable modulo
transposition. Likewise, the restricted event log L in Def. 5 is similarly constrained. By
code inspection of ea1bpa it follows that the resulting Ltmp satisfies the requirements
of Def. 5. Hence, Ltmp is also a restricted event log. Let Mtmp“pdIMpLtmpq be the
process tree that the IM discovers from Ltmp. From |Ltmp{„|‰|La{„|, from the
respective restrictions on both Ltmp and Ma, and from Alg. 4, it follows that Mtmp

and Ma must have a different number of ˆ-nodes. Hence, it follows that |Ltmp|‰|La|,
i.e., the two event logs have different numbers of traces (cf. Lemma 5 and line 8
Alg. 4). Considering that |La|ăLmpMq (cf. Lemma 1) and that ea1bpa does not add
or delete traces from L, it can only be that |Ltmp|ą|La|. Consequently, the number
of ˆ-nodes in Mtmp must be larger than in Ma.

From the last two statements, it follows that there exist two traces σ1,σ2PLtmp

and two events in these traces Dx P σ1,y P σ2 such that x`Mtmp
y holds in the

behavioral profile pMtmp
of Mtmp. Let x and y be activities that are children of one

of the additional ˆ-nodes in Mtmp, i.e., xPAM1
and y PAM2

for two children M1

and M2 of the additional ˆ-node. From 1., it follows that x,yPAMa
. Additionally,

x△Ma y with △P tù,ù´1,∥u in the behavioral profile pMa of Ma, as otherwise
x and y would not be in children of the additional ˆ-node in Mtmp. There are two
alternative reasons for x`Mtmp

y. First, x`Mtmp
y holds, because ea1bpa removed one

of the two activities through the deleteChoiceActivities operator in line 16 Alg. 2. If
deleteChoiceActivities does not remove the two activities, they must have been in
choice relation already. In both cases, however, the activities x and y are in choice
relation in the behavioral profile pMa of Ma, i.e., a contradiction. Second, x`Mtmpy
holds, because either x or y is a concrete activity v such that one of the two was not
added to an abstracted trace σabs (cf. line 9 Alg. 2). Again, this can only happen, if
the two activities are in choice relation in pMa

.
III. Third, we establish that for every equivalence class Lclass

tmp P Ltmp{ „, there
exists exactly one equivalence class Lclass

a P La{ „ such that: @σabs P Lclass
tmp σa P

Lclass
a :δkendallpσabs,σaq‰K. Towards contradiction, we assume that there exists an

equivalence class Lclass
tmp PLtmp{„ for which no equivalence class Lclass

a PLa{„ exists
that can be matched. Let Lclass

tmp be the equivalence class for which no matching
equivalence class Lclass

a P La{ „ exists. For every trace σabs P Lclass
tmp and for every

σa PLclass
a it follows that δkendall “ K. Either the traces have all a different length

|σabs|‰|σa| or have different activities bagpσabsq‰bagpσaq (cf. Def. 6).
(Different lengths) By code inspection of ea1bpa it follows that a trace σabs can only
change its length relative to its concrete σ by (1) deletion (line 8), (2) deletion (line
9), (3) insertion (line 12), or (4) deletion (line 17). The first deletion corresponds
to abstraction of concrete events aggpxqĎAσ of activities occurring in σ into their
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abstract events x. The second deletion corresponds to choice relations (cf. II). The
third deletion corresponds to self-loops. The fourth deletion corresponds to choice
relations (cf. II). As the same abstraction operation was applied to corresponding
concrete activities in M to yield abstract activities x in Ma, both choice relations are
similar for La and Ltmp (cf. II), and self-loops in Ma corresponds to x...,z,...,z,...yPLa

(cf. Alg. 4), the corresponding trace length of σabs must occur for some trace σ1a in
some equivalence class Lclass

a PLa{„.
(Different multiset of activities) From (I), the different multisets of activities bagpσabsq‰

bagpσaq cannot be due to activities that are only in one of the two event logs Ltmp

and La. Thus, either is an activity xPALtmp only in one of the two multisets, i.e.,
x P bagpσabsq and x R bagpσaq without loss of generality, or the multiplicity of an
activity x is unequal in the two multisets, i.e, bagpσabsqpxq‰bagpσaqpxq. If an activity
x is only in one of the two multisets, the only reason can be a corresponding choice
relation x`Ma

y that prevented the x activity to occur in trace σabs due to y occurring
in σabs. However, from (II), the choice relation occurs also in Ma, and by correctness
of Alg. 4 (cf. Lemma 5), also in La. Hence, the trace σabs without the x activity
must have a matching trace σ1 PLclass

a with the same multiset of activities. If the
multiplicity of an activity x is unequal in the two multisets of activities, the only
reason can, again, be a corresponding choice relation, as the loop is restricted to a
self-loop both in L and in Ma. Thus, there must be a matching trace σ1PLclass

a with
the same multiset of activities.
Overall, it follows that for every equivalence class Lclass

tmp P Ltmp{ „, there exists
exactly one equivalence class Lclass

a P La{ „ such that: @σabs P Lclass
tmp σa P Lclass

a :
δkendallpσabs,σaq‰K.
IV. Lastly, we prove (ii). From Lemma 1, it follows that |La|ă|L|. Hence, |La|ă|Ltmp|,
i.e., the event log La has fewer traces than the preliminary abstracted event log Ltmp,
because ea1bpa does not delete traces from L. Consequently, the statement follows
from (II), (III), |La|ă|Ltmp|, and the minimality of La (cf. Lemma 5).

Lemma 2 (eabpa returns mdf-complete logs). If L is restricted and mabpa ap-
plicable to M “pdIMpLq, the event log L1a“eabpapL,pdIM ,mabpaq is a mdf-complete
event log for Ma“mabpappdIMpLqq.

Proof. From line 1 of Algorithm 2 in our main paper it follows that La is a mdf-
complete event log for Ma (cf. Lemma 5). Hence, we must show L1a“La.
The first step ea1bpa (Algorithm 1 in the main paper) abstracts the events ePσ whose
concrete activities ePAma are abstracted by mabpa into their respective new abstract
activities xPAnew “AMa

zAM (cf. condition 4 Definition 2 in the main paper). Hence,
encountering an event ePσ (line 7) with ePAma must trigger the construction of
a new, abstract event x (line 10). A new abstract activity xPAnew abstracts two
or more concrete activities aggpxq. Thus, all events e1 Pσ that have an activity to
be abstracted by x, i.e., e1Paggpxq must be abstracted into a single abstract event
x in trace σ. The condition in line 8 ensures that the first occurrence of an event
e to be abstracted into x is the only e that triggers the construction of x. Because
aggpxq Xaggpyq ‰ H with x,y P Anew is allowed, line 8 captures all new abstract
activities x,y,... that abstract a concrete activity vPAma equal to the event e. Since
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concrete activities uPA␣ma must not be changed in σ, a choice relation between u
and an abstract activity x, i.e., u`Ma

xPpMa
, prohibits adding the corresponding

abstract event x to the preliminary abstracted Ltmp (line 9). Since abstract activities
can be in parallel relation to themselves x∥Ma xPpMa, the corresponding abstract
event x is added twice to inject the pattern for the self-loop (cf. Section 5.2 in the
main paper). Lastly, events e that are not abstracted, i.e., ePA␣ma, are added to the
abstracted trace σabs.
Lastly, ea1bpa computes a set of abstract activity sets Aˆ (line 16) such that for each
two activities x,y P A,A P Aˆ it holds that x`Ma y P pMa. If a trace σabs P Ltmp

contains at least two activities x,y that are both in the same A of Aˆ, we must
eliminate all but one of the activities x,y. The function eliminateChoiceActivities
ensures elimination of the respective abstract activities per trace σabs as specified in
line 17.
The second step ea2bpa (Algorithm 2 in the main paper) identifies with L“ all traces
σPLa that are already contained in Ltmp (line 2) and adds them to the abstracted
event log L1a (line 3). While there are traces σPLopen, L1a does not contain all required
traces σPLa. As the only difference between a trace σPLa and a trace σabsPLtmpzL1a
is the order of events, the minimal number of transpositions required to transform
trace σabs into trace σ is computed by the Kendall Tau Sequence Distance [4] denoted
by δkendall. As the distance δkendall does not only compute the distance metric, but
also the required transpositions, we apply the transpositions on σabs as specified in
line 7. From Lemma 1, it follows that |La|ă|Ltmp| such that the while loop in line 5
always terminates. After termination of the while loop, it follows that L1a“La.
Overall, it follows that L1a “La. Since |La|ă|Ltmp| and }La}ă}L} (cf. Lemma 1),
the EA ea is well-defined.

Lemma 11 (Restricted discovery). If L is restricted, M “pdIMpLq is a process
tree in Cc.

Proof. IM does not discover duplicate activities (cf. Definition 5.7 property CB.2 and
Lemma 6.2 in [15]), i.e., M meets requirement 1 of Cc. Because IM does not discover
a loop operator through a loop cut, does not execute fall through “Flower Model” as
well as “Tau Loop”, and executes fall through “Strict Tau Loop” only to discover a
self-loop öpx,τq for xPAL, M meets requirement 2 of Cc.
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