
Automatic Extraction and Formalization of
Temporal Requirements from Text: A Survey

Marisol Barrientos1[0000−0002−2500−7431], Karolin Winter2[0009−0003−8030−2964],
and Stefanie Rinderle-Ma1[0000−0001−5656−6108]

1 Technical University of Munich, Garching, Germany
{marisol.barrientos,stefanie.rinderle-ma}@tum.de

2 Eindhoven University of Technology, Eindhoven, The Netherlands
k.m.winter@tue.nl

Abstract. Natural Language Processing has opened new paths for busi-
ness process management and requirements engineering, particularly in
automating the extraction and formalization of temporal requirements
from diverse documents such as system specifications, legal texts, and
business process descriptions. Recently, approaches have been introduced
to automate this task, employing various document formats as input
and targeting different formal specifications. However, a key challenge
persists: effectively comparing these approaches and choosing the most
suitable one for a specific task. This paper aims to bridge this research
gap by conducting a systematic literature review, including a detailed
analysis and comparing existing approaches. This comparison is crucial
to determine if the latest Large Language Model-based solutions could
surpass existing methods, in effectiveness and ease of use. The systematic
literature review enables users to select the most suitable method based
on their data and end goals. Moreover, this work proposes the NL2MTL3

method to bridge some of the gaps identified in the literature analysis,
i.e., establishing a comparable assessment method, under-representation
of legal texts, poor output context management, and the necessity to
automate the formalization of requirements, considering both quantita-
tive and qualitative aspects of time. Addressing the latter aspect, we
select Metric Temporal Logic (MTL) as formalization and provide the
associated prompts and an evaluation of the NL2MTL output.

Keywords: requirements formalization · natural language processing
(nlp) · temporal logic · legal text · business process

1 Introduction

Natural Language Processing (NLP) has been employed for a range of busi-
ness process management and requirements engineering challenges [66], e.g.,
conceptual and goal modeling [13, 24], as well as for the formalization of re-
quirements [56]. The recent development of Large Language Models (LLMs) has

3 https://anonymous.4open.science/r/NL2MTL, DLA: 22.04.2024

https://anonymous.4open.science/r/NL2MTL/README.md

enhanced particularly challenging tasks. One of those is the extraction, formal-
ization, and later verification of temporal requirements from documents such as
system specifications [6], legal texts [61], and business process descriptions [4,42].
Automating this task becomes vital due to the steadily increasing amounts of
documents and the therein described (legal) requirements that companies have
to comply with. The large variety of formalizations, e.g., Linear Temporal Logic
(LTL), Signal Temporal Logic (STL), or Metric Temporal Logic (MTL), has led
to numerous automated requirements extraction methods. This abundance of au-
tomation options often leaves domain experts puzzled about the most suitable
approach for their specific problem.

Driven by challenges in accurately converting natural language temporal re-
quirements to formal specifications, this study addresses the adequacy of current
methods, particularly in capturing qualitative (event order relations) and quanti-
tative (measurable intervals) time aspects across various domains. Consequently,
this research pivots around the following three research questions.
RQ1: What mechanisms exist for the (semi-)automatic translation of temporal re-

quirements into formal specifications?
RQ2: To what extent can temporal requirements be represented by formal specifica-

tions in the different application domains?
RQ3: How can temporal requirements, including both quantitative and qualitative

aspects, be effectively formalized from textual inputs?
RQ1 is explored in Sect. 2 and 3 through a systematic literature review (SLR),

where papers are classified by their goal. Each category contains an analysis of
the methodologies used, input formats, and application domain (i.e., domain-
specific vs general). For addressing RQ2, in Sect. 4 the findings emerging from
the systematic literature review are presented. To address RQ3, in Sect. 5 we
introduce the NL2MTL method, utilizing a Large Language Model, i.e., GPT-4,
for processing legal texts into MTL formulations. This is evaluated following the
four key principles of a good formalization [45], i.e., correctness (i.e., detecting
all atomic propositions and formalizing them following MTL semantics), trans-
parency (i.e., defining all used elements, and indicating the reasoning behind
a formal specification), comprehensibility (i.e., easy to interpret), and support
for multiple interpretations. This section is followed by a discussion Sect. 6 and
conclusions (c.f., Sect. 7).

2 Systematic Literature Review Methodology
The conducted Systematic Literature Review (SLR) follows the guidelines out-
lined in [33] and consists of five phases as outlined in the following.
Phase 1 - Strategy Planning. The selected databases for the literature
search comprise ACM, IEEE, Scopus, and Springer. For each of those, we carried
out our initial search by executing our search string which looks as follows:

("natural language" OR "large language model") AND

("temporal logic // requirement" OR "ltl" OR"computational tree logic" OR

"requirement formalization // formalisation // extraction" OR

"formal requirement // specification // verification" OR "automate formalization // formalisation")

The search string is created by combining a keyword from the field of natural
language processing with another from formal methods, specifically those used
for formalizing natural language, e.g., a requirement, into temporal logic. After,
we defined the following inclusion (IC) and exclusion criteria (EC). The
inclusion criteria were defined along with the research questions, but this was not
the case for the exclusion criteria. Papers on causality analysis (EC2) were ex-
cluded, as their focus was quantifying time uncertainty rather than automatically
extracting formalizations. In this SLR, we excluded research on automated code
extraction (e.g., Python script generation), blockchain, Unified Modeling Lan-
guage (UML) diagrams, and Attribute-Based Access Control (ABAC) (EC4),
as our focus was not on these technologies or frameworks, but rather on formal
methods or models which support time formalization in a business process.

Table 1. Inclusion and Exclusion Criteria for Selecting Research Papers

ID Inclusion Criteria
IC1 Publicly accessible, in English, peer-reviewed
IC2 Preference for journal versions over conference papers
IC3 Published from January 1, 2018, to April 1, 2024, focusing on recent developments
IC4 Must detail input/output formats, methodology, and evaluations
IC5 Automates formalization and modeling of temporal requirements using AI
IC6 Automates the augmentation of formal specifications using AI
EC1 Previews, abstracts, and theses
EC2 Causality work (e.g., temporal dependency extraction)
EC3 Event log augmentation
EC4 Papers on automatic extraction of code, a blockchain, UML diagrams, and ABAC
EC5 Research tied to a company, e.g., Hanfor [43] or FRETish [18]

Phase 2 and 3 - Initial and Full-Text Screening. Table 2 summarizes the
number of selected papers per database and phase. Phase 1 contains all papers
whose title, keywords, or abstract hit the search string. In Phase 2 papers were
filtered by title, while in Phase 3 are filtered by abstract.

Table 2. Number of Selected Papers per Database and SLR Phase

Database Phase 1 Phase 2 Phase 3

ACM 65 24 5
IEEE 1042 128 5
Scopus 338 112 12
Springer 886 49 6

Total without duplicates 2.331 313 28

Phase 4 - Back and Forth Snowballing. After completing Phase 3, we
included 28 papers that satisfied the inclusion and exclusion criteria. We then
proceeded to Phase 4, where backward and forward snowballing through Google
Scholar identified 16 additional relevant publications. This increased the total to
44 papers for further analysis.

Phase 5 - Analysis and Classification. The selected papers are classified
and analyzed in Sect. 3 summarizes findings and research gaps in Sect. 4.

3 Classification of Selected Papers
In this section, the 44 papers collected as described in Sect. 2 are analyzed and
categorized by goal. This leads to the following categories, Automatic Genera-
tion of Formal Specifications (cf., Sect.3.1), Automatic Generation of Modeling
Notations (cf., Sect. 3.2), and Automatic Augmentation of Formal Specifications
(cf., Sect. 3.3). All categories can be further divided based on output formats.
Tables 3 - 6 contain an overview of the papers by category, including publica-
tion year, input and output format, methodology, application, and URL to their
project website.

3.1 Automatic Generation of Formal Specifications

Linear Temporal Logic. [49] used the Stanford Parser to extract LTL formu-
las from system requirements, addressing ambiguity detection limitations but
struggled with complex inputs. [57] furthered this by incorporating smart home
IoT knowledge to handle ambiguities. [27] also utilized a similar approach, but
their focus was within the robotics domain. In this domain, they are interested
in automatically generating LTL formulas to verify tasks, including grounding,
navigation, and tasks related to surgical procedures. The works of [7] and [57]
both emphasize advancements in robotics aimed at interpreting complex inputs
from human and robotic perspectives. Future papers will likely concentrate on
robots that can understand human speech in particular contexts, adapting to
linguistic and environmental shifts.

Still, in the robotics domain, challenges posed by language complexity and
the potential to incorporate context are overcome by approaches that leverage
LLMs, as discussed in [48], [37], and [50]. Papers that accept as input format
unstructured text [19, 26] and user input [25] also relied on similar methods.
While in the ones which had as input format traffic law [20,36], the formalization
of constraints was nearly manual.
Signal Temporal Logic. STL is designed for timing events, suitable for appli-
cations like cyber-physical systems and smart cities, enabling requirements such
as the soil moisture at any given sensor must remain above a certain threshold
throughout the day. DeepSTL [31] and NL2TL [14] facilitate STL formula extrac-
tion. nl2spec [19] provides a conceptual STL extraction extension. CitySpec [16]
employs SaSTL for spatial and aggregation considerations in requirements like
the average soil moisture across all sensors in a particular region must remain
above a certain threshold for the next 10 days.
Propositional Projection Temporal Logic. In [58], the PPTLGenerator was
introduced, leveraging Stanford CoreNLP4 for analyzing safety system prop-
erties and converting them into PPTL formulas. Following up, [35] presented
NL2PPTL, utilizing a Seq2Seq5 model for converting security requirements into
PPTL, significantly enhancing automation with modern ML for complexity man-
agement, in contrast to the first approach’s reliance on traditional NLP.
4 https://github.com/stanfordnlp/CoreNLP, DLA: 22.04.2024
5 https://google.github.io/Seq2Seq/, DLA: 22.04.2024

https://github.com/stanfordnlp/CoreNLP
https://google.github.io/Seq2Seq/

Table 3. Input-Output Mapping - Automatic Generation of Formal Specifications

Ref.Year Input Format Output Format Methodology Application url

[29] 2018 Requirement
Event-B

[Ql: yes, Qt: no]
Model federation

Requirements en-
gineering (landing
gear system)

yes

[30] 2022 Unstructured Text FOL, regex, and LTL
[Ql: 1/2, Qt: no] Fine-tune LLM (T5) General no

[49] 2019 Natural Language
Requirement

Linear Temporal
Logic (LTL)

[Ql: yes, Qt: no]

Standford Parser,
build dependency
tree and map it with
the LTL dependency
tree

Multiple system
requirements (fo-
cus on consistency
checking)

no

[65] 2020 Natural Language
Requirement

Grammar based
method Smart home IoT no

[57] 2020 Robot command Semantic parser Robotics (ground-
ing) no

[20] 2020 Traffic Law / Code Manual step Self-driving vehicles

[36] 2022

First, converted
to constraints on
Markov Decision
Process (manual
step)

Self-driving vehicles no

[25] 2023 User Input LLM (GPT-based) Healthcare process yes

[27] 2020
Grammar-enhanced
one-shot learning
synthesis

Robotics yes

[19] 2023 Unstructured Text LLMs (Boom and
Codex) General yes

[26] 2023 LLMs (GPT-3x and
GPT-4) General no

[7] 2023 Procedural natural
language

Part-Of-Speech tag-
ging combined with
Semantic Role La-
beling

Robotics (surgery) yes

[48] 2023 Robotic Task Fine-tune LLM
(BART) Robotics yes

[37] 2023
Ground Temporal
Navigational Com-
mands

Leveraging LLMs
(GPT-based and T5)
and constructing and
training a Seq2Seq
transformer model

Robotics (naviga-
tion) yes

[50] 2024

Object goal navi-
gation and mobile
pick-and-place in-
structions

Leveraging LLM, us-
ing two-stage in con-
text learning strat-
egy

Robotics (grounding,
task verification, and
motion planning)

yes

[31] 2022 Requirement

Signal Temporal
Logic (STL)

[Ql: yes, Qt: 1/2]

Grammar-based
generation and
transformer-based
neural translation
technique

Safety-critical cyber-
physical systems yes

[16] 2022

Translation models
(Seq2Seq, pre-
trained Stanford
NER Tagger, Bi-
LSTM + CRF, and
BERT) and online
validation (Bayesian
CNN-based)

Smart city no

[14] 2023

Enrich data with
LLMs and manual
annotations. Fine-
tune T5 (compare
with Seq2Seq and
GPT-3)

Robotics (circuit,
navigation, and
grounding)

yes

[19] 2023 Unstructured Text LLMs General (system ver-
ification) yes

[54] 2023 Natural Language
Command Bi-RNN General (planning

trajectories) no

https://downloads.openflexo.org/Formose
https://github.com/Yagouus/c-4pm
https://github.com/mpi-sws-rse/ltltalk-interactive-synthesis
https://github.com/realChrisHahn2/nl2spec
https://gitlab.com/altairLab/AUTOMATE
https://github.com/UM-ARM-Lab/Efficient-Eng-2-LTL
https://lang2ltl.github.io/
https://robotlimp.github.io/
https://github.com/JieHE-2020/DeepSTL
https://github.com/yongchao98/NL2TL/
https://github.com/realChrisHahn2/nl2spec

Table 4. Input-Output Mapping - Automatic Generation of Formal Specifications

Ref.Year Input Format Output Format Methodology Application url

[58] 2020 Safety property of
self-driving vehicles

Propositional Pro-
jection Temporal
Logic (PPTL)

[Ql: yes, Qt: 1/2]

Stanford CoreNLP,
WordNet and
JavaCC

Self-driving vehicles
(verification of safety
properties)

no

[35] 2022 Security Require-
ment

Neural translation
model

Requirements engi-
neering yes

[63] 2021
Semi-formal Rep-
resentation Model
(RCM)

Metric Temporal
Logic (MTL)

[Ql: yes, Qt: yes]

For [63] also Compu-
tational Tree Logic
(CTL)

[Ql: yes, Qt: no]

Stanford, WordNet,
and Prolog

General (system re-
quirements) yes

[28] 2023 Legal Contract
Clauses

Deep learning (3
neural network mod-
els)

Legal contract for-
malization no

[41] 2023 Legal or planning
rules

Semantic Role La-
beling and LLMs

Self-driving vehicles
(legal or planning
rules)

yes

[61] 2024 Traffic Law Trigger-based hierar-
chical (manual step)

Self-driving vehicles
(monitoring) yes

[64] 2022 Requirement

Semi-formal Rep-
resentation Model
(RCM)

[Ql: yes, Qt: 1/2]

Stanford, WordNet,
and Prolog

General (system re-
quirements) yes

[47] 2023 yes

[6] 2023 Automotive Require-
ment

Timed Computation
Tree Logic (TCTL)

[Ql: yes, Qt: yes]

LLM (GPT-J-6B)
and OptKATE algo-
rithm

Automotive industry no

Metric Temporal Logic and Computation Tree Logic. In [62], the Re-
quirement Capture Model (RCM) was introduced to convert system require-
ments into formal specifications using a blend of formal and semi-formal se-
mantics, enhancing interpretation and conversion to MTL and CTL formulas.
Subsequent papers [63] [64] utilized Stanford CoreNLP, WordNet6, and Prolog
to assess RCM, identifying challenges with non-prepositional temporal expres-
sions (e.g., every hour, when something happens, immediately after) and clause
order. Further research in publication [47] focused on RCM’s ability to revert
formalized requirements to natural language, addressing ambiguities and aiding
in decision-making during requirement formalization.

In [28], they use MTL to formalize legal contracts, addressing the flexibil-
ity issues with input text found in previous RCM-based papers. This technique
leverages deep learning and intermediate representations for clarity. They in-
cluded a step to identify functional requirements due to contract complexities.
Meanwhile, [41] also explores legal formalization with a focus on autonomous ve-
hicles, utilizing SRL and LLM, suitable for unseen inputs. Conversely, [61] shares
6 https://wordnet.princeton.edu/, DLA: 22.04.2024

https://github.com/luoluohuaci/NL2PPTL
https://github.com/ABC-7/ARF/tree/main/ARF-Tool
https://github.com/kumarmanas/TR2MTL
https://springernature.figshare.com/articles/dataset/Online_Legal_Driving_Behavior_Monitoring_for_Self-driving_Vehicles/24372535
https://github.com/ABC-7/ARF/tree/main/ARF-Tool
https://github.com/ABC-7/ARF/tree/main/ARF-Tool
https://wordnet.princeton.edu/

the domain of self-driving vehicles but concentrates on MTL’s role in monitoring
rather than the automatic formalization of laws.
Timed Computation Tree Logic Formalization. In [6], a toolkit was de-
veloped for enhancing the clarity and consistency of automotive requirements in
natural language, utilizing the GPT-J-6B7 model to transform them into Struc-
tured English before formalizing into Timed Computation Tree Logic (TCTL).
The TCTL set is transformed into first-order logic to generate a script, which is
verified and tested on data from the former Daimler AG.

3.2 Automatic Generation of Modeling Notations

The analysis of unstructured text, requirements, and robotic tasks previously
omitted full process descriptions, overlooking temporal complexities. This has
led to a shift towards including process descriptions and policies. Table 5 presents
the input-to-output mapping for the Modeling Notation Generation category.
Business Process Model. The Annotated Textual Descriptions of Processes
(ATDP) language presented in [52] and [53] allows the translation of process de-
scriptions to LTL over finite traces (LTLf). Recognizing the challenge of sparse
annotated data, in [5], researchers later used the GPT-38 model to refine en-
tity and relationship extraction from business processes with minimal examples.
In [44], this effort evolved into enhancing a process extraction tool to better
recognize entity identities through a sophisticated neural network, streamlining
the extraction of information from texts.
Declarative Process Model. In workflow management, Dynamic Condition
Response (DCR) graphs represent a visual model evolving beyond traditional
declarative approaches like Declare. They allow adaptable task management,
extensively used in Danish digital government systems, with further enhance-
ments from tools like the DCR Process Highlighter9 for model automation and
refinement [38, 39]. In contrast, DECLARE models and their extensions have
been advanced through approaches like Speech2RuM, which converts spoken
input into detailed models, supporting sophisticated constraints as seen in MP-
Declare [1, 9]. Additionally, the Declo and C-4PM chatbots aid in creating and
mining DPM, with the latter utilizing technologies like Rasa10 and GPT8 to
enhance model support [21, 25, 26]. These innovations have been particularly
impactful in healthcare process management.
Decision Model and Notation, Petri Nets, and Related. In the study
by [23] a limitation was that the extraction of DMN from NL required inputs
to be concise, clear, and focused solely on one decision, excluding any irrelevant
or repetitive information. In contrast, in [51] does tackle ambiguities, yet it still
adheres to a rule-based methodology. In their later work, the authors employed
deep learning models to extract decision models. However, the authors noted

7 https://huggingface.co/EleutherAI/gpt-j-6b, DLA: 22.04.2024
8 https://gpt3demo.com
9 https://documentation.dcr.design, DLA: 22.04.2024

10 https://rasa.com/

https://huggingface.co/EleutherAI/gpt-j-6b
https://gpt3demo.com/apps/openai-gpt-3-playground
https://documentation.dcr.design/documentation/dcr-highlighter/
https://rasa.com/

Table 5. Input-Output Mapping - Automatic Generation of Modeling Notations

Ref.Year Input Format Output Format Methodology Application url

[52] 2019 Process
Description

Annotated Textual
Description of a
Process (ATDP)

[Ql: yes, Qt: no]

Machine-readable in-
termediate language

Compliance, confor-
mance, and model
consistency checking

no

[53] 2021 no

[23] 2020 Decision
Description

Decision
Model

[Ql: yes, Qt: 1/2]

NLP pipeline Decision and depen-
dencies extraction no

[51] 2021 NLP processing soft-
ware (FreeLing) Model extraction yes

[39] 2021 Textual Artifact Declarative
Process Model

Machine-learning
and expert system
technique

Business process dis-
covery yes

[3] 2020 User Input (DECLARE, Rules and templates
[2]

Support users defin-
ing declarative con-
straints

yes

[1] 2020 Process
Description

Dynamic Condition
Response (DCR)
graph, and Multi-
Perspective Declare
(MP-Declare))

[Ql: yes, Qt: 1/2]

Extension of the
rules and templates
from [2]

Support users defin-
ing declarative con-
straints

yes

[38] 2019 NLP module Support user cre-
ation of models yes

[2] 2019 Rules and templates Model extraction yes

[5] 2022 Process
Description

Process Element and
Relation

[Ql: yes, Qt: no]

LLM (GPT-3) and
in-context learning

Extraction of process
information yes

[44] 2023
Pretrained end-to-
end neural corefer-
ence resolution

Extraction of process
information and cre-
ation of model

yes

[17] 2018 Automobile
Requirement

Basic Petri Net

[Ql: yes, Qt: no]

NLP and domain-
specific ontologies

Requirements engi-
neering (consistency
and completeness
verification)

no

[4] 2023 Process
Description

Temporal Compli-
ance Requirement

[Ql: 1/2, Qt: yes]

Pre-trained language
model (GPT-4)
supported by three
similarity measures
(TF-IDF, BERT,
and spaCy)

Compliance verifica-
tion yes

[42] 2023 Process
Description

Resource Compli-
ance Requirement

[Ql: 1/2, Qt: no]

Extension of a
domain-sensitive
temporal tagger
(Heideltime)

Compliance verifica-
tion yes

limitations including difficulties with coreference resolution, handling synonyms,
and a limited dataset that only allowed for a maximum of two levels of decision
dependency. For Petri Nets extraction, [17] proved to be effective in the auto-
mobile sector, although their tool has been tested with a limited number of case
studies and remains inaccessible to the public. Lastly, we find [42], and [4] in both
cases they did not formalize natural language but extracted a semi-formalization
which was later used for compliance verification.

https://github.com/PADS-UPC/DMExtractor
https://dcrgraphs.net
https://rulemining.org/
https://sep.cs.ut.ee/Main/RuM
https://dcrgraphs.net
https://github.com/hanvanderaa/declareextraction
http://pdi.fbk.eu/pet/edoc2022/edoc2022_material.zip
http://pdi.fbk.eu/pet/edoc2022/edoc2022_material.zip
https://github.com/marisol-barrientos/qtcr-verificator
https://github.com/marisol-barrientos/r-ar-verificator

3.3 Automatic Augmentation of Formal Specifications

Table 6 shows the input-to-output mapping for the Formal Specification Aug-
mentation category. In [8], the authors stated that converting formal specifica-
tions to natural language had limited scope for further advancement. Lately,
however, there has been a growing trend in research about converting formal
specifications into natural language. Even though these formal specifications are
restricted, they can be challenging for a user to interpret when checking the
system, leading to potential misunderstandings. This makes users ignore past
formal specifications and create new ones.

Table 6. Input-Output Mapping - Automatic Augmentation of Formal Specifications

Ref.Year Input Format Output Format Methodology Application url

[60] 2023 Structural Logic Ex-
pression

Natural
Language
[Ql: 1/2, Qt: no]

Recursive parsing,
Tree-LSTM, GCNs,
and a decoder

General no

[32] 2022 Unstructured Text Requirement
[Ql: 1/2, Qt: 1/2]

Fine-tunning the
BERT model

Requirements engi-
neering no

[29] 2018 Formal Specification Requirement
[Ql: 1/2, Qt: 1/2] Model Federation Requirements engi-

neering yes

In [60], the authors analyze methods for translating logic expressions to nat-
ural text using end-to-end Seq2Seq11 models, which sometimes misinterpret de-
pendencies (e.g., a motorcycle driver in orange dress). They also highlight issues
with pre-trained language models that introduce noise or invert subjects in log-
ical structures (e.g., a dog is chasing a cat instead of a cat is chasing a dog).
They suggest using structured representations like trees to improve translation
accuracy. Additionally, [29] discusses model federation to enhance the conversion
from natural language to formal specifications, improving traceability and incon-
sistency analysis. A new approach for extracting requirements using BERT12,
compared against fastText13 and ELMo14 baselines, is detailed in [32].

4 Systematic Literature Review Findings

In Sect. 3, the different methods employed to extract formal specifications, mod-
els, or to augment natural language were presented, as well as, the application
domain of these papers. The following details the findings from the classification,
input, and output formats, addressing RQ2.

11 https://google.github.io/Seq2Seq, DLA: 22.04.2024
12 huggingface.co/docs/transformers/model_doc/bert, DLA: 22.04.2024
13 https://fasttext.cc/, DLA: 22.04.2024
14 https://studieswithcode.com/method/elmo, DLA: 22.04.2024

https://downloads.openflexo.org/Formose
https://google.github.io/Seq2Seq/
https://huggingface.co/docs/transformers/model_doc/bert
https://fasttext.cc/
https://studieswithcode.com/method/elmo

4.1 Summary of Findings from the Classification

Below are the findings from analyzing trends across all categories.
F1 - Difficulties in Establishing Comparable Assessment Methods.
Each study has evaluated its results based on the final goal, making it difficult
to compare different approaches. Incorporating a universal evaluation framework
alongside specific assessments would be advantageous.
F2 - Absence of Collaboration Across Domains. Papers from different cat-
egories do not cite each other, suggesting a lack of interdisciplinary engagement
(e.g., approaches extracting LTL automatically can be used in those that focus
on generating DECLARE models).
F3 - Increased Interest in Human-Robot Interaction. Recent studies have
focused on automatically formalizing temporal requirements involving human
conversations, posing the challenge of integrating technical text elements, such
as centrifuge times, with human speech. For the latter, a particularly challenging
case arises when unrelated information is provided which must be distinguished
from actual relevant information.

4.2 Findings from the Input Formats

The input formats used in the included papers are categorized into three distinct
types as outlined in [31]: ambiguous (containing vague and unclear expressions),
indirect (requiring contextual knowledge for interpretation), and clear (directly
leading to a formal specification). This is shown in Fig. 1. Black boxes repre-
sent input formats from studies in the augmentation category. White boxes are
used for studies related to formal specification generation. Gray boxes mean
studies focusing on the automatic generation of modeling notations. A process
description, for example, is considered to be indirect since interpreting it requires
additional contextual knowledge. Below are all the findings from the analysis of
the input formats.

Fig. 1. Input Format Overview

F4 - Inconsistent Terminology. For example, the term unstructured text is
used variably across studies (e.g., [19], [26], [30]), applying to both brief instruc-
tions and entire documents. Terminology should be more aligned and consistent

to avoid confusion and ambiguities in the discussion. Inconsistent terminology
mainly hampers comparing findings across different works.
F5 - Insufficient Input Quality. The quality of the input text, e.g., complete-
ness, consistency, relevance, etc., can vary significantly and is not measured. By
knowing the input quality, one can optimize further pre-processing tasks, as it
is transforming unstructured text into structured requirements.
F6 - Uniform Temporal Information Treatment. In most of the approaches,
there was no distinction between functional and non-functional temporal infor-
mation, a concept introduced in [22]. This can prevent smells in temporal speci-
fications, leading to better understanding, easier maintenance, and fewer errors.
F7 - Under-representation of Legal Text. Only five papers specifically con-
sidered legal text, indicating a significant gap in integrating legal and regulatory
frameworks. Three of them involved manual steps due to higher complexity in
compassion to, e.g., robot commands.

4.3 Findings from the Output Formats

This section presents the findings from both how these formats are presented to
the user and the various output formats generated by the included papers.
F8 - Poor Context Management. On the one hand, users are asked to provide
context, but it is rare to see context included in the output. It would be helpful
for users to receive information such as assumptions made by the system, parts
that have not been formalized, and any ambiguities found.
F9 - Low Support for Formalizing Quantitative Temporal Information
to Formal Specifications. Automatically generated formal specifications like
regular expressions, FOL, LTL, and CTL fall short of adequately representing
quantitative temporal aspects. In contrast, STL and PPTL offer some capabili-
ties in this area. STL is particularly adept at defining time intervals and quanti-
tative boundaries, making it ideal for scenarios demanding exact timing (e.g., a
car’s speed must not exceed 100 km/h within the first 10 seconds after ignition).
PPTL, while proficient in managing both finite and infinite time intervals (e.g.,
activity A must occur continuously), is more focused on qualitative temporal
relationships rather than quantitative details. While the RCM discussed in the
SLR could address quantitative aspects, it results in a loss of expressiveness.
MTL and TCTL are the automatically generated formal specifications that can
effectively formalize quantitative and qualitative temporal elements.
F10 - Low Support for Formalizing Quantitative Temporal Informa-
tion to Modeling Notations. As shown in Tab. 5, for the automatic genera-
tion of modeling notations, only the MP-Declare models [1] succeed in capturing
quantitative temporal aspects. The Petri Nets, decision models, or DECLARE
models would need a time extension to achieve this. Furthermore, standard busi-
ness process models, as detailed in the survey [12], also do not fully capture quan-
titative aspects. To effectively handle these aspects, they require a time-extended
Business Process Model as, e.g., proposed in [46].

5 NL2MTL Approach and Evaluation

This section introduces a prototype to address the most relevant gaps identified
in findings F1, F7, F8, F9, and F10. These include the difficulties in establishing
a comparable assessment method, under-representation of legal texts (e.g., useful
for real-time compliance in self-driving vehicles), poor output context manage-
ment (improving usability), and the necessity to automate the formalization
of requirements, considering both quantitative and qualitative aspects of time.
This addresses RQ3. An overview of the NL2MTL approach is depicted in Fig.
2, and all material, including the implementation, dataset, and (reproducible)
evaluation, is available at NL2MTL3.

5.1 NL2MTL Foundations

The choice of MTL as a formal specification is motivated by its widespread
use in system verification and its recent application in legal text formalization.
Illustrative examples of MTL application in legal contexts include [61], where
MTL is utilized to interpret trigger conditions and logical judgments within
Chinese traffic regulations; [34] where MTL is applied to formalize marine traffic
rules; and [40] where MTL is used to formalize traffic rules for autonomous
vehicles on German interstates, based on the German Road Traffic Regulation.
Since LLMs have been successfully utilized for extracting and formalizing LTL
and STL formulas, we integrate LLMs, i.e., GPT-4, in our NL2MTL prototype.
Preliminary Steps. We explored the possibility of expanding upon an ex-
isting open-source tool. The candidates emerged from the SLR and constitute
NL2LTL [26], Lang2LTL, nl2tl [15] and nl2spec [19]. Among those NL2LTL [26],
and Lang2LTL [37] are excluded because they formalize LTL. Focusing on tools
that additionally extract STL, a comparison between nl2tl [15] and nl2spec [19]
revealed that nl2spec is easier to extend due to its modular structure and more
comprehensive frontend. Consequently, the development of NL2MTL was pur-
sued by extending nl2spec. Nonetheless, despite nl2spec’s emphasis on aiding
users in resolving ambiguities, it was not intuitive to interpret the output mes-
sages. Specifically, nl2spec did not indicate which parts of the input text were
formalized and which were not. It could also not process long documents like legal
texts or process descriptions. This led to the development of our own prototype.
Approach. Figure 2 depicts the three main parts of the NL2MTL approach,
i.e., accepted input formats, prompt content, and output example for a system
specification, which is provided in both JSON and HTML format. This facil-
itates the user interpretation. It was developed in Python 3.9 and integrates
other LLMs as needed. We utilized GPT-4 because it was already retrieving sta-
ble and correct results for extracting formal specifications (i.e., when testing the
nl2spec framework). The tested input (c.f., Sect. 5.2) includes system specifica-
tions, legal texts, and business process descriptions. Each temporal requirement
is represented in the output as an MTL formula based on atomic propositions.
Each proposition contains a description of it, together with the temporal gran-
ularity (e.g., seconds), identified ambiguities (i.e., unclear or vague aspects),

or those lacking context (e.g., the temporal adverb soon brings uncertainty),
and assumptions that are made to come up with the final MTL formula. In
addition to this, the output includes a sequence of dependencies between
MTL formulas (e.g., the temporal adverb soon might be considered as in less
than 5 minutes). The output also contains the text that was not formalized
and explanations for its exclusion.

NL2MTL Prompt

Background: Metric Temporal Logic (MTL) is a formalization tool
that incorporates time-bound statements using atomic propositions,
Boolean operators, and temporal operators. Key temporal operators
include G (globally), X (next), F (eventually), O (once), and S (since),
which can be used with specific time intervals [lb, ub]. Additionally,
Boolean operators ¬ (not), ∧ (and), ∨ (or), and the implication
operator a =⇒ b (defined as ¬a ∨ b) are essential components.

Objective: Translate given text into Metric Temporal Logic (MTL).

Translation Text to be Formalized: [INPUT_TEXT_HERE]

Expected Output: A JSON file representing MTL translation.
JSON Structure: A collection of MTL formulas with atomic
propositions, their interdependencies, and non-formalized
text elements.
Instruction: Generate the JSON file methodically, ensuring each
MTL_expression is included without omission.

Translation Process:
1. Decompose the provided text into individual atomic propositions.
2. Identify temporal relationships within the statement.
3. Construct MTL expressions using the appropriate temporal and
Boolean operators, as outlined above.

Possible Inputs

Legal Text ORSystem Specification

Input Example - System Specification

OR

If air_ok signal is low, auto_control_mode is
terminated within 3 sec.

Business Process
Description

Output Example - System Specification

Fig. 2. Overview and Example of NL2MTL Approach

Prompt Design. The structure of the prompt is presented in Fig. 5.1, and
the full version is accessible at NL2MTL3. It was crafted using the reflection
and recipe patterns from the prompt engineering pattern catalog presented
in [59]. Adhering to the recipe pattern streamlined the reasoning process for
better decision-making. This was achieved by breaking tasks into distinct steps
and omitting unnecessary information. The steps involve decomposing the input
into individual atomic propositions, elucidating temporal relationships within
the statement, and extracting MTL formulas. This structured approach ensures
a comprehensive and systematic input analysis, leading to more accurate and
contextually relevant outcomes. The reflection pattern enhances ambiguity de-
tection and emphasizes a collaborative approach to information sharing, where
both the user and the LLM play integral roles in enriching the context. In the
prompt, the semantics of MTL are defined, specifying the temporal and boolean
operators that should be considered. In the last part of the prompt, it is indi-
cated the exact expected JSON output structure, each field comes together with
its explanation (e.g., for the field reason_for_non_formalization it comes along
the reason for the inability to formalize).

5.2 NL2MTL Evaluation

This section details on the dataset used to evaluate the NL2MTL prototype,
the evaluation methodology applied, and the results. The NL2MTL approach

extracts a set of MTL expressions from natural language text for each input
format, as demonstrated in Figure 2. To test the stability of the results, this is
run five times per input format.
Dataset and Methodology. Table 7 contains an overview of the input files
considered to evaluate the NL2MTL prototype, together with the average num-
ber per output file of atomic propositions (i.e., Atom.), MTL expressions (i.e.,
MTL), assumptions (i.e., Assu.), and ambiguities (i.e., Ambi.).

Table 7. Dataset Overview and Output Total Averages form Evaluation Run

ID Description Atom. MTL Assu. Ambi.
article_78 Article 78 from a Traffic Legal Text [61] 6.75 5.25 4.00 0.50
article_80 Article 80 from a Traffic Legal Text [61] 4.25 2.25 3.00 0.50
syst_req 8 Requirements from CARA Infusion Pump System [47] 12.5 6.25 0.00 0.00
proc_desc Harvesting Process Description [4] 7.75 6.50 3.25 1.00

The evaluation of the output is based on the four key principles of good
formalization, as outlined in the methodologies for legal formalization [45]. These
include being correct (i.e., detecting all atomic propositions and formalizing
them following MTL semantics), transparent (i.e., defining all used elements,
and indicating the reasoning behind a formal specification), comprehensible
(i.e., easy to interpret), and supportive of multiple interpretations.
Results. Table 7 presents the averages of assumptions and ambiguities detected
per output file, varying with each round and showcasing NL2MTL’s ability to
support multiple interpretations, all deemed reasonable. This variety raises
questions about the practicality and utility of these interpretations for users.
All extracted atomic propositions and MTL formulas were comprehensible to
users. A primary issue noted was in the process descriptions, particularly how
time is represented in MTL formulas (e.g., [0min,30min] vs [30min] vs [0,0.5]).
Symbols and parameters were clearly defined, enhancing transparency and
preventing hallucination. In cases of unspecified temporal granularity, the sys-
tem assumes a default setting, which is documented in the assumptions field
for user verification. Assessing the correctness of the NL2MTL outputs proved
challenging. The aim is to confirm that all atomic propositions are correctly
represented in the outputs and formalized according to the specified MTL se-
mantics. Errors often arose from parts of text that were not formalized, rather
than from the ambiguities or assumptions. In 25% of tests, the NL2MTL system
stopped translating subsequent atomic propositions after misinterpreting a stop
command in the input text.

6 Discussion

Mitigating Threats to Validity. When conducting an SLR, there is always
the threat of missing out on important work. We tried to mitigate this in the
following ways. In the first phase of the SLR, the search string was broad to
expand the scope, and various digital databases were used to ensure that no
studies were overlooked due to publication rights. The inclusion and exclusion

criteria were clearly defined to align the author’s perspectives and ensure repro-
ducibility. Additionally, iterative snowballing was employed to identify relevant
papers from slightly different fields where our keywords were not used. In Phase
1, we identified five surveys related to ours. These surveys were not included in
our paper analysis but were instrumental in proving that existing research had
not fully covered our research questions. From them, only three surveys con-
tained a comparison of tools designed to automate the process of formalizing
temporal requirements. One study focused solely on extracting LTL [8], while
another included various formal specifications [10]. Similarly, [11] involved con-
verting natural language into LTLf formulas for workflow construction. Neither
survey rigorously demonstrated the criteria used to include certain studies over
others. Additionally, two other surveys were centered on the analysis of auto-
matic requirement formalization [55, 56], which scarcely included methods for
formalizing temporal aspects.

Limitations. The NL2MTL approach addressed five elicited findings. In the
following, we highlight how the remaining ones could be addressed in future work.
For F2, one approach could be to analyze papers excluded by EC4 and EC5, and
compare their methodologies with those described in our survey. This could also
contribute to addressing F3, as among the cross-domain papers, there is a keen
research interest in improving the automatic formalization of natural language
for robot-human communication. On the other hand, to adequately cover F4 and
F5, concentrating on a specific domain, such as robotics or self-driving vehicles,
would be advantageous because these areas have a more specialized vocabulary.
Similarly, when working on F6, it would be simpler to first distinguish between
functional and non-functional temporal information within a specific domain.

7 Conclusion

This paper features a systematic literature review to address how to effectively
compare approaches aiming at extracting and formalizing temporal requirements
from text. We classified approaches along their goal and output format. In total,
the literature analysis revealed ten findings. To address five of those, we devel-
oped NL2MTL which closes a significant gap, i.e., existing approaches mainly
focus on qualitative temporal requirements (e.g., LTL). However, quantitative
aspects, such as representing exact time units (e.g., STL), are equally important.
NL2MTL allows for an automatic translation of system specifications, legal texts,
and business process descriptions to MTL utilizing the power of state-of-the-art
LLMs. The evaluation of NL2MTL along the key principles of a good formal-
ization shows promising results regarding correctness, comprehensiveness, trans-
parency, and interpretation of the results for all input types. Future work can
focus on testing the prototype in a real-world scenario and conducting in-depth
user studies with domain experts on its usefulness.
Acknowledgements: This work has been funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) –project number 277991500.

References

1. van der Aa, H., Balder, K.J., Maggi, F.M., Nolte, A.: Say it in your own words:
Defining declarative process models using speech recognition (2020). https://doi.
org/10.1007/978-3-030-58638-6_4

2. van der Aa, H., Ciccio, C.D., Leopold, H., Reijers, H.A.: Extracting declara-
tive process models from natural language (2019). https://doi.org/10.1007/
978-3-030-21290-2_23

3. Alman, A., Balder, K.J., Maggi, F.M., van der Aa, H.: Declo: A chatbot for user-
friendly specification of declarative process models (2020), https://ceur-ws.org/
Vol-2673/paperDR12.pdf

4. Barrientos, M., Winter, K., Mangler, J., Rinderle-Ma, S.: Verification of quanti-
tative temporal compliance requirements in process descriptions over event logs
(2023). https://doi.org/10.1007/978-3-031-34560-9_25

5. Bellan, P., Dragoni, M., Ghidini, C.: Extracting business process entities and rela-
tions from text using pre-trained language models and in-context learning (2022).
https://doi.org/10.1007/978-3-031-17604-3_11

6. Bertram, V., Kausch, H., Kusmenko, E., Nqiri, H., Rumpe, B., Venhoff, C.: Lever-
aging natural language processing for a consistency checking toolchain of automo-
tive requirements (2023). https://doi.org/10.1109/RE57278.2023.00029

7. Bombieri, M., Meli, D., Dall’Alba, D., Rospocher, M., Fiorini, P.: Mapping nat-
ural language procedures descriptions to linear temporal logic templates: an
application in the surgical robotic domain (2023). https://doi.org/10.1007/
s10489-023-04882-0

8. Brunello, A., Montanari, A., Reynolds, M.: Synthesis of LTL formulas from natural
language texts: State of the art and research directions (2019). https://doi.org/
10.4230/LIPIcs.TIME.2019.17

9. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models (2016). https://doi.org/10.1016/J.
ESWA.2016.08.040

10. Buzhinsky, I.: Formalization of natural language requirements into temporal logics:
a survey (2019). https://doi.org/10.1109/INDIN41052.2019.8972130

11. Chakraborti, T., Rizk, Y., Isahagian, V., Aksar, B., Fuggitti, F.: From natural lan-
guage to workflows: Towards emergent intelligence in robotic process automation
(2022). https://doi.org/10.1007/978-3-031-16168-1_8

12. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: The temporal per-
spective in business process modeling: a survey and research challenges (2015).
https://doi.org/10.1007/S11761-014-0170-X

13. Chen, B., Chen, K., Hassani, S., Yang, Y., Amyot, D., Lessard, L., Mussbacher,
G., Sabetzadeh, M., Varró, D.: On the use of GPT-4 for creating goal models: An
exploratory study (2023). https://doi.org/10.1109/REW57809.2023.00052

14. Chen, Y., Gandhi, R., Zhang, Y., Fan, C.: NL2TL: transforming natural languages
to temporal logics using large language models (2023), https://aclanthology.
org/2023.emnlp-main.985

15. Chen, Z., Chen, W., Zha, H., Zhou, X., Zhang, Y., Sundaresan, S., Wang, W.Y.:
Logic2text: High-fidelity natural language generation from logical forms (2020).
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.190

16. Chen, Z., Li, I., Zhang, H., Preum, S.M., Stankovic, J.A., Ma, M.: Cityspec: An
intelligent assistant system for requirement specification in smart cities (2022).
https://doi.org/10.1109/SMARTCOMP55677.2022.00020

https://doi.org/10.1007/978-3-030-58638-6_4
https://doi.org/10.1007/978-3-030-58638-6_4
https://doi.org/10.1007/978-3-030-58638-6_4
https://doi.org/10.1007/978-3-030-58638-6_4
https://doi.org/10.1007/978-3-030-21290-2_23
https://doi.org/10.1007/978-3-030-21290-2_23
https://doi.org/10.1007/978-3-030-21290-2_23
https://doi.org/10.1007/978-3-030-21290-2_23
https://ceur-ws.org/Vol-2673/paperDR12.pdf
https://ceur-ws.org/Vol-2673/paperDR12.pdf
https://doi.org/10.1007/978-3-031-34560-9_25
https://doi.org/10.1007/978-3-031-34560-9_25
https://doi.org/10.1007/978-3-031-17604-3_11
https://doi.org/10.1007/978-3-031-17604-3_11
https://doi.org/10.1109/RE57278.2023.00029
https://doi.org/10.1109/RE57278.2023.00029
https://doi.org/10.1007/s10489-023-04882-0
https://doi.org/10.1007/s10489-023-04882-0
https://doi.org/10.1007/s10489-023-04882-0
https://doi.org/10.1007/s10489-023-04882-0
https://doi.org/10.4230/LIPIcs.TIME.2019.17
https://doi.org/10.4230/LIPIcs.TIME.2019.17
https://doi.org/10.4230/LIPIcs.TIME.2019.17
https://doi.org/10.4230/LIPIcs.TIME.2019.17
https://doi.org/10.1016/J.ESWA.2016.08.040
https://doi.org/10.1016/J.ESWA.2016.08.040
https://doi.org/10.1016/J.ESWA.2016.08.040
https://doi.org/10.1016/J.ESWA.2016.08.040
https://doi.org/10.1109/INDIN41052.2019.8972130
https://doi.org/10.1109/INDIN41052.2019.8972130
https://doi.org/10.1007/978-3-031-16168-1_8
https://doi.org/10.1007/978-3-031-16168-1_8
https://doi.org/10.1007/S11761-014-0170-X
https://doi.org/10.1007/S11761-014-0170-X
https://doi.org/10.1109/REW57809.2023.00052
https://doi.org/10.1109/REW57809.2023.00052
https://aclanthology.org/2023.emnlp-main.985
https://aclanthology.org/2023.emnlp-main.985
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.190
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.190
https://doi.org/10.1109/SMARTCOMP55677.2022.00020
https://doi.org/10.1109/SMARTCOMP55677.2022.00020

17. Chhabra, A., Sangroya, A., Anantaram, C.: Formalizing and verifying natural lan-
guage system requirements using petri nets and context based reasoning (2018),
https://ceur-ws.org/Vol-2134/paper09.pdf

18. Conrad, E., Titolo, L., Giannakopoulou, D., Pressburger, T., Dutle, A.: A com-
positional proof framework for fretish requirements (2022). https://doi.org/10.
1145/3497775.3503685

19. Cosler, M., Hahn, C., Mendoza, D., Schmitt, F., Trippel, C.: nl2spec: Interactively
translating unstructured natural language to temporal logics with large language
models (2023). https://doi.org/10.1007/978-3-031-37703-7_18

20. Costescu, D.M.: Building on a traffic code violating monitor for autonomous vehi-
cles: Trio overtaking model (2020)

21. Donadello, I., Riva, F., Maggi, F.M., Shikhizada, A.: Declare4py: A python library
for declarative process mining (2022), https://ceur-ws.org/Vol-3216/paper_
249.pdf

22. Eder, J., Franceschetti, M., Lubas, J.: Time and processes: Towards engineering
temporal requirements (2021). https://doi.org/10.5220/0010625400090016

23. Etikala, V., Veldhoven, Z.V., Vanthienen, J.: Text2dec: Extracting decision depen-
dencies from natural language text for automated DMN decision modelling (2020).
https://doi.org/10.1007/978-3-030-66498-5_27

24. Fill, H., Fettke, P., Köpke, J.: Conceptual Modeling and Large Language Models:
Impressions From First Experiments With ChatGPT (2023). https://doi.org/
10.18417/emisa.18.3

25. Fontenla-Seco, Y., Winkler, S., Gianola, A., Montali, M., Penín, M.L., Diz, A.J.B.:
The droid you’re looking for: C-4pm, a conversational agent for declarative process
mining (2023), https://ceur-ws.org/Vol-3469/paper-20.pdf

26. Fuggitti, F., Chakraborti, T.: NL2LTL - a python package for converting natural
language (NL) instructions to linear temporal logic (LTL) formulas (2023). https:
//doi.org/10.1609/aaai.v37i13.27068

27. Gavran, I., Darulova, E., Majumdar, R.: Interactive synthesis of temporal specifi-
cations from examples and natural language (2020). https://doi.org/10.1145/
3428269

28. Ge, N., Yang, J., Yu, T., Liu, W.: AutoMTLSpec: Learning to Generate MTL Spec-
ifications from Natural Language Contracts (2023). https://doi.org/10.1109/
ICECCS59891.2023.00018

29. Golra, F.R., Dagnat, F., Souquières, J., Sayar, I., Guérin, S.: Bridging the gap
between informal requirements and formal specifications using model federation
(2018). https://doi.org/10.1007/978-3-319-92970-5_4

30. Hahn, C., Schmitt, F., Tillman, J.J., Metzger, N., Siber, J., Finkbeiner, B.: Formal
specifications from natural language (2022). https://doi.org/10.48550/ARXIV.
2206.01962

31. He, J., Bartocci, E., Nickovic, D., Isakovic, H., Grosu, R.: Deepstl - from english
requirements to signal temporal logic (2022). https://doi.org/10.1145/3510003.
3510171

32. Ivanov, V., Sadovykh, A., Naumchev, A., Bagnato, A., Yakovlev, K.: Extracting
software requirements from unstructured documents (2022), https://arxiv.org/
abs/2202.02135

33. Kitchenham, B.: Procedures for performing systematic reviews (2004)
34. Krasowski, H., Althoff, M.: Temporal logic formalization of marine traffic rules

(2021). https://doi.org/10.1109/IV48863.2021.9575685

https://ceur-ws.org/Vol-2134/paper09.pdf
https://doi.org/10.1145/3497775.3503685
https://doi.org/10.1145/3497775.3503685
https://doi.org/10.1145/3497775.3503685
https://doi.org/10.1145/3497775.3503685
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1007/978-3-031-37703-7_18
https://ceur-ws.org/Vol-3216/paper_249.pdf
https://ceur-ws.org/Vol-3216/paper_249.pdf
https://doi.org/10.5220/0010625400090016
https://doi.org/10.5220/0010625400090016
https://doi.org/10.1007/978-3-030-66498-5_27
https://doi.org/10.1007/978-3-030-66498-5_27
https://doi.org/10.18417/emisa.18.3
https://doi.org/10.18417/emisa.18.3
https://doi.org/10.18417/emisa.18.3
https://doi.org/10.18417/emisa.18.3
https://ceur-ws.org/Vol-3469/paper-20.pdf
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1145/3428269
https://doi.org/10.1145/3428269
https://doi.org/10.1145/3428269
https://doi.org/10.1145/3428269
https://doi.org/10.1109/ICECCS59891.2023.00018
https://doi.org/10.1109/ICECCS59891.2023.00018
https://doi.org/10.1109/ICECCS59891.2023.00018
https://doi.org/10.1109/ICECCS59891.2023.00018
https://doi.org/10.1007/978-3-319-92970-5_4
https://doi.org/10.1007/978-3-319-92970-5_4
https://doi.org/10.48550/ARXIV.2206.01962
https://doi.org/10.48550/ARXIV.2206.01962
https://doi.org/10.48550/ARXIV.2206.01962
https://doi.org/10.48550/ARXIV.2206.01962
https://doi.org/10.1145/3510003.3510171
https://doi.org/10.1145/3510003.3510171
https://doi.org/10.1145/3510003.3510171
https://doi.org/10.1145/3510003.3510171
https://arxiv.org/abs/2202.02135
https://arxiv.org/abs/2202.02135
https://doi.org/10.1109/IV48863.2021.9575685
https://doi.org/10.1109/IV48863.2021.9575685

35. Li, C., Chang, J., Wang, X., Zhao, L., Mao, W.: Formalization of natural language
into PPTL specification via neural machine translation (2022). https://doi.org/
10.1007/978-3-031-29476-1_7

36. Lin, J., Zhou, W., Wang, H., Cao, Z., Yu, W., Zhao, C., Zhao, D., Yang, D.,
Li, J.: Road traffic law adaptive decision-making for self-driving vehicles (2022).
https://doi.org/10.1109/ITSC55140.2022.9922208

37. Liu, J.X., Yang, Z., Idrees, I., Liang, S., Schornstein, B., Tellex, S., Shah, A.:
Grounding complex natural language commands for temporal tasks in unseen en-
vironments (2023)

38. López, H.A., Marquard, M., Muttenthaler, L., Strømsted, R.: Assisted declarative
process creation from natural language descriptions (2019). https://doi.org/10.
1109/EDOCW.2019.00027

39. López, H.A., Strømsted, R., Niyodusenga, J., Marquard, M.: Declarative process
discovery: Linking process and textual views (2021). https://doi.org/10.1007/
978-3-030-79108-7_13

40. Maierhofer, S., Rettinger, A., Mayer, E.C., Althoff, M.: Formalization of interstate
traffic rules in temporal logic (2020). https://doi.org/10.1109/IV47402.2020.
9304549

41. Manas, K., Paschke, A.: Semantic Role Assisted Natural Language Rule
Formalization for Intelligent Vehicle (2023). https://doi.org/10.1007/
978-3-031-45072-3_13

42. Mustroph, H., Barrientos, M., Winter, K., Rinderle-Ma, S.: Verifying resource com-
pliance requirements from natural language text over event logs (2023). https:
//doi.org/10.1007/978-3-031-41620-0_15

43. Nayak, A., Timmapathini, H., Murali, V., Ponnalagu, K., Venkoparao, V.G.,
Post, A.: Req2spec: Transforming software requirements into formal specifi-
cations using natural language processing (2022). https://doi.org/10.1007/
978-3-030-98464-9_8

44. Neuberger, J., Ackermann, L., Jablonski, S.: Beyond rule-based named entity recog-
nition and relation extraction for process model generation from natural language
text (2023). https://doi.org/10.48550/arXiv.2305.03960

45. Novotná, T., Libal, T.: An evaluation of methodologies for legal formalization
(2022). https://doi.org/10.1007/978-3-031-15565-9_12

46. Ocampo-Pineda, M., Posenato, R., Zerbato, F.: Timeawarebpmn-js: An editor and
temporal verification tool for time-aware BPMN processes (2022). https://doi.
org/10.1016/J.SOFTX.2021.100939

47. Osama, M., Zaki-Ismail, A., Abdelrazek, M.A., Grundy, J., Ibrahim, A.S.: A com-
prehensive requirement capturing model enabling the automated formalisation of
NL requirements (2023). https://doi.org/10.1007/s42979-022-01449-7

48. Pan, J., Chou, G., Berenson, D.: Data-efficient learning of natural language to
linear temporal logic translators for robot task specification (2023). https://doi.
org/10.1109/ICRA48891.2023.10161125

49. Pi, X., Shi, J., Huang, Y., Wei, H.: Automated Mining and Checking of Formal
Properties in Natural Language Requirements (2019). https://doi.org/10.1007/
978-3-030-29563-9_8

50. Quartey, B., Rosen, E., Tellex, S., Konidaris, G.: Verifiably following complex robot
instructions with foundation models (2024). https://doi.org/10.48550/ARXIV.
2402.11498

51. Quishpi, L., Carmona, J., Padró, L.: Extracting decision models from textual de-
scriptions of processes (2021). https://doi.org/10.1007/978-3-030-85469-0_8

https://doi.org/10.1007/978-3-031-29476-1_7
https://doi.org/10.1007/978-3-031-29476-1_7
https://doi.org/10.1007/978-3-031-29476-1_7
https://doi.org/10.1007/978-3-031-29476-1_7
https://doi.org/10.1109/ITSC55140.2022.9922208
https://doi.org/10.1109/ITSC55140.2022.9922208
https://doi.org/10.1109/EDOCW.2019.00027
https://doi.org/10.1109/EDOCW.2019.00027
https://doi.org/10.1109/EDOCW.2019.00027
https://doi.org/10.1109/EDOCW.2019.00027
https://doi.org/10.1007/978-3-030-79108-7_13
https://doi.org/10.1007/978-3-030-79108-7_13
https://doi.org/10.1007/978-3-030-79108-7_13
https://doi.org/10.1007/978-3-030-79108-7_13
https://doi.org/10.1109/IV47402.2020.9304549
https://doi.org/10.1109/IV47402.2020.9304549
https://doi.org/10.1109/IV47402.2020.9304549
https://doi.org/10.1109/IV47402.2020.9304549
https://doi.org/10.1007/978-3-031-45072-3_13
https://doi.org/10.1007/978-3-031-45072-3_13
https://doi.org/10.1007/978-3-031-45072-3_13
https://doi.org/10.1007/978-3-031-45072-3_13
https://doi.org/10.1007/978-3-031-41620-0_15
https://doi.org/10.1007/978-3-031-41620-0_15
https://doi.org/10.1007/978-3-031-41620-0_15
https://doi.org/10.1007/978-3-031-41620-0_15
https://doi.org/10.1007/978-3-030-98464-9_8
https://doi.org/10.1007/978-3-030-98464-9_8
https://doi.org/10.1007/978-3-030-98464-9_8
https://doi.org/10.1007/978-3-030-98464-9_8
https://doi.org/10.48550/arXiv.2305.03960
https://doi.org/10.48550/arXiv.2305.03960
https://doi.org/10.1007/978-3-031-15565-9_12
https://doi.org/10.1007/978-3-031-15565-9_12
https://doi.org/10.1016/J.SOFTX.2021.100939
https://doi.org/10.1016/J.SOFTX.2021.100939
https://doi.org/10.1016/J.SOFTX.2021.100939
https://doi.org/10.1016/J.SOFTX.2021.100939
https://doi.org/10.1007/s42979-022-01449-7
https://doi.org/10.1007/s42979-022-01449-7
https://doi.org/10.1109/ICRA48891.2023.10161125
https://doi.org/10.1109/ICRA48891.2023.10161125
https://doi.org/10.1109/ICRA48891.2023.10161125
https://doi.org/10.1109/ICRA48891.2023.10161125
https://doi.org/10.1007/978-3-030-29563-9_8
https://doi.org/10.1007/978-3-030-29563-9_8
https://doi.org/10.1007/978-3-030-29563-9_8
https://doi.org/10.1007/978-3-030-29563-9_8
https://doi.org/10.48550/ARXIV.2402.11498
https://doi.org/10.48550/ARXIV.2402.11498
https://doi.org/10.48550/ARXIV.2402.11498
https://doi.org/10.48550/ARXIV.2402.11498
https://doi.org/10.1007/978-3-030-85469-0_8
https://doi.org/10.1007/978-3-030-85469-0_8

52. Sànchez-Ferreres, J., Burattin, A., Carmona, J., Montali, M., Padró, L.: Formal
reasoning on natural language descriptions of processes (2019). https://doi.org/
10.1007/978-3-030-26619-6_8

53. Sànchez-Ferreres, J., Burattin, A., Carmona, J., Montali, M., Padró, L., Quishpi,
L.: Unleashing textual descriptions of business processes (2021). https://doi.org/
10.1007/s10270-021-00886-x

54. Sharma, S., Brian Lee, K.M., Brown, M., Best, G.: Instructing Robots with
Natural Language via Bi-RNNs for Temporal Logic Translation (2023),
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184383465&
partnerID=40&md5=9a09f07a3d2022b763a0a17f7d14289d

55. Sonbol, R., Rebdawi, G., Ghneim, N.: The use of nlp-based text representation
techniques to support requirement engineering tasks: A systematic mapping review
(2022). https://doi.org/10.1109/ACCESS.2022.3182372

56. Sudhi, V., Kutty, L., Gröpler, R.: Natural language processing for requirements for-
malization: How to derive new approaches? (2023). https://doi.org/10.48550/
arXiv.2309.13272

57. Wang, C., Ross, C., Kuo, Y.L., Katz, B., Barbu, A.: Learning a natural-
language to LTL executable semantic parser for grounded robotics (2020),
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168241969&
partnerID=40&md5=6c3e5cd9fe6da29032fae93808c78a09

58. Wang, X., Li, G., Li, C., Zhao, L., Shu, X.: Automatic generation of specification
from natural language based on temporal logic (2020). https://doi.org/10.1007/
978-3-030-77474-5_11

59. White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A.,
Spencer-Smith, J., Schmidt, D.C.: A prompt pattern catalog to enhance prompt
engineering with chatgpt (2023). https://doi.org/10.48550/ARXIV.2302.11382

60. Wu, X., Cai, Y., Lian, Z., Leung, H., Wang, T.: Generating natural language
from logic expressions with structural representation (2023). https://doi.org/
10.1109/TASLP.2023.3263784

61. Yu, W., Zhao, C., Wang, H., Liu, J., Ma, X., Yang, Y., Li, J., Wang, W., Hu,
X., Zhao, D.: Online Legal Driving Behavior Monitoring for Self-driving Vehicles
(2024). https://doi.org/10.6084/m9.figshare.24372535.v1

62. Zaki-Ismail, A., Osama, M., Abdelrazek, M., Grundy, J., Ibrahim, A.S.: RCM:
requirement capturing model for automated requirements formalisation (2021).
https://doi.org/10.5220/0010270401100121

63. Zaki-Ismail, A., Osama, M., Abdelrazek, M., Grundy, J.C., Ibrahim, A.S.: ARF:
automatic requirements formalisation tool (2021). https://doi.org/10.1109/
RE51729.2021.00060

64. Zaki-Ismail, A., Osama, M., Abdelrazek, M.A., Grundy, J.C., Ibrahim, A.S.: Rcm-
extractor: an automated nlp-based approach for extracting a semi formal repre-
sentation model from natural language requirements (2022). https://doi.org/
10.1007/s10515-021-00312-y

65. Zhang, S., Zhai, J., Bu, L., Chen, M., Wang, L., Li, X.: Automated Generation of
LTL Specifications for Smart Home IoT Using Natural Language (2020)

66. Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K.J., Ajagbe, M.A., Chioasca, E.,
Batista-Navarro, R.T.: Natural language processing for requirements engineering:
A systematic mapping study (2022). https://doi.org/10.1145/3444689

https://doi.org/10.1007/978-3-030-26619-6_8
https://doi.org/10.1007/978-3-030-26619-6_8
https://doi.org/10.1007/978-3-030-26619-6_8
https://doi.org/10.1007/978-3-030-26619-6_8
https://doi.org/10.1007/s10270-021-00886-x
https://doi.org/10.1007/s10270-021-00886-x
https://doi.org/10.1007/s10270-021-00886-x
https://doi.org/10.1007/s10270-021-00886-x
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184383465&partnerID=40&md5=9a09f07a3d2022b763a0a17f7d14289d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184383465&partnerID=40&md5=9a09f07a3d2022b763a0a17f7d14289d
https://doi.org/10.1109/ACCESS.2022.3182372
https://doi.org/10.1109/ACCESS.2022.3182372
https://doi.org/10.48550/arXiv.2309.13272
https://doi.org/10.48550/arXiv.2309.13272
https://doi.org/10.48550/arXiv.2309.13272
https://doi.org/10.48550/arXiv.2309.13272
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168241969&partnerID=40&md5=6c3e5cd9fe6da29032fae93808c78a09
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168241969&partnerID=40&md5=6c3e5cd9fe6da29032fae93808c78a09
https://doi.org/10.1007/978-3-030-77474-5_11
https://doi.org/10.1007/978-3-030-77474-5_11
https://doi.org/10.1007/978-3-030-77474-5_11
https://doi.org/10.1007/978-3-030-77474-5_11
https://doi.org/10.48550/ARXIV.2302.11382
https://doi.org/10.48550/ARXIV.2302.11382
https://doi.org/10.1109/TASLP.2023.3263784
https://doi.org/10.1109/TASLP.2023.3263784
https://doi.org/10.1109/TASLP.2023.3263784
https://doi.org/10.1109/TASLP.2023.3263784
https://doi.org/10.6084/m9.figshare.24372535.v1
https://doi.org/10.6084/m9.figshare.24372535.v1
https://doi.org/10.5220/0010270401100121
https://doi.org/10.5220/0010270401100121
https://doi.org/10.1109/RE51729.2021.00060
https://doi.org/10.1109/RE51729.2021.00060
https://doi.org/10.1109/RE51729.2021.00060
https://doi.org/10.1109/RE51729.2021.00060
https://doi.org/10.1007/s10515-021-00312-y
https://doi.org/10.1007/s10515-021-00312-y
https://doi.org/10.1007/s10515-021-00312-y
https://doi.org/10.1007/s10515-021-00312-y
https://doi.org/10.1145/3444689
https://doi.org/10.1145/3444689

	Automatic Extraction and Formalization of Temporal Requirements from Text: A Survey

