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Abstract. Predictive Process Monitoring (PPM) enables organizations
to predict future states of ongoing process instances such as the remain-
ing time, the outcome, or the next activity. A process in this context
represents a coordinated set of activities that are enacted by a process
engine in a specific order. The underlying source of data for PPM are
event logs (ex post) or event streams (runtime) emitted for each activ-
ity. Although plenty of methods have been proposed to leverage event
logs/streams to build prediction models, most works focus on station-
ary processes, i.e., the methods assume the range of data variability
encountered in the event log/stream to remain the same over time. Un-
fortunately, this is not always the case as deviations from the expected
process behaviour might occur quite frequently and updating prediction
models becomes inevitable eventually. In this paper we investigate non-
stationary processes, i.e., the impact of unseen data variability in event
streams on prediction models from a structural and behavioural point
of view. Strategies and methods are proposed to incorporate unknown
data variability and to update recurrent neural network based models
continuously in order to accommodate changing process behaviour. The
approach is prototypically implemented and evaluated based on real-
world data sets.

Keywords: Event Streams, Predictive Process Monitoring, Data Variability,
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1 Introduction

Predicting future states of processes is a highly desirable ability as it empowers
organizations to transition from reactive to proactive measures [4]. Predictive
Process Monitoring (PPM) exploits traces of event data emitted during the
executions of processes to enable evidence based forecasting of the remaining
time, the outcome, or the next activity of ongoing processes [7].
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However, most of the proposed PPM methods have one critical aspect in
common: they are heavily based on the assumption that processes are station-
ary [9,11]. Stationary processes refer to processes that remain unchanged over
time. This enables one to make safe assumptions about the underlying data
variability and permits to ignore potential issues when unseen data variability
is encountered.

In practice, processes evolve over time, especially when humans are involved.
Just as organizations undergo changes and require an overhaul of their processes,
so can human behavior change the way to carry out tasks [10]. In both cases,
this can lead to inevitable changes in the data variability. These changes can
be observed in the event traces which can be encountered in two forms, i.e.,
as event logs (ex-post) or as event streams emitted and stored during runtime
(online). Each event is expected to carry information such as the identity of
a particular process instance, an activity label, and potentially context data
collected and/or generated by an activity. Changes that could be observed in
the event traces include the emergence of new activities, rearranged orders of
activities, and new values of context data.

Moreover, in an online setting, we do not have the privilege of foresight; we
cannot know all possible forms of data variability upfront that our model may
encounter in future. This holds particularly true when we assume non-stationary
processes; change is expected, but when a change will occur, what changes may
occur, and which impact the changes may have remains unknown. This applies
at least until the point in time unseen data variability is encountered. Reliable
predictions require complete data. Incomplete data may involuntarily introduce
faulty behavior to a prediction model leading to imprecise prediction results.
Under these premises and the restriction that event data acquired over time is
the only available source of evidence for the processe behavior, predicting the
next-activity is a challenging task. The goal is to enable robust, evidence-based
next-activity predictions when we can solely rely on (incomplete) event data.

This paper addresses these challenges through the overarching question of

How to predict the next activity for an observed event assuming
non-stationary processes in an online setting, i.e., during runtime?

We tackle this question based on the following contributions:

– We discuss potential challenges and pitfalls when dealing with unseen future
data that will be utilized as input to predict the next activity.

– We discuss the requirements to build evidence-based robust prediction mod-
els under an online setting with non-stationary processes

– We propose and analyze greedy strategies for updating the prediction model
and handling unseen event attribute values that serve as input for the pre-
diction model.

– The strategies are prototypically implemented and applied to several real-
world data sets. In addition to the feasibility of the strategies, the evaluation
results show that considering more historic data does not necessarily lead to



significantly better prediction results. This insight is useful for finding the
sweet spot between effort and output quality.

Section 2 discusses related work. Section 3 sets out challenges and require-
ments and Sect. 4 presents the approach for next activity prediction in an online
setting. Section 5 provides an experimental evaluation of the approach. Section
6 discusses the approach and concludes the paper.

2 Related Work

The majority of predictive process monitoring approaches operates in an offline
manner, i.e., on process execution logs [12]. For online settings, predictive pro-
cess monitoring literature distinguishes between dynamic and static prediction
approaches. A static approach is proposed by [9]. In detail, an annotated transi-
tion system processes the observed process sequence and selected data attributes
to derive a prediction. Activities that are unknown at runtime are dropped from
the input before passing them to the prediction model. Dynamic approaches are
presented in [6,8,12]. [6,12] investigate various prediction model update strategies
based on decision trees in order to handle unseen process behavior. [8] investigate
incremental learning strategies for neural networks by reusing existing predic-
tion models and adapting them with newly observed training data. Our approach
differs from [6,8,12] in several ways: i) we include more if not all available at-
tributes in addition to the activity label and the timestamp; ii) we consider the
full (partial) traces as input for our prediction model in contrast to limiting the
input to a fixed number of the most recent events; iii) we use recurrent neural
networks; iv) we do not assume any knowledge about future data not seen by
the prediction model at training time, and v) we utilize different model update
strategies. Moreover [12] investigate update strategies over selected time periods
and [8] investigate strategies on a monthly basis. By contrast, the approach at
hand, investigates update strategies on a daily basis.

3 Challenges and Requirements

Our focus is on process-oriented data. Let P be a process model that comprises a
set of activities ai (i = 1, . . . , n) which are executed in a particularly coordinated
fashion. Each activity can be augmented by any number of attributes which carry
information specific to this activity. At runtime, process instances are created
and executed based on P . The progress of an ongoing process instance σj is
reported by emitted events ei that carry the case identifier of a process to
which the event belongs, a timestamp, and activity specific data that includes
the label of an activity and optionally activity attributes together with their
values. With the help of the case identifier of incoming events we can distinguish
between different process instances and thus determine an event’s affiliation to
one particular process instance. The timestamps enable us to reconstruct the
order in which activities have been carried out. Let c represent a case identifier.



Then an ordered sequence of events eci sharing the same case identifier is referred
to as trace πc = 〈ec1, ec2, . . . , ecn〉. Since an event’s purpose is characterized by its
activity label, we use the terms event and activity interchangeably from here
on. For the next-activity prediction task, events and traces are the fundamental
resources for evidence-based predictions.

3.1 Data Variability

In the following, we discuss at which levels data variability might occur in the
context of processes, i.e., through changes on the meta and value level.

– Meta level changes include changes to the structure of an event. The three
possible scenarios include (M1) the removal of existing attributes, (M2) the
inclusion of new attributes, and (M3) the alteration of the reference name
of an existing attribute.

– Value level: We distinguish between two data types for attributes, i.e.,
categorical and continuous values. Categorical values represent values limited
to a finite set of numeric or non-numeric values (e.g., the name or identifier
of an activity or resource). Continuous values represent numeric values that
can potentially take on any value from an infinite set of numeric values (e.g.,
a temperature measurement obtained from a sensor). Value level changes
refer to deviations of attribute values from values observed in the past.

Deviations may include the absence or change in the frequencies of known
values, and the appearance of previously unseen values. In literature such devi-
ations are also referred to as concept drifts [5], including recurring or seasonal
drifts, incremental drifts reflecting small changes, sudden drifts reflecting com-
pletely new process behavior, and gradual drifts reflecting gradually deviating
process behavior.

The implications of meta/structural and value/attribute level deviations are
manifold. Structural ad-hoc changes e.g. by the exclusion of an expected at-
tribute can lead to a system malfunctioning if the system is not designed to
dynamically adapt to change. Value level changes may similarly impair a sys-
tem’s behavior when no mechanisms are in place to handle unseen data.

In this paper, we focus on value level data variability and assume no meta
level changes occur. We assume that we only have access to event logs or event
streams to derive the information required to build a prediction model.

3.2 Challenges of Evidence Based Predictions with Unseen
Activities and Sequences

An event in the context of process execution is primarily characterized by its
type, i.e., which activity has occurred, and when it has occurred. Not knowing all
types of events and the order in which the events could potentially occur removes
the ability to prepare a model beforehand that can handle future unseen data.



Fig. 1: Challenges when predicting next activities with unseen events. ϕ repre-
sents the set of past known events, α the set of currently observed events for
which we want to predict the next activity and ω the set of future unknown
events. The box with the solid border around the events under α indicates for
which event we can attempt to predict whereas the dashed box indicates we
cannot make a prediction as the event has been observed for the first time.

Figure 1 illustrates scenarios where not all event types that could occur and the
order in which those event types could occur are known upfront.

For scenarios (a)− (e), we assume that the sequence of activities A > B > C
has been observed, where > denotes the order in which the activities have been
observed. In the above case activity B follows A and activity C follows B. The
time frame which includes all observed events is marked by ϕ. We assume that
all events in ϕ have been completed. The time frame α represents the currently
observed events. For them the aim is to predict the next activity, while also
taking into consideration predecessors of the events. Furthermore the prediction
process considers all observed events in ϕ. Lastly the time frame ω represents
the future and thus events that will follow the events observed in the present,
but which are unknown during α.

Next we will address each of the scenarios (a) – (e) and their potential pitfalls.
In scenario (a), we can predict the next activity for the observed sub sequence
A > B. Based on the past observations, C would be the only logical candidate
and correct choice with regards to ω. In scenario (b), the logical candidate would
be to predict the termination of the process, which would coincide with the
past as no follow-up event after C was observed. Scenario (c) depicts a similar
starting setup as in Scenario (b) except that in ω event K will follow. Unaware
of the future and not having observed this sequence pattern in the past, the
logical candidate for the next activity prediction would be the termination of
the sequence, which is incorrect. Scenario (d) depicts a similar initial setup as in
scenario (c), where again based on the past observation the most likely candidate
to follow B be is C. However, this again would be an incorrect prediction, since



a pattern that includes K was not observed in ϕ. Finally Scenario (e) illustrates
the case where an event with an unseen activity is encountered. Having no prior
knowledge about the unseen activity and thus consequently about the observed
partial trace, making an prediction with incomplete adds a certain risk to the
validity of the prediction result.

3.3 Uncertainty of the Final Activity of a Trace

Another challenging task is to predict the end of a sequence. Besides predicting
the next activity, predicting the end of a process is vital and necessary in order
to establish a proper termination point for a sequence of activities. We can only
predict the end of an ongoing process if we know what the possible termination
states are. For our scenario, where only event logs and streams are available,
we differentiate between the following three cases, ordered from high to low
confidence with regards to the knowledge of the possible termination states. Let
O represent a set of observed activities and T a set of activities observed at the
end of sequences to which we refer as termination activities.

C1 There exists a subset of termination activities that only appears at the end
of sequences and is never preceded by any other activity including the ter-
mination activities.

a1 → · · · → an → t ai ∈ O, t ∈ T,O 6= T (1)

C2 There exists a subset of termination activities that can be preceded and
superseded by any activity including termination activities. The termination
of a sequence however only occurs after a termination candidate.

a1 → · · · → an → t ai ∈ O, t ∈ T, T ⊂ O (2)

C3 Every activity can occur at any place in the sequence and can be a candidate
for the sequence termination.

a1 → · · · → an → t ai ∈ O, t ∈ T, T ⊆ O (3)

As mentioned above each event carries a case identifier and a timestamp.
With this information we can determine to which trace an event belongs and in
which order the events have been observed and thus presumably in which order
activities of a trace have been carried out. Thus the event with the most recent
timestamp of a trace is considered as the final event that occurred before the
trace terminated.

Under this premise, C1 is the simplest case as we are ensured that certain
activities only appear at the end of a sequence. This should lead to prediction
models with the most accurate prediction results as there is a clearly distin-
guishable set of activities which solely appear at the end of sequences. C2 faces
a more complicated challenge: after we have reached a termination candidate
we need to answer the question: Do we predict the end or do we predict another



follow-up activity? While Case C2 has the confidence that predicting the end is
a valid option, C3 cannot provide any assurances in this regard as any activity
can be a candidate for the last activity of a sequence.

Case C3 corresponds to total randomness where over time constantly new
activities are added or even dropped and new sequences appear such that no
patterns can be established. This makes it difficult or impossible to make any
reliable predictions. C2 is a more likely scenario where occasionally changes
might emerge in addition to established patterns which gradually may change
over time. In this paper we assume Case C2.

4 Approach

This section presents data encoding strategies for unseen data variability and
an approach for updating the prediction model for next activity prediction with
unseen data variability.

4.1 Data Encoding with Unseen Data Variability

Data encoding is the bridge that enables prediction models to utilize raw event
logs and stream data. In other words, the occurring event data must be trans-
formed into the structure required by the model. Typically a prediction method
has certain requirements for the data encoding whereby certain limitations can
be imposed on how we can represent input data for models.

As mentioned in Section 3.1, we differentiate between categorical and contin-
uous values. The traditional and widely used approach is to encode categorical
features using dummy variables, where each variable for a binary feature can
either take the value 0 or 1 to encode the absence or presence of a category re-
spectively. For features with K > 2 categories this technique is extended to 1 of
K or one-hot feature encoding [2]. Here a feature is represented by a binary vec-
tor with K variables, where all the variables take the value 0, while the variable
that represents the category we intend to encode takes the value 1. Assuming a
set of three categories {Q ,R,S} we then can uniquely represent each category
by the vectors (1 , 0 , 0 ), (0 , 1 , 0 ) and (0 , 0 , 1 ) respectively.

However, one-hot encoded features can lead to sparse representations, es-
pecially if the number of categories increases. A more compact variation for
binary feature encoding is achieved by applying an ordinal encoding scheme [2].
In this case, each category of a feature is mapped to a cardinal number. Then
the mapped number of the category is represented in the base-2 numeral system
to encode a binary vector. Assuming that the categories {Q,R, S} are indexed
from 1 to 3 in ascending order, we then can represent the categories with a vector
of size two as (0 , 1 ), (1 , 0 ) and (1 , 1 ) respectively.

Continuous values can technically be encoded as is. However this typically
depends on the prediction technique applied. The prediction technique might be
subject to, e.g., only permitting integers or requiring normalization in order to
achieve an overall homogeneous representation with respect to other attributes



for the input data. Alternatively, one can encode a continuous value similarly to
the approach for categorical values by organizing the values into bins. The time
elapse since the start of a process case, for example, can be modeled into bins
of a day, a week or a month and so on.

For unseen data the challenge is that we do not have a mapping based on pre-
viously observed data that translates it into a representation a prediction model
understands. To tackle this challenge, we propose two strategies, namely using
a void category and introducing additional reserve capacity in the prediction
model, that can be utilized with existing encoding techniques to handle unseen
data variability and to enable prediction models to operate without immediate
interruption and to facilitate faster updates for prediction models.

Void Category The purpose of the void category strategy is to serve as a
placeholder for arbitrary input unknown to us. Let V a represent a collection of
known data values for an attribute a ∈ A and M the set of transformed and
encoded values m and m∗ /∈ M representing the void category. Then vai → m∗

represents the void mapping function with vai /∈ V a. This allows to keep the
structure of a prediction model as is and enable the model to keep operating
with unseen data.

We define the void category as the zero vector and in addition to the known
set of categories {Q,R, S} we observe {T,U} not known to our prediction model.
Then T and U are mapped to (0 , 0 , 0 ) when using the one-hot encoding or to
(0 , 0 ) when using the ordinal encoding scheme.

Reserve Capacity Another strategy is to integrate additional reserve capacity
Ψ for every attribute of the input. Additional slots are added to the binary
vector for future unseen data categories. Since the additional reserve capacity
is embedded into the input structure, the prediction model must not undergo
major structural changes. This enables to incrementally update existing models.
For minimal alteration it is necessary to keep the order of the encoded attributes
and their categories in the vector representation.

The challenge here is how to pick the additional capacity size and to decide
when to further increase the capacity at runtime. Assuming the same set of
known categories {Q,R, S} for an attribute and the reserve capacity to be Ψ =
2 the resulting vector length for the one-hot encoding scheme is 5 (3 known
categories + 2 reserve slots) and in the case of the ordinal encoding scheme the
vector length is 3 ( as 3 binary digits can encode 8 numbers from 0-7 which covers
the overall required capacity of 5 binary numbers.) The corresponding one-hot
encoded representation for Q,R, S would be (1 , 0 , 0 , 0 , 0 ), (0 , 1 , 0 , 0 , 0 ) and
(0 , 0 , 1 , 0 , 0 ). A new category T could then be encoded at the next unoccupied
slot (0 , 0 , 0 , 1 , 0 ). For the ordinal encoding scheme this results in the vectors
(0 , 0 , 1 ), (0 , 1 , 0 ) and (0 , 1 , 1 ) for Q,R, S respectively, whereas T would be
represented by (1 , 0 , 0 ) assuming T is indexed by 4.

For the void category strategy, which has its practical use in an online setting,
it is necessary that a prediction model can continue to operate despite unseen



data values. By contrast, the reserve capacity strategy aims to enable faster
prediction model update by preserving parts of the model learned from the past.
Through the introduction of the additional capacity for newly observed value
types, this should result in additive changes to the model and thus to faster
convergence during the model training. In this paper, we focus on the void
category strategy, leaving the reserve capacity strategy for future work.

4.2 Determining the Termination of a Sequence

To determine the final event of an observed trace that leads to termination,
we introduce an additional attribute for each event that keeps track of the life-
cycle of the trace. Existing approaches such as [1,14], by contrast, require an
additional event/activity that indicates the end of a case. The trace lifecyle at-
tribute keeps track of the current progress of an instantiated process and is set
by the underlying process execution engine. The first activity’s event will carry
the value ’START’ whereas the final activity’s event will hold the value ’END’
for the trace life cycle attribute.

4.3 Online Prediction Process

The online next activity prediction approach proposed in this work is depicted
in Figure 2 and comprises three repeating sub processes. The first sub process
includes activities Read Event Stream followed by Aggregate/Map Events into/to
Traces πc which processes incoming events and organizes the events into traces
with the help of an event’s case identifier and timestamp and persists them into
a database denoted as Π. The second sub process consists of activities Detect
Data Variability and Trigger Prediction Model Update which actively monitors
deviations in Π and initiates the process to update a prediction model Ms,
both based on a model update strategy S. A new model Ms+1 is built using
the update function h(Π, θ) where θ prescribes a set of rules regarding which
traces of Π to consider. Examples for θ include applying a sliding window or
expanding window approach. In the sliding window approach one only includes
traces that are within a time frame (e.g., traces observed within the last month
from today). An expanding window approach includes all future traces since
a particular point in time in the past. The third sub process is composed of
the activities Query Running Traces and Predict Next Activities with Ms+1. It
predicts a subsequent activity with regards to the last activity registered in a
trace for all incomplete (running) traces with the most recent prediction model
Ms+t available.

4.4 Prediction Model Update Strategies

In this paper, we consider and analyze three greedy prediction model update
strategies S1–S3 illustrated in Algorithms 1-3 respectively. These strategies en-
able us to address changes in activities and sequences and facilitate investigating
the impact of unseen activities and sequences on the prediction results.



Fig. 2: Online next activity prediction approach.

The first strategy S1 described by Algorithm 1 employs a periodic update
strategy where the time span between updates is controlled by δ. This strategy
does not consider deviations in the observed collection of traces Π. For all strate-
gies θ determines which part of the historical data in Π is considered for the
prediction model update. S1 is suitable for stationary processes where change in
the process behavior and data is not expected.

Algorithm 1 S1: Periodic Updates

1: Input: Π, θ, δ ← time until next update
2: t← now()
3: M← h(Π, θ)
4: while true do
5: if t+ δ ≤ now() then
6: M← h(Π, θ)
7: t← now()
8: end if
9: end while

In contrast to S1, strategies S2 and S3 base their decision to trigger a model
update when unseen variability in Π is detected. Both S2 and S3 ensure un-
seen activities and sequences respectively are incorporated into the prediction
model which exposes the model to new patterns and improves the ability to make
evidence based predictions. Thus these strategies are suited for non-stationary
processes. S2 actively monitors for activity labels in Π that are unknown to



Algorithm 2 S2: Update on new Activity

1: Input: Π, θ, Ω
2: M← h(Π, θ)
3: t←∞
4: while true do
5: if Π has unseen activities then
6: t← schedule next update with policy Ω
7: end if
8: if t ≤ now() then
9: M← h(Π, θ)
10: t←∞
11: end if
12: end while

Algorithm 3 S3: Update on new Sequences

1: Input: Π, θ, Ω
2: M← h(Π, θ)
3: t←∞
4: while true do
5: if Π has unseen sequences then
6: t← schedule next update with policy Ω
7: end if
8: if t ≤ now() then
9: M← h(Π, θ)
10: t←∞
11: end if
12: end while

the prediction model M while S3 actively monitors for new sequences, i.e. new
arrangement of activity sequences. S2 and S3 require an update policy Ω which
determines when to update a model if new activities or activity sequences are
encountered. Such a policy could, for example, dictate to update a model im-
mediately, after at least K number of new occurrences have been observed since
the last update, or, at the end of a day.

5 Experiments

We evaluate model update strategies S1–S3 (cf. Section 4.4) on several data sets
using an expanding window approach in combination with the proposed void
category encoding for unseen data variability. We predict the next activities on
a daily basis in order to simulate an online setting. The underlying assumption is
that strategies leading to more frequent updates are expected to perform better
as more data is available during the training of the prediction model. However,
how much improvement can be expected and at what cost the improvement is
acquired is unknown and thus the subject of investigation. In the following, we
describe the experimental setup in more detail and present the results of the
evaluation. The source code for the experiments is available on GitHub3.

5.1 Online Prediction Simulation and Model Update

For the periodic update strategy S1 we use a delay δ of 24 hours and infinity.
The latter case equates to training a prediction model once and is utilized as our
baseline. We predict the next activity for all events observed on the next day
outside the past window. The past window considers all observed events prior
to the prediction day. Once all the next-activity predictions have been made for
the events in the prediction window, the past window is expanded by including
the events in the prediction window. These steps are repeated until all events of
the data set have been processed. For the update strategies S2 and S3 we use

3 https://github.com/auroeur/kronos



a similar approach, except the past window is expanded only after a criterion
(i.e., unseen activities or activity sequences) is met and after all events in the
prediction day window have been processed. If the activity of a newly observed
event is unknown, no prediction for the next activity is made. This applies to
all update strategies. A prediction model update is only done after the window
has been expanded.

5.2 Datasets

Helpdesk Dataset The Helpdesk4 data set comprises of event logs of a ticketing
management process of an Italian software firm. Overall the data set includes
20777 events that are part of 4580 distinct process instances. The data was
collected between 2010-01-13 and 2014-01-03. The ticketing management process
comprises of 14 distinct activities. Each activity includes up to 12 attributes as
additional context data such as the resource, customer and severity of the issue.
BPI 2012 The BPI20125 data set has been released as part of the Business
Processing Intelligence Challenge (BPIC) 2012. This data set is a collection of
event logs from a Dutch financial institute concerning processes for loan appli-
cations. The log consists of 262220 events distributed among 13087 cases. Each
process instance comprises of three sub-processes that include automatic and
manual tasks carried out by humans. The data set includes process cases from
2011-10-01 till 2012-03-14 with 24 unique activities and two attributes including
the resources handling the applications and the applied loan amount.
Sepsis The Sepsis6 data set comprises of anonymized real-life event logs collected
over a time span of almost two years that tracks the pathway in a hospital of
patients with sepsis. The log consists of 15214 events distributed among 1050
cases. Overall the dataset consists of 16 distinct activities which can include up
to 30 attributes.

5.3 Data Pre-Processing

For all data sets, we omit the life cycle information by discarding events that
track the start and intermediate states of an activity. We only consider events
marked as complete. As addressed in Section 4.2, we in addition augment events
with information that signals if an event marks the first, an intermediate or the
final activity of a trace. Furthermore, we consider all non-redundant trace and
event level attributes found in the data sets in addition to the activity label and
timestamp attributes as features for the prediction models.

For every data set, we split the event logs by taking the first 10% of the
events to build the initial prediction model and we treat the remaining events
as the source for future incoming events. We include all events that occur on the
same day as the last event of the initial split.

4 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
5 https://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
6 https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460



For the prediction model training, the already observed events are aggre-
gated into traces with regards to matching case identity numbers. From these
(in-)complete traces we incrementally generate n − 1 partial traces/sequences
of events where n represents the number of observed events belonging to the
same trace. The smallest trace has size 1. The order of the events in a trace is
determined by the timestamp of the event. As the prediction label we use the
event activity that would naturally follow the incomplete partial trace.

5.4 Event Data Encoding

We encode categorical and continuous values of a trace as a binary vector using
the base-2 numeral system. Unknown attribute values are encoded using the void
category strategy for which we use the zero vector encoding.

In addition we include an attribute ’delay’ for every event as a categorical
feature which describes the time passed since the first event of the joint trace.
The attribute ’delay’ is subdivided into the following categories: an hour, four
hours, eight hours, a week, 2 weeks, 3 weeks, a month, 2 months, 3 months and
beyond 3 months.

5.5 LSTM Neural Networks and Model Training

As the prediction method we use a variation of Long-Short-Term Memory (LSTM)
[3] recurrent neural network proposed in [13]. LSTM in general have shown to be
well-suited for sequential data such as process events as demonstrated in [1,14].

For the LSTM we use 16 hidden cells with a single layer. The output nodes
of the LSTM are first fed into a batch normalization layer and then are passed
onto a fully connected layer. The input and output size of the network is dy-
namically set during the prediction model training and depends on the data
observed. As the loss function we use cross-entropy since we are dealing with a
classification problem where we want to predict the label of the next activity
based on the partial trace observed out of K classes. As the learning algorithm
we use Adam with a step size of 1e−3 and epsilon set to 1e−8. The prediction
models are implemented with PyTorch and trained on the CPU. All experiments
were conducted on a Fedora 32 system with an AMD Ryzen 5 3600 6-Core CPU
and 32 GB memory.

5.6 Model Selection

We split the events of the past window by first grouping them into traces with
the help of the case identifier and then taking the first 80% for training and
the remaining 20% for validating prediction models. The training set is used to
train the prediction models and the validation set is used to determine when
to stop the training procedure in order to avoid the models over-fitting the
underlying data and to ensure the model is capable of generalizing for unseen
data variability. Overall we train a model at most for 16 epochs with a batch



size of 4. We stop the training early if the prediction model accuracy does not
improve by 1 percentage point over the last 5 consecutive epochs. We adopt the
most recent prediction model that surpassed the improvement threshold.

5.7 Results

Table 1 summarizes the results for the experiments. We report the accuracy
(ACC), Matthews correlation coefficient (MCC), F1 as the weighted average of
the per activity label F1 scores w.r.t to a label’s support (i.e., the number of
occurrences of an activity label), precision (PR) and recall (RC) scores. These
scores include the results of next-activity predictions post the initial past win-
dow. The column #P represents the number of predictions made, whereas #NP
the number of times a prediction has not been made due to an unseen activity
label. The column #Model depicts the number of prediction models trained after
an update is triggered and #Time the cumulative time spent training models
for a strategy over the entire time span of a data set.

The suffix of a data set represents the update strategy applied: Sδ=∞1 does
not update models, Sδ=24h

1 updates models every 24 hours, S2 updates models
when encountering unseen activities, whereas S3 triggers model updates when
unseen activity sequences are detected. The bold scores represent the best scores
obtained for the respective metric.

Data Set-Si ACC MCC F1 PR RC #NP #P #Models Time

Helpdesk-Sδ=∞
1 0.837 0.794 0.818 0.845 0.837 346 17992 1 0:00:11

Helpdesk-S2 0.914 0.89 0.908 0.907 0.914 14 18324 6 0:03:14
Helpdesk-S3 0.931 0.912 0.926 0.923 0.931 14 18324 334 4:34:59

Helpdesk-Sδ=24h
1 0.928 0.908 0.923 0.919 0.928 13 18325 1253 15:14:58

BPI2012-Sδ=∞
1 0.736 0.722 0.693 0.716 0.736 286 113691 1 0:01:02

BPI2012-S2 0.742 0.729 0.699 0.724 0.742 286 113691 1 0:01:21
BPI2012-S3 0.778 0.765 0.756 0.782 0.778 286 113691 128 14:17:45

BPI2012-Sδ=24h
1 0.777 0.764 0.754 0.781 0.777 286 113691 144 16:07:17

Sepsis-Sδ=∞
1 0.588 0.528 0.562 0.574 0.588 8 12734 1 0:00:19

Sepsis-S2 0.615 0.559 0.593 0.607 0.615 2 12740 2 0:00:41
Sepsis-S3 0.654 0.602 0.634 0.636 0.654 2 12740 425 15:05:40

Sepsis-Sδ=24h
1 0.656 0.604 0.636 0.636 0.656 2 12740 503 19:57:03

Table 1: Next-activity prediction results for the model update strategies S1−S3.

All update strategies significantly outperform our baseline strategy Sδ=∞1

that does not update the prediction model. This seems to indicate that the
presence of unseen data variability is not reflected in the initial starting training
data. In terms of the prediction quality the results clearly suggest that more
frequent model updates lead to better prediction scores. The only exception
in this case applies to the most greedy update strategy Sδ=24h

1 with periodic
model updates on a daily basis, which despite significantly higher cumulative
computation time at most performs as well as or in some cases even worse
than the update strategy S3 that is triggered when unseen activity sequences
are observed. A possible explanation for this observation is that too frequent



updates impede a model from generalizing due to the model overfitting the data,
especially considering that the use of an expanding window includes all observed
events for training, leading to potentially complex models.

In light of the higher computational cost incurred by strategies with more
frequent updates the question arises, how much additional computational effort
is justifiable for acquiring more accurate prediction results. With regards to the
obtained results, S3 provides the optimal trade-off; it achieves on par prediction
results and requires less computational effort in contrast to the aggressive daily
update strategy Sδ=24h

1 .

Periodic Update Data Driven Update

Data Set [8] (Monthly) Sδ=24h
1 [8] (Drift) S2 S3

Helpdesk 0.78 0.928 0.81 0.914 0.931
BPI2012 0.79 0.777 0.79 0.742 0.778

Table 2: Next-activity prediction accuracy of LSTM models [8] against S1-S3.

In Table 2, we compare the prediction quality of our LSTM models with the
ACC scores reported by [8] for the common data sets. In [8], the authors use a
LSTM architecture presented in [14] and operate on batches of events collected
on a monthly basis with an expanding window, whereas we operate on a daily
basis (cf. Sect. 2). For Helpdesk, our daily periodic update strategy outperforms
the monthly approach of [8] by approx. 14% and our S2 and S3 outperform their
drift detection based update strategy by 10-12%. For BPIC2012, our Sδ=24h

1 and
S3 achieve similar results in comparison to their periodic and drift based update
strategy, where our approach falls short of approx. 1.3% in ACC.

6 Conclusion

We have proposed encoding and update strategies for predicting next process
activities in an online setting, in particular dealing with unseen data such as
process activities that have not been observed in the process event stream so
far. The encodings enable the consideration of such unseen activities by holding
“empty spots”. The update strategies vary in the frequency the prediction model
is updated. This enables us to compare and analyze whether continuous updates
result in the best prediction or if even less frequent updates are more benefi-
ciary. Based on a prototypical implementation and three real-world data sets it
could be shown that an “update on demand” strategy yields the best results
in terms of balancing prediction quality and performance. This work has some
limitations. In our experiments we did not consider potential data imbalances,
such as infrequent activities. For instance it is possible that if we split the his-
toric data into a training and validation set, that all infrequent activities might
land in the validation set and thus are unknown to the prediction model and
potentially ignored because they are underrepresented. Future work includes the
testing of greedy update strategies based on additional attributes, using a sliding
window in order to limit training data to the recent past, conducting additional



experiments with alternative encoding techniques for the data, experimenting
with above proposed reserve capacity encoding approach, experimenting with
alternative prediction model training approaches such as randomly dropping at-
tribute values during training to further increase a prediction model’s ability to
further generalize and be able to handle future unseen data.
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